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1. INTRODUCTION

Let X and Y be Banach spaces and 7' : X — Y be a bounded linear operator.
Recall that the essential norm of T : X — Y is its distance to the set of compact
operators K : X — Y, that is,

[IT]le,x»y = inf{|IT — K||x—y : K is compact }.
Here ||T||x—y denotes the operator normof 7: X — Y.

Let D be the open unit disk in the complex plane C. Let H(D) denate the space
of analytic functions on D, S(D) denote the set of all analytic self-maps of I, and
let ¢ € S(V) and w € H (D). The weighted composition operator, denoted by uC,, is
defined as follows:

(uC,f)(2) = u(2)f(p(2)), fe€ H(D).
When v = 1, we get the composition operator, denoted by Cy. When o(z) = z,
we get the multiplication opcrator; denoted by M,. A basic and interesting problem
concerning concrete operators (such as compaosition operator, weighted compaosition
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ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATORS ...

operator, Toeplitz operator and Hankel operator) is to relate operator theoretic
properties to their function theoretic properties of their symbols (for more information,
we refer the reader to [2] and [28]).

For 0 < a < 00, the Bloch type space B* consists of all f € I7(ID) such that

| fll5e = [£(0)] +=3'1€13(1 = =%)%1f'(2)] < oo.

Tf o = 1, then B is the Bloch space B (see [28] for more details of the Bloch spaces).

For 0 < a < o0, the Zygmund type space, denoted by 2%, consists of all f € H (D)
such that

Il fllze = IFO)|+1£(0)] +-:'lelg(1 — 211" ()] < oo
It is casy to see that the space Z¢ is a Banach space with the above norm. If c = L,
then 2 is the classical Zygmund space, denoted by Z. When 1 < a < o, the space
24 coincides with the space B~L, In particular, we have 2* = B.

For p € (1,2¢), tHe analytic Besov space B, is the space consisting of all f € H (D)

such that

b= [ 17 = P2t < o,
where dA is the normalized area measure on . The quantity b, is a seminorm and the
norm is defined by || f{ls, = |f£(0)| + b,(f). In particular, B is the classical Dirichlet
space.

The compactness and essential norm of the operator C, : B — B were studied in
[19, 20, 24, 25, 27]. The boundedness, compactness and essential norm of the operator
uC, : B — B were studied in [3, 11, 17, 18, 22, 29, 30]. See [1, 5 - 9, 12- 16, 23, 26] for
some results of composition operators, weighted composition operators and related
operators mapping into the Zygmund space. In [5], the authors characterized the
boundedness and compactness of the operator uC, : B, —+ Z. In fact, under the
assumption that uC, : B, — Z* is bounded, uCy; : B, — 2" is compact il and only
if
(1= P2l (2)® _

lim : )s
lp(z)|=1 (1 - le(2)*)?
¢ 1-4
lim (1 - |z u"(z)](log ~——7) =
le(z)]—1 B (log 1— (=)
and -
; 1 - |z]2)%|2u'(z
st DL o
Jo(z)|—1 1—|o(2)]
The purpose of this paper is to give some cstimates for ch ntial norn of
operator uC,, : B, — 22, in particular, by using ug". Moreover we give a new
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characterization of the boundedness and compactness for the operator uC, : B, —

2, Throughout the paper, we will write A < B if there exists a constant (' such

that A < CB. The notation A ~ B means that A < B S A.

2. ESSENTIAL NORM OF uC,, : B, — Z°
In this section, we give some estimates for the essential norm of the operator
uCy : B, = 2. For this purpose, we state some lemmas which will be used in the
proofs of the main results.
Lemma 2.1 ([24]). Let X and Y be two Banach spaces of analytic functions on .
Suppose thal the following conditions are satisfied.

(1) The point evaluation functionals onY are continuous.
(2) The closed unit ball of X is a compact subset of X in the topology of uniform

convergence on compact sets.
(3) The operator T : X — Y is continuous when X andY are given the topology

of uniform convergence on compact sets.
Then, T' is a compact operator if and only if given a bounded sequence {f,} in X
such that f, — 0 uniformly on compact sets, then the sequence {T f,} converges to
zero in the norm of Y.
Lemma 2.2 ([4]). Let 1 <p < oo and [ € B,. Then the following statements hold.
() 1F()] S £l (0 =%2)' =% for every = € D. '
() |F(2)| S 1=l flls, for every z € D.

Let a € D. Define the functions:

log =%~ log —£-)2 (log +4<—-)?
falz) = _%: 9a(z) = _(gl_——azz*_“ ha(z) = _Uogy rw') g
(log =fop)?® (log =) > (log =%)**»
(1 = lal*)(a - 2) (A = laP)(a - 2)?
ILg\Z) = ——— — 0 =g T

a(2) (-az e L

Now we are in position to state and prove our main results in this section.
=1

Theorem 2.1. Let 1 <p < 00,0 < @ < 00, u € H(D) and p € S(D) with |||
be such that uC, : B, — 2* is bounded. Then

uCelle,B,—2 = max {A, B,C, P,Q} ~ max { E, F,G}.
18
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Here

A = limsup [uCypfoll,a s B = limsup [uCygafly. «C = limsup fjuC i, flza
la]-»1 & Ja]-»1 i la]—1

P = limsup [[uC\zalf5. , @ = limsup "uC,q,l/u"g_-. :
lal—1 la|—1
: (1 = |2 uz)|l¢' (=) 2
G = limsup s
lo(=)]=1 (1 - o(2)[2)?
e 1-1
E = limsup(1 — A" (2)|(log ———5) ¥
may 21%)* " ()| ( Dl_lv(z)lz)
— |z 2\ / N
= sy (BB EIE) + 2]
lo(z)|—1 L= l‘la( )'

Proof. First we prove that

max {4, B,C, P,Q} < luCplle, 5,27

and

In [4] it was shown ¢hat fa, ga,hayZasYa € By, the norms || fulls,, lgalln,. halls,,
[lall 5+ l¥all, are bounded by a constant independent of a, and fu, ga. a: Ta. Ya
converge to zero uniformly on compact subsets of I as |a| — 1. Thus, by Lemma 2.1,
for any compact operator K : B, —+ Z%, we have

lim ||K fol]lze =0, lim | Kgallze =0, lim || Khgllze =0,
laj]—=1 |a|—1 la]—=1

lim | Kx,llze =0 and lim || Kya||z« = 0.
laj—1 |la|—=1

Since
[uCe = KllB,s22 2 (uCp — K)Jallze 2 [uCpfallze — I1K fallza,
luCp = Kllg,»2e 2 [I(uCfp — K)gallze 2 [uCopgallze = 1 gallze,
[uCo — Kllp,sze 2 N(uCyp — K)hallze 2 [[uCphallze — [|K allze,
luCe = Kllys2e 2 N(uCo — K)wallze > [[uCpallz — | Kiwallzo
and
luCe — Kllp,~2e R (uCyp — K)yallze 2 luCotpallze — | K ptal 2,

by taking limsup|,_,; on both sides of these inequalities, we obtain
[[4Cyp — K| B, 2~ 2 max {A, B,C, P, Q}.
Therefore,
IuColle,5, 2+ = inf [uCy = K5,z 2 masx {A, B,C,P, Q}.‘
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Next, we prove that
[4Cplle, By—szer 2 max {E, F, G}.
Let {z;}jen be a sequence in D such that le(z)] =+ 1 as j — oc. Define

log — =t (log )2

g ot s e i 3

o 1—(z)= 1— s?(z )z i e 1”:(:,)=)
":J(':'l e 5 . e 12+ 2
(108 r=im)® (1o i) % 3 (log i)™
2 A R N e ey
U2y = — lso( ~J)|_J(v’(~l) z) 2<p(z.-)(1 I*F(":r)'__)(_r"‘(*_:) -i

(1 - plz)2)? - (1 - p(z;)z)*
and
1 = lo(z)P)(p(2;) — 2)*
(1 - p(z5)2)?

and observe that kj,l; and ; belong to B, and converge to zero uniformly on

Illj(.‘.) = r'lj'.’lj)_(

compact subsets of I}. Moreover, we have

IhiColz))] = 5 (Tog TReE) T HeN=0 KeE) =0

N oy (2 Sl ! o i 1 [ L S s
L) =0, Wletl = T B =0
2lio(zj)]
m;((z;)) =0, mj(p(z)) = 0, m;(p(25))] = 77— 25
e - PN = Gl 2
‘Then for any compact operator K : B, = 2%, we get
[uCyp — K|B,sze 2 limsup [|[uCykjllze — limsup || Kk;||za
j—oo Jj—roc
> limsup(l — %) (z;)}(log ——— )%
meup(1 — |2%) " (35)| (108 )
= hmqup(l — 2% u"(2)| log e
lie(z)|—> ( —le (z)l‘)

\%

[uCyp — KllB,2e 2 ]i:psup [[Coljllze — limsup 1K L] 2o

e |ZJI2)ul2u (20)#' (27) + u(z)¢" (2)]

Z hmsup
=00 1 - |p(z)?
oy 2\ ’ 7
s e (z)2+u( )" (@) _
leo(z)|—1 1—|p(2)|
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and

|[uCy — K||B,>2z= 2 limsup [uCym;jze — limsup ||/, 2
j—roc Jj—oc
2 Az (2
> imeup LI IuCer)le 55 )Pl

o 1= ez P2
(1= P )l )P

=] = (.
o - )P e

ITence, we have
IuCioll, sz = f UCy = K|, s2r 2 max {E, F,G}.
Now we prove that
[[uCplle, B, 2~ S max {E, F,G}, ."qu,",_B"_,zu Smax{A.B,C,P,Q}.
For r € [0,1), deﬁue'l\',. : H(D) — H(D) by
(Er f)(2) = fr(2) = f(rz), fe€ HD).

It is obvious that f, — f uniformly on compact subsets of D as r — 1. Moreover,
the operator K, is compact on B, and ||Kr|ls,»8, < 1. Let {r;} C (0,1) be a
sequence such that r; —+ 1 as j —+ co. Then for any positive integer j, the operator

uC,K,, : B = 2% is compact. Hence, we have
(2.1) [uCplle,B,—22 < lil.lisup [luCy — uC, Kl B, 2=
Jj—oo

Thus, we have only to show that

limsup ||uCy — uCuKy; |l B,»ze S max{4,B,C,P,Q}
Jj—0 o

and

limsup ||uC, — uCp Ky, || B,—2= S max {E, F,G}.
j—oo

For any [ € B, such that || f|[s, < 1, we can write

|(uCyp — uC,Kr,) fllza
= [u(0)£(¢(0)) — w(0)f(ri@(O)| + - (f — fr,) 0 ol

(2.2) +u'(0)(f = £r;)(#(0)) +u(0)(f — fr,) (#(0))¢'(0)].
Here ||g]|. = sup,ep(1 — |2]2)%]g"(2)|. It is obvious that
(2.3) jll;f"’lc [4(0) £ (¢(0)) — w(0) f(r;j(0))| = 0
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and
(2.4) lim [/ (0)(f = fr,)((0)) + w(0)(/ — £r,)"(2(0))¢" (0)] = 0.
j—roo
Next, we can write
limsup |lu- (f — fr,) 0 @|l«
i—0

= limsup sup (1—|2®)|(f = fr,)(p(2)Ilu" (2)]
i—oo Jp(z)|<rn
+limsup  sup (1 — |2%)°|(F — fr, ) (2(2))] " (2)]

J=oe |p(z)I>rN

+limsup sup (1= [2)%I(f — fr,) ({2120 (2)¢' (2) + u(2)"(2)]
i—=ec Je(2)|Srn

+limsup  sup (1 —[2%)|(f = fry) (2(2))]120' (2) (2) + u(z)$" (2)]

J—oe  |e(2)|>rN

+limsup  sup (1 — [2[)%|(f = fr,)" ()l (=) *lu(2)]

Jj—oe Je(z)|<ra

+limsup  sup (1 — |2)°|(f — fr,)" (0()II’ (2)F|u(z)]

i—ree |e(z)|>rN

(25) = Qi +Q2+Q3+ Qs+ Q5+ Qs,
where N € N is large enough such that 7; > 3 for all j > N,
@ =limsup sup (1 = |=)*|(f = e, M (D)Iu" ()1,

Jj—oe je(z)|<r

Q2 =limsup sup (1 [z[})*|(f = fr,)((2))[[e" ()],

J—ee |e(2)I>ry

Qs =limsup sup (1—|2/})%|(f — fry) (w(2))]120(2)¢ (2) + u(2)"(2)].

i+ |p(z)|<Srn

Qs=limsup sup (1= |z’)*|(/ = fr,) (e(2)lI20 (z)¢' (2) + ()" ()],

i+ |p(z)|>rN

Qs = limsup  sup (1—|2| IS = fr)) (22Dl (= )“Iu(’)l

j—=ee |e(z)|<r
and

Qs =limsup sup (1 |2)*|(f = £,)" (D)II#" ()1 |u(z)].

jreo (e(z)|>rN
Since uC, : B, = 2% is bounded, applying the operator uC,, to 1,z and 22, we sce
that u € Z% up € Z* and up? € Z*. Hence, using the boundedness of ¢ and the
triangle inequality, we get

R = sup(1 - 2% |20/ (2)¢'(2) + u(2)¢"(2)] < o0
z€D
and
13 = sup(1 — [22)° ¢’ (2) Plu(2)] < oo
z€D
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Next, since f,, = f, I','f,’.1 — f’, as well as r? ;’l - " uniformly on compact subsets

of D as j — oo, we have

(2.6) @1 < Jullze limsup sup |f(w) — f(rjw)] =0,
J—o0  jw|<ry
(2.7) Q3 < I&l hmsupI Sllip £ (w) — rif (rjw)] =0
w|<ry
and
(2.8) Qs < [\2lunsup sup |f"(w) — 'rzf"(l,w)l =0.
J—oe |w|<ry

We know that @2 < limsup;_,. (S + S3), where

Si=sup  (1=[2)"f(e(2))llu"(2)], 5} = e (= 2P)S (rp(= W)l (2)]

le(2)|>rn

Using the fact that || ||z, < 1 and Lemma 2.2, we obtain

s = L (L =)l f (elDI"(2)]
< l — |12y, 1-3
S 3,0 0= E(le—y)

A

1
sup ”uC‘,-,(f,, = g + 7ha)llze
lal>rx 3
< sup |[uC, fallzo + sup HuC'v,_qaﬂz.. + sup IIuC<,,IL.,||2_(. 3
la|>rN la|>rN la|>ry
Taking limit as N — oc, we obtain

;[
i 7 < — | =12y, e
limsup §7 < Iunsup(l |2]%)* | (z)|(lo,,1 P (Z)lz) E

J—oo

N

limsup ||uC,, f,, II g+ limsup [uCogall . + lim sup [[uCph,|| o
la]—=1 la|—=1 la|—1
= A+B+C.
Similarly, limsup;_, S'; S E S A+ B+C, and hence, we get
(2.9) Q25E5A+B+C,Sma.x{A,B.C}.
We have Q4 < limsup j_,,,o(sg' + 87), where

Si= sup (1- )/ (p(@)][20' ()¢ (2) + u(z)o" ()]
le(2)|>ry
and

Si=sup (1= [2P)r| " (rip(@)I2w ()¢ (2) + u(z)e"(2).
le(z)|>rn
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Using the fact that || f||z, <1 and Bp C B. we ciun wii

S = sup (-2 ((2))]12¢(2)9(2) + u(z)2" ()|
le(2)i>rn
(1= [z13)° 20" ()¢ (2) + u(z)2" ()]
< . ANl o 1V B
< Wfls, sup T ee
le(z)|>rn A=/

2 (1 = |z]?)*2w'(2)¢' (=) + u(z )r"( )
S e

le(@)>rn J
< sup |[uCyp(Ta — 2ua)llz=

la|>rx
< sup |[uCpallga + sup [uCoyallz. -

la|>ry lai>ra

Taking limit as N — oo, we obtain

: 15 2)a 199 l{ . "
limsup §3 < limsup L—ll g ),D_(Z_),_ti)_,/ =)l =F
oo ip(z)i-1 L= fp(z)?
< limsup [|uCpallya + llmsup ffuCoyallze = P+ Q.
laj—=1 la]—

Similarly, limsup; 59 S F S P+ @Q, and hence, we get
(2.10) QSFIP+Q.
We have Qg < lim supj_,m(S.Z,' + 54), where

Si= sup (1[I (@I ()P lulz)]
() >rn
and
Si= sup (1|31 (rie(2))lle (2)Plu(z)].
le(z)|>rN
Using the fact that || fl|p, <1 and B, C B, we can write

Si = sup (1— 2D/ (e)¢' (2)|ulz)]

le(2)|>rn
1 o)l
< —lflls, suwp (121K ) —2
TN ? le(@)>rn F )(l — p(2)2)®
2(1 — |2]2)%|¢’ (2)12|u(2)||eo( =
< wp ERWEPENAE ¢ e

le(2)>rn (1= le(2)]2)° faf>rx
Taking limit as N — oc, we obtain

(-LP PR _ g o

~ e

limsup S} < limsip

~

-0 le(z)|—1 (1 - le(2)2)?
Similarly, limsup;_, o, 54 < G < Q, and hence, we have

(2.11) QWSCSQ.
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Hence, by (2.2)-(2.11), we get
lim sup [|uCy — uC Ky, || 3,20 =limsup sup ||(uC, — uC, I, )|z
j—oe =56 | Flls, <L

(2.12) =limsup sup |lu-(f— fr)oos SE+F+GSA+DB+ C+P+0Q.
i=oe ||fllu,<1

Therefore, by (2.1) and (2.12), we obtain

[uColle,B,—s20 S E+F + € c{ B B

and

[[uCslle,B, sz < B @, I-’.Q}.
This completes the proof. 1 o
Theorem 2.2. Let 1 < [(12) and p € S(D) with {|elle = 1
be such that uC, : I3, —

'
|ilL(:';",i.n“_-_:_.. = m: i \ uCo fulls . s limsup :!u’:'"":.. }
Proof. The lower estimate. For each nonnesative inieger n, let pu(2) = 2™

Then p, € B, and the sequence {pa} converges 1o scro uniformly on compact
subsets of D. Thus, by Lemma 2.1, for any compact cperator K @ By — 2%, we

have limy,— 00 || KPnllz~ = 0. Hence
|luCp — Kllgys2e 2 limsup ||(uCyp — K)pnllze > limsup [[uCupn|lze-
n—oo n—roc
From the definition of essential norm, we get
(2.13) lim sup [jug™||ze < [[uCelle,B,—ze-
n—oc

By Theorem 2.1 and (2.13), we get the desired lower estimate.
The upper estimate. For @ € D, we define

a2 1n12)2
Aalz) = 11—_]—_:_Iz—, 1a(z) = %—_'%%, z €D.

Let {z;};cn be a sequence in D such that |p(z;)] = 1 as j — o As shown in [4],
Jo(z)s No(z;) and fig(a,) belong to By and converge to zero uniformly on compact
subsets of . Moreover, we have

o) (0(20)) = (Mipiap) %, 1 SR ey

f,?(_,)(\a(z.l)) (M ,)) B fw(z,-)(‘p( ) ( [w(z,)) 1“99(31)!‘,

" 3 -1 (‘P(-";i))2
Faten(@(zi)) = Mo(e) ™ 0 SRR
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- 2(e(z))?
Az (0(25) =1, -(~ y(e(z) = Apiznp(z3)) = L‘T( ’”T'T‘
(1 — le(z5)12)
Poiz(2(2)) = 1, gy (p(25)) = _.p(~,) 3 Mo (e(z) = Slelz))”
w(s; ) - l e(2; )' L (1 - ’5—"'(51”:)3.

Here M (z) = log =iz ’-» i Next, we can write
luCofezpllz= 2 sgy(l = [21)*1(uClo fp(a))" (2]
H{gs)
= “E“,r’(l — |22y u"(z)f(p(:;)( 2(2)) + u(z)(¢'(2))? jr‘._ ((2))

+(2u/(2)¢"(z) + 11'(3)‘,””(2)).[:;(:“(9’(3))

2 (- 5" (25) [ (Mpq;))* >
o= zi[*)* 20 (23)' (%) + u(z;)e" (25) |l (z5)] ol
1—|o(z5)I? (M. )7
jjass 2y [y, P A (2 2 2
(2.14) (==l )(1Ii(|zo)('~l(r)|( )JAI le(z;) (a3,
: s A=z (2)9! (25) + ulz)e” () ()]
[4CpApiepyliza = P e i
(= )2 lu(Dlle () Ple ()12 ke
e rvre e SR NS

(2.15)

WCotiooplize > 60 o) Pl

(1= le(=)[?)? = 12i?)%|u"(z;)|
(2.16) (1 =12 |2)a|1ul(z_’)¢ (2) +u(z; )‘?’”(~1),|,7(ZJ)I
1 —|ip(z;)[?

Taking limit as j — co on both sides of (2.14), we get
lim sup [uCy el 2o
J—ro0

+timsup L1l () Plo(z; 2

—dk
s @ = Itz P)? (Mota)™>
+ limsup L1120 (2)" (25) + u(z)0" (25) (2| (M
j—roo © 1 p(z)? o))
it g =2} s 1-1
2 h;liacgp(l—lql ¥ (2)| (M)
>

limsup(1 — [2;]%)*|u”(2;)),
j—oo

26



ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATORS .

which implies that

(1= ) ()l ()P e
limsup ||JuC 2llze + hmsup oS log —
|z ;]-»I " "f ()| le(z)]—=1 (1 = le(=)]2)? ( = I-P(-"')l'

. (1 = =) 20’ (2)¢' () + u(=z)e"(2)] e ~3
+ limsup og ————5
el T [e()P (o8 o)
e 1—2
> limsup(1 — |22)*|u"(2)|( log ————
le(z)] =1 ! Rl ( gl—lnp(z)l‘)
> limsup(1 — |z[*)*u”(z)|.
le(z)]|—1
Similarly, by (2.15) and (2.16), we get
lim sup JuCpAo(zyllze + hmsup(l — 2P " (=)
le(2)|— (2)|—
T & Ed i ~ )4 fl 2
> limaup L lEEY2G e )+ u(e)e" ()]
l¢(z)]—=1 1- |‘r’(-")|'
= 2.‘2 alu(z /(2 2
- tmeup 2L BRI CS P
le(2)l1 (1= le(2)I)
hmbup [luCoptp(syllze + luubup(l — 2" [ (2)|
| (=)= (2)|-+
: (1 = 2)|u(= )II"( )I2
> limsup 6
le(z)]-1 (1-le(=)]?)?
— | 2]2)x]9,,/( ~ 7\ Al
_ timeup 2L BBV ) 4 ule)e (]
Jo(2)]=1 1 —[(2)]

By the boundedness of uC, : B, — 2%, we see that

(1 = |22/ ()¢ (2 )+u(/-)w"(’)l(

. e =%
lim sup =0
m:n-fl 1-p(2)? = |¢(=)|2)
and
: (1= zP)>Ju(2)ll¢’ (2)I e = '
lim sup lo =0.
leo(=)=1 (1 - [e(2)?)? ( = I‘P(z)|2)

Thus, we can write

. e

E = limsup(1 — |z2)*|u"(2)|( 1o ——-————,)

S R ey

< limsup [uCy foz)llze < limsup [[uCy follze,
le(z)|=1 la]—1
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(1 = 2wl ()P

G = limsup

le(z)|—1 (1 T |'y7(:)|2)2
I
< cd limsup ||uCpfo(z)llze + hmsup luC oAy llze + 3 lim sup JuCujteazllzo
2 ()11 le(z)l—= lo(z)|-+1
< -'i- lim sup ||uCy fallze + lim sup”uC,,)\,.IIz + -2- lim qup luCyptall 2
2 a1 lal fal->
1 — |z]2)|2u/(2)¢' (2) + u{2)p" (2
= timanp (=20 (2) + () ()]
lo(=)|—1 1—le(2)1?
< 4limsup [|[uCyfo(z)llze + 3 llm ‘zup leCe Aoy llze + limsup [uC iz iz
le(z)]—=1 le(z)|—1
< 411m=mp||qufu||-vu +311m sup IluC'v,)\ flze + limsup f[uCppaflze.
|a]—1 |la|—1

By Theorem 2.1 and the last three mequalltles we obtain
(2.17) IuCplle,, 4z« =~ max { B, F, G}
< max { lim sup [|[uCy ful|zo, limsup [[uCpAallze, limsup [uCypra |2 }
|laj—1 la|—1 < a1
Finally, we prove that

max{limsup ||uCypAa||2e, hm sup luCotiallz=} S hm b'll]') g™ ||z -
lal—1 |

ﬂ -1
Let a € D. For any fixed positive integer n > 1, it follows from ftriangle inequality,
the fact that SUPg<p<oo [lut||ze < 0o and

Aa(z )—(I—Ialz)Z"‘ ¥, z€D,

k=0

that we have

oo .
luCpallze < (1 —|al?) Z lal*[lusg |z

<
n—1
= (1-1aP) Y lal* ||w llzo + (1 — |al?) Zj la]* |up* ||z
k=0 k=n
< n-laff) g vy nzn+(1—|a|2>L|a|’~sup||u;1u~u
k=n 9=

< n(i-laf*) + 2sup flug®|ze.
k2n
Letting |a] — 1 in the above inequality, we get
(2.18) limsup [[uCplallze < limsup |lup™]|ze-
la]—1 n—00
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Let a € D. Note that (see [28])

Tk + i) : T(k+8) _ 51 i
Z k'F(ﬂ) and T =~k i k-

for any fixed positive integer n > 1. Hence, using the triangle inequality. the fact that

(= lal

u € T, 8UPpcrcso Jlug|jze < oo, and

T(k+2
paz) = (1= o )’L Horatt, sem,

we obtain

Tk +2
ICatallze < (1 a2 el gtz
k=0

< (=) fuflze +(1 - Ialz)zzkial“llw"llzn
[} n-1
= (1=l ?fjullz= + 1—|u|2)22klul ugllze + (1 = |af?)? Zual flu* 2
=n
< (15= |a|2)2|1u||g.. +n(n-1)(1- |a| sup ]lu-,: Iz
0<k<n—1

+(1 - [a?)? Z klal* iy lluse? 2o
k=n
$ (U =laPPlullze +n(n =11~ 1a)? swfugtlze +dsup gz
<k<n— all

Letting |a| — 1 in the above inequality, we get
(2.19) limsup [|uCopptal|z < limsup [Jup”| 2.
lal—)l n—oc
Therefore, by (2.17) - (2.19) we obtain the desired upper estimate:
[[uCylle,B, 2o S max { lim sup J|uCy fall 7 , lim sup [lue" || 2o }
3 |a|-41 n—oc

The proof is complete. [}

3. A NEW CHARACTERIZATION OF OPERATOR uC,,:

In this section, we give a new characterizatiou for the boundedness, compactness
and essential norm of the operator uC, : B, — 2. For this purpose, we first state
some definitions and lemmas.

Let v : D — Ry be a continuous, strictly positive and bounded function. Here
we call v a weight function. The weighted space, denoted by HS°, is a space which
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consists of all f € H(D) such that
[Iflle = su?n(.:)lf(:)l <co-

Observe that HS is a Banach space with the norm | - ... A weight v is called radial

if #(z) = v(]z|) for all = € I. The associated weight 7 of v is defined by

1
V= ———————————————— 2 € D.
sup{|f(z)l: f € HxX.liflle <1}
When v = v,(2) = (1—2/2)*(0 < a < o), then it is easy to check that @, (z) = v, (=).

In this case, instead of F;° we use the notation /177, that is,

={fe HW): || fll. = *j‘clg_)lf(:)l(l — [2[*)* < o0).

1 = l
When v = tg4,,(2) = ((log ]——_1-3:,)'_?) , then it is also easy to see that @), , =
Ulog,p- Indeed, if
u(z) = (rrmx{[q(w)]; Jw| = |z|})

is a weight for some g € H(ID), then ¥(z) = v(2). Hence the statement follows with

g(2) = (log 1—,|;r.r)

Lemma 3.1 ([11]). For o > 0, we have limj—,o k|| 251, = (22)a.
Also, we have the following result.

Lemma 3.2. For 1 < p < 00, we have lim_,(log k)~ » [|Z5) e
Lemma 3.3 ([21]). Let v and w be radial, non-increasing weights tending to zero at
the boundary of D. Then the following statements hold.

(a) The weighted composition operator uC, : H® — 2 is bounded if and only if

w(z)
-mp =
¥(p(2))
(b) Suppose uCy : FI* — Il'" is bounded. Then

w

lu(z)| < 2.

luColle.rz—spe = lim  sup =
& A1 o(2) > "(s’(b )

fu(z)]-

Lemma 3.4 ([10]). Let v and w be radial, non-increasing weights tending g to zero at
the boundary of D. Then the following statements hold.
(a) The weighted composition operator uCl, : H® — H> w8 bounded if and only if
”"-"Sok"w
k20 [l2%[ls
with the norm comparable to the above supremum.
30
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(b) Suppose uCy, : H* — HZ* is bounded. Then ||uC, fle,ix = nze =limsup,,_,

Now we are in position to state and prove our main results in this section.

Theorem 3.1. Let | < p< . 0<a < oo, u € IT(1Y) and ¢ € S(W). Then the

weighted composition operator uC, : B, — Z° is bounded if and only if ue 2,

sup jll(20'¢’ + ugp”)@ |, < 00, sup j2[lup L, <,
izl izl

sup(log 7)' 7% lu"p?|,,. < co.

321

Proof. Observe first that by Theorem 3 of [5], the operator uCp : B, =+ 2% is

bounded if and only if

2\, 1 e e
M; = :1(1%?(1 - |2|%)%|u (z)|(log W) < 00,

’ 2 21\,-2,12 /(2 w(z)" (2
M, = sup (= FofeuGle| )2+ u(z)p @I < 50
€D L —[(2)]

and

< oC.

1 - |22 u(2)]|¢'(2)1
My = s L PG
zed  (1=]p(2)[?)
By Lemuna 3.3, the condition Ma < oo and the boundeduess of the weighted composition
operator (2u'p’ + up”)Cp : HY — HX are equivalent. By Lemma 3.4, this is

equivalent to the following:

20’ + up)d L,
s l(2v'e" + up” ) 4., Py

i1 2=,
By Lemma 3.3, the condition M3 < o0 and the boundedness of the operator upC', :
HZS — H® are equivalent. By Lemma 3.4, this is equivalent. to the following:
[lge™03- o
Sup ——
21 Nz e
Next, by Lemma 3.3, the condition M; < cc and the boundedness of the operator

TG A HZ ~ — HZ are equivalent. By Lemma 3.4, this is equivalent to the

< 0o

following:

"o i—1
sup [ P Sy

321 1277y
Finally, in view of Lemmas 3.1 and 3.2, we conclude that that the operator uC,, :

Bp — 22 is bounded if and only if

/ Y j—1 i
2 +T’,’ )P o .
llz7=1}a,

2 ill (22’

sup jll(2u'y’ + ug")p Y, =~ supZ e
Jjz1 j>1
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P lue?@ v,

+2| = ~
up i<l sy R SUP — <
iAo G T
and
AL
max {||-u.|[z,-,§up(lng])‘ 7 [u" @ || va }
it Ju” =1
= max {"U”"n sup(lug(_[ — 1)) 7 "o, } =~ sup %i.z'_:l_”.__“ -
Vlogp
and the result follows. Theorem 3.1 is proved. &

Theorem 3.2. Lei 1 <p < 00, 0 < @ < oc, u € (D) and ¢ € S(D) with ||plf. =1
be such that uCy : By — 2 is bounded. Then

[uCplle, 8,z = max { Ny, Na, N},

where
Ny = limsup j[|(2u'¢’ + up")e o,
J—ioc
and
Ny = limsup 5% [[u(¢")*¢"~ [lua and Ny =limsup(log j)' ™% ||u” ",
J—roc J—roo

Proof. From the proof of Theorem 3.1 we see that the boundedness of uC; : I3, —
2" is equivalent to the boundedness of the operators (2u'y’ + up”)C, : HY —
HeS u'Cl: Hy®  — Hg> and up?Cy : HZ — H.

The upper estimate. In view of Lemmas 3.1 - 3.4 we can write

l(2w'e’ + up”)p? =,

21" + up")Co |6, Hoo = o> = limsup -
"( 4 © ) 9”3. o THS j—wol ":"J”["tu
. ill(2u'e’ + u )it i 4
= limsup 7liC (,a' ._‘f il A ~ limsup j||(2u'¢’ + u”)e? ..,
j—ro0 iz v, j-ro0
; [ug"e ., e o,
||u<p’20 lle,roe—Fr2e = limsup I———‘ = lim sup = i -
G j—roe 1272 }v, i-ro0 I "3']" l”vz

~ limsup j*flupe" .,
j—ioco

wpi=1 N n_j—1
||u.”C.,,l|. Hg  —HE = limsup ———-" _‘p: Dl = limsu (log(si — 1))' “u .
im0 177 ey, oo (logli — 1))*7% 1207 lu,

= limsp(log(j ~ 1)) 5wy, = hmsup(log:)"-uu"w llas?
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Thus, we have
L OV W "
fuColle.n,»ze 2 20 +ue”)Collerrgy—nz + 1w Colleny gy
A el o
¥ 12 /1 . r
'l-llll,i‘ (',;".,_"l';‘é_.ﬂl‘n 5 max {1’\71 , Na, ]\;;}.

The lower estimate. From Theorem 2.1, Lemmas 3.1 — 3.4, and the above proof,

we have

NuColle.n,ze 2 F = |20’ + ug”)Coplle.srzs »rrge. = lim sup (20’ + ug")? ™ |,
j—roo

[4Collesyoze 2 G = lug?Collenzz-rrizs = limsup 2ug~ ..
i

luColle,B,—2 2 E = [u"Cplle, rrz=

o
Nog.p _' Hl'u

~ limsup(log(j — 1) ™% [[u"¢ |, = limsup(log i)' ~* [[u"¢? |-
j—roc j—yoc

Therefore, [|uCylc,#, 2= 2 max {N1, N2, N3}, as desired. Theorem 3.2 is proved. 00
From Theorem 3.2, we immediately get the following result.

Theorem 3.3. Let 1 < p < 00, 0 < a < 00, u € II(D) and ¢ € S(D) be such that
uC, : B, — 2% is bounded. Then the operator uC,, : By, — 2 is compact if and only

if
limsup j|(2u'¢’ + u@" )¢ lu, =0,  limsup j2(lu(¢’)¢" o, =0
70 j—c0
and

lim sup(log 5)' ~* [l |, = 0.
j—vac "
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