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1. INTRODUCTION

Let N, denote the set of positive integers, and iV := NV} U {0}. Let mg,my, ... be
a sequence of positive integers not less then 2. Denote by Z,,, = {0,1,...,mp 1}
the additive group of integers modulo . Define the group G as the complete direct
product of the groups Z,,, with the product of the discrete topologies of Zy,,’s. If
the sequence g, my, ... is bounded, then G is called a bounded Vilenkin group. In
this paper we consider only the bounded Vilenkin group. The elements of G can be
represented by sequences & := (To, L1, ..o Tjyor) s (;1:,- € Z,,..,) . The group operation

“+" in G is given by
2+ y = ((xo + yo ) mod my, ..., (z + yr. ) mod my,, ...),

where z := (29, ..., Tk, ...) and y := (Yo, .., Yk, --.) € G.
The inverse of operation “+” will be denoted by “—". It is easy to give a base for

the neighborhoods of G :
Iy (r) =G, I (z) == {y €EG: Yo =20,y Yn—1 = Tn-1 }s

for some choice of (¢ € Zm,), j =0,1,..,n— 1. Let I, (0) = I,.
We denote e, = (0,...,0,1,0,...) € G the element of G in which the nth coordinate

is 1 and the rest are zeros (n € N).

1The research was supported by Shota Rustaveli National Science Foundation grant 217282
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If we define the so-called generalized number system based ou m in the following
way: A fu =1, Myy1 := mi: M. (k € N), then every n € N can be uniquely expressed
asn = Z njM;, where nj € Zm, (j € Ny) and only a finite number of n;’s differ
from m:o, and G? = G x G is the product of the group G.

Define

2 = (1,21, 00 Tu=1,0,0,...) € G,

where

= e (I E A ) =01k il
o: Z(IWJ.H)A (l‘, a4 e |

Then it is easy to show that
M.,—l

Fas (
(1.1) g1 U (z+2£).

o

Next, on the group G we introduce an orthonormal system, which is called Vilenkin
system. We first define the complex valued functions ). (x) : G — T, called the
generalized Rademacher functions, in the following way:

ri(z) = cxp (2mk)’ (#=-1,2€G, k € N).

my

Now, define the Vilenkin system 9 := (¢, : n C N) on G as follows (see [1)):
o<

Pa (2) 1= H () (neN).

k=0
In the special case where m; = 2 (j € ), the system ¢ is called Walsh-Paley

system.
For the system 1 the Dirichlet kernel is defined as follows:

n—1

D, = L e (ne Ny), Dy =0.
k=0

The following propertics of the kernel Dy, are well known (see, e.g., [20]).

: ~_ | M, fzel,
(1.2) Dy, (z) = { 0, if € G\I,.
and
(1.3) /Dn (t)dp (f) =1, mn€eN;.
G 5
Let n=ayMp+n', with 0< ap <my and 0<n’ < M, then
llb m
(1.4) D, (z) = —L()DM,‘ (x) + 935, (z) Dy ().

1 —ar, ()
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The next property of the kernel D,, can be found in [19].
(1.5) |Di ()| < @+ ) Mafa

for all k, n, and e (0 < a < M,), where p = supm;.
F)
The rectangular partial sums of the double Vilenkin-Fourier series are defined as

follows:
n—1m-—1

Snm(Fizy) =Y > Fli.0) i (@)% ),

i=0 j=0
where the number
760 = [ 1@0 %@ T 0 due)
72
is called the (i, j)-th Vilenkin-Fourier coefficient of function f.
By C (G?) we denote the space of continuous functions on G2 with the supremum

norm: ¢

Iflc:= sup |f(z9) (feC(G?)).
x,yeC

The partial moduli of continuity of a function f € C (Gz) are defined by
1
o (figy) = 38 swp 17 @ = )= £ a0
M z,y€G tEl,

and

wa (f: J\L[,) = sup sup|f(z,y —t) - f(z,y)|.

z,yEG tE],
We also will use the notion of mixed modulus of continuity of a function [ €

C (G?), defined as follows:

e
BN TR T

= sup sup  |fx—-sy—t)—Ff(@x—89)—f(z,y—1t)+ [ (xy).
(z,y)EC*(s,t)ELL Xy

It is well known that there is a wide analogy between harmonic analysis on
the bounded Vilenkin groups and the classical Fourier analysis. However, in the
trigonometric case there is a class of functions such that their Fourier series are
always couvergeut, and the convergence is uniform if the additional assumption of
continuity of a function is made. An example of such class is the class of functions of
bounded variation (BV) (see Jordan-[15]).

The contributions of Wiener [21], Mercinkiewicz [17]. Waterman [22], Chanturia
[4], Kita and Yoneda [16], Akhobadze [2], Goginava [6] and their collaborators have
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shown that many of the results concerning the class of functions of bounded variation
(BV) can be extended to more general classes. For Vilenkin system in one-dimensional
case, the class of bounded fluctuation (BF) and the class of generalized bounded
fluctuation (GBF') were introduced by Onneweer and Waterman [19].

In two-dimensional case, the class BV of functions of bounded variation was
introduced and studied by Hardy [14]. An analogous result for double Walsh-TFourier
series was obtained by Moricz [18]. Goginava [5] has proved that in Hardy’s theorem
there is no need to require the boundedness of mixed variation. In particular, in 3]
it was proved that if f is a continuous function and has bounded partial variation,
then its double trigonometric Fourier series converges uniformly on [0,27]% in the
Pringsheim sense. An analogous result for double Walsh-Fourier series was established
in [7]. Different, classes of generalized bounded variation for fimctions of two-variables
were studied by Golubov [12], [13], Akhobadze [3], and Goginava and Sahakian [3]
[11]. In the present paper, we partially develop the above mentioned analogy for
two-dimensional bounded Vilenkin groups, concerned with mniform convergence of
Fourier series.

To state the main results of this paper, we first need to introduce the classes of

functions of two variables of bounded variation and of partial bounded variation.
Define

M) -1
Or (FiMiy)i= Y wn (filu+2%,y),
a=0
M;-1 ;
Os (fiM2) = ) wa (fio i+ 2§)
=0
and
M —1AM;—1
Ora(fiMi, M) = >0 3 wia (£ (T +28) x (1 +20)),
a=0 f=0
where g
wi (Ll +2®y) = sw  |f(zy) - f ),
m.:’elk+z.(,'"
w2 (.faxl-[’-"'zg)) = sup If(x!y)_f(:t'y,”‘
v El+=y)
and

na (7 (54 509) x (1 + )
= sup If (m,y) = £ (2" y) = F(2,0') + 1 (2 0)].

=2/ €lt280 oy € litsl
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UNIFORM CONVERGENCE OF DOUBLE VILENKIN-FOURIER SERIES
Definition 1.1. We say that a function f is of Bounded Oscillation, and write f &
BO (G?), if it satisfies the following conditions:

(1.6) supOy (f; My, 0) < oc, supOa(f; M, 0) < oc, supOya (f: My, M) < .
k 1 kd

We note that if f € BO (G2), then supsupO; (f; My, y) < oc.
uCG k

Indeed, in view of (1.6) and (??), we can write

My—1
supsup Z w1 (f, I + Zf,k),!/)
Sl —t

M -1
< supsup Z sup  |f(z,y) = f(z,0) = f (' y) + f (a',0)|
k)

veG &k (Ty zaelitsl

M;-1
+sup Yy sup |f(w,0) = f(a,0)] < .
k )

a=0 z,a'€l+zl

Analogously, we can show that supsupOs (f; Mi, z) < oc.
z€G |

Definition 1.2. We say a bounded, measurable function f is of Partial Bounded
Oscillation, and write f € PBO (G’), if the following conditions hold:

(1.7) supsupOs (f; M, y) < o0, supsupOs (f; M), z) < co.
yEG k z€G 1
Define
(1.8) AL f (2y) == f@—erw) = f(@1), AP S (z,9) = f(x.y—e)—f(2.y),
and
AP @y) =T -eny—e) =@ —eny) = [ @y —e)+f(2,y).

It is easy, to see that

2821 @v)| < [AP s @]+ [4P1 @y - e
and

|ALP 1 @ w)| < [AP 1 (@) + |21 (@ = er,3) -

2. MAIN RESULTS

In this section we state the main results of this paper.
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Theorem 2.1. Let f € C ( .‘2), and let the following conditions hold:
M -1

il Nl
(2.1) im > = a1 (= - 2,5)| =0,
o=1

k—oa

AMp—1
(2.2) lim i'A}Q’f( =2 ,‘,“)|_n,

l—oc
. ..1

My—1 M- (1 2) (“ “) I

9 « = — =

(2.3) ,"]._nn ,E . ,E A (r Y=z )I )
., =

uniformly with respect to (v,y) € G?. Then the double Vilenkin-Fourier scries of

function f converges uniformly on G

Theorem 2.2. Let f be a conlinuous function on G? and f € PBO (C2) . Then the

Fourier series of f converges uniformly on G2,

Corollary 2.1. Let f be o continuous function on G? and f € BO(G®). Then the

Fourier series of f converges uniformly on G2,

3. PROOF OF MAIN RESULTS
In this section we prove the main results of this paper, stated in Section 2.
Proof of Theorem 2.1. Let

k

n= Za-.-l\-f,-. with ar #0 and 0<a; <m;for 0<i<Fk, and n =n—apM
i=0

and

]
m= ijiw,-, with & #0 and 0<bj<m;for0<j <! and m = m — b M.

i=0
Then, in view of (1.3) and (1.4), we can write
(8.1) Snm (Fi2.9) — [ (2,y)
= / (f (z—s,y—t)—f (%,9)) D (8) D (t) dys (5) dpa (t)
G2
= /(f (z —S5Yy- t) 7 f(-'b"y)) (1 +¢A1h (3) + ...+ Uak i (’)) D.'\l. (5]
a2

x (L hasy () + .+ W87 (1)) Dy (8) e (5) de (1)
8
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+ / (Fla—s,0-1) = £ @) (1+ a0+ + 9357 ()
G2
x Dy, (1) %55, (8) D,yr (8) dp(s) dp (t)

i / (F (= 8y —t)—F (29) (L4 ¥a (&) + -+ U357 (2))
G2

xDay, (8) 08y, () Dy () dpa () dlpa (2)
+ /(fl:'-'—-‘»"y—t)—f(r-y)) &3 (3) D,y (8) 03y, () Dy (8) dpe () dia (1)

=: Ay + Ag + Az + Ay.
From (1.2) we obtain
(3.2 |41I<Mk’\1://lf(J—w—f)—f(' )l
I I

X |1+ g, 08) + - +1;;;'1 s)||1+u")M, (t)+...+¢:_',,-‘(t)ldu(s)(m(:.)

1. 1
< M M— \I Wi (wl (f;X_I—k) +ws (f;lt_'ll))"'k by
<p? (wl (f; fﬂ) + wa (_f; _’\174)) =o0(1),

as [.k — oo uniformly with respect to (z,y) € G*.
We observe that if ¢ € Iy, 0 < a < My, then

D, (:+t) =D, ().

Hence, in view of (1.1), we can write
Mi—1

(39) A= 3 / [=sy=1(1+0m O+ + o3 ®)
o0 I'A-I-::.“ G
x Dy, () ¢35, (8) Dy (8) dpa(s) dps (t)
Mi—1
=// Z f z—z0 -, y—t) (1+u,\1, )+ .. +1.’£;'h ; (I))
& o=0

xDay, () D,s (z“‘)) e (z(k)) Wl (s)dpi (3,1)
//f(r -8 l/-t)(1+u-u,(l)+ ol l(t))

I G
xDa, (t) D, (0)w3s (0) 455, (s)dp(s.t)

M—1

// L f :—"“‘)—.s y— )(1+‘u‘-',\1, )+ ...+ U'{',,_l(f)) Dyy, (D)
7 (2 a=1
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xD,; ( ")) YA ( "’) Yin, (8)dp(s.1) = Agy + Aga.

Tt is clear that

At 2mis 2oea{ay 1) X
=k R e e e ey s R
b':\l’:‘ (('l")“”'!\;; (s)=¢e L =t s = VM, “h k)

and
0<e < |1—9p* (ex)] <2

We have

Yar” (ex) Aoy =Pyt ((k)/ /f(.L —s,y—1)

I G

X (1 + g (8) + .. + -4;:{,'_1 (t)) Dy, (t) Dy (0) b3 () dpe(s.t)

///(L—s p=0) (1+ om0+ + 0857 (1)
I G
Dag, (t) D,y (0) 4y, (s — ex) dp(s) dpe (t)

//f(l —s—epy—t) (1 + g, (8) + .- DYy 1(’))
I G
XI)MI (t) Dn' (U) qb;;,. “) dll' (sl t) &

Hence, we have

[Az1 — U (ex) Aml < //IA:‘:)H'J; —s,y—t)

I, G

x (14 (O + o+ u';’;;,, "(t)) Da (£) Dy (0) 0, ()] e (s.1)

1
(3.4) < MMy — M' ]l[ (f, A ) < cpuwy (f. -m) %

Analogously, in view of (1.5) and (2.1), we can write
| A2z — ¥ (ex) Az

(p+1)1\1k//| 1+ 4, () + .. +wﬁ‘1,_' (t)) Dy, (t)'

I. G
My — L
x L A,(:’_f (:1: —z® g, y) Yaf. (.s)l dp(s,t)
(3.5) Selp+ 1) Mibi-o 0 (1) by = o(1).

M. M,
Combining (3.4) and (3.5) we get

(3.6) : Ar=o(1)
10
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as I — ~o uniformly with respect to (x,y) € G© 2. Analogously, by (2.2) we have

3.7 Ay =0(1)

as | — oo uniformly with respect to (x,y) € G2.

For A4 we can write

AIL—‘I M;—1
(3.8) &4~ Z / / (f (x—s,y—1t)— [ (1))
a=0 .-;:—(|1+_‘,)Ik“‘,,)

X3t (8) Dy (8) % (8) Dy (D) dja (8) dpa (2)

M, 1M;-1

CEE [ 1)

a=0 a=0 L i‘

xD, ( (’-)) vy (:,("") i} (8) Dy ( 'l")) U ( )UAI (t)dpu(s.t)

//f(: — 8,y —t) Dy (0) 958 (5) D, (0) 93y, (1) dlpa (s.1)
I I
Mg 1

Y £ (== — 5,y =) Do @l (D, (+87) 0, (5) i (5,1)

a=1

Il

/ f Z £ (2= 3= 2 1) Do )65, ) Do (o5) i, (0 (5.0

My—-1M;—1
+// Z Z f(-'”‘?-((,k) —s,y—zg) —t) D,y ( (M) P2 (s)

noh, o1 B=1
%D, () ¥l () () dpr (8) = A + Aaa + Ay + Asa.
We have
| a1 — 5" (ex) As |
/ / | A F (& = 5.y = ) Dy (01435, (8) Do ()¢, ()] s (1)

I I

1
o ‘< MM L — ] =
(3.9) M, IIM I\I (f I\fl.-) o(1)
as k,1 — oo uniformly with respect to (z,y) € G
Analogously, we get

| Adz — V32 (er) Awa| < (p+ 1) My
11
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Al
x//'[) @43, O] D ~|AF (2= 2 — sy —t) vih ()| du(s,?)
i Jf: o
1
(3.10) S (p+ ) MiMigp=ro(l) =0(1) as kil = o
(3.11) Ly = 0(1)

as k,l = oo uniformly with respect to (x,y) € G=.
For A4y we can write
My—1 M;—1

et (,II.')A44=// Z Z f(""—z'('l.’ i "'””:-‘;’1) l)

Boh, o=1 B=1

XDy (4) Wik, () Dy (257) Wl (Dl (s.1),

My—1 My—1 :
b, k (D ,
Wan (€1) Aga = //E E f '—Z,(,)—-‘hy—‘-,‘q —ﬁ—'l)
o=1

% D, (z,(,”) pit, (8) Dy (25) W8, (&) dpe () e (1),
M—1 M -1

: (1
U (E,,,)’U]\l‘ {e1) Agq = // Z Z f(:t:—::,(,k)—s—c;;,y—:’-'_,,)—t—c[)

'I' I a=1l f=1

DY b
xD,y (#8) w3k, (5) Dy (=) wht, (01 (5.1).
So, using (2.3), we obtain

(3.12) [Ass = e (o) Aus = Wit (e0) Aaa + Wi (ex) Wi (er) Aua

= [1— w3t (e)] [1 = w3 (en)| 14
AMp—1 M-
< (p+1)% MM, / 3
', T =1 fF=1

1 13

x AL (= 2 — s,y — 28 — 1) ui, () ¥, (8)| du (3) dp 1)

1 1
o« d

a5 2

<(p+1) Ilf[ki\.ﬂ]”_ ‘Io(l)—o(l)
as k,l — oo uniformly with respect to (z,y) € G2. From (3.8)-(3.12) we geb
(3.13) Ae—oll)

as k,l — oo uniformly with respect to (x,y) € G2.

Combining (3.1), (3.2), (3.6) and (3.13) we complete the proof of the theorem. [
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Proaf of Theorem 2.2. In view of Theorem 2.1, it is enough to prove that the conditions
2.1)-(2.3) are fulfilled. Let 0 (M) and 5 (M;) be sequences of natural numbers

tending to infinity and depending on A and M, respectively. Using (1.7) we can

write
1\1;—1 (l)f(’ - Z(l-) 'I),
X al
O(M;) A -1
E e tale £ e o)
= a=0(M)+1 a
(.14) s-»-l(f ) 1080 () + e

Next., we can choose 0 (M}) so that both terms on the last relation tend to 0 as
k — oo uniformly with respect to (z,y) € G2, and (2.1) follows.
Analogously, by using (7?), we get

M—1
5 ; 1p@ _.0)| =
(3.15) '1_1)1‘1’1" BZ:_I 3 IA, 5 (:z:,y zg )I =0
as | — oo uniformly with respect to (z,y) € G2, and (2.2) follows. To verify (2.3), we
write
M1 Mi=1 4 4 (1 4 s
B:= = -2,y - 2)]
‘; 5;1 a ,8 f( Y )

k—11-1 Myy1—1 Mpy1—1

S SR

a=0r=0 a=AM, B=M,

0

k=11-1 Mypy—1 My —1
(1.2) %) L0 |
< L
= ZM M, Z > IA f(r Fai ol )
s=01r=0 a=M, B=M,

M.+,-1 Mot 3

< Z IAuz) ( )y_:g))l

n_u. B=M,
From (1.8) and (?7) we get
M‘.n—l Mry1—-1

5 et (== )

n-l\f, 8=M,
Myg1~1
< 2pM,sup Z IA,(‘_” f (1 -2, y)'
v a=M,

13
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and
+1—1

S e (e =)

a=M, p=A>M,

Mpiy—1
B « N (2) )
= 21:111,‘»1:1) L !A, f (.r,y —zy )l
* B=M,
Hence, we can write
k=ll=1 4 1
BTy L

ksll'p ( L IA(2) [( (I))’) e sup (M‘i‘l’ 1 ,A,’;.“f (w :z(rk)‘!l),> 3
k-1 My -1
= 2,;}: N .--bup ( IAL_”[ (.L - ,:((,"",y) l)
-1

s=0 (M, )
. i MEhe]
X X ———sup ( Z IAE'-’)f (;,;,y 2 zg))|)
B=M,

=0 (M) LI

(k)1 1 Myp1—1 2
—..-'Zp<z L) (AJ)%821)< Z IA(I)f( 200, )I)

=0 s=0(k) a=M,

n(l)—1 - Mei1—1 4

Y+ 3 ) (e 3 IaPs (-9
r=mn(l) (4 fr) B=M,

Nl

S 9 2 2 ;_1_ 0 (k 4
= ( o (f .z"'flk) ( )+ (ﬂfg(/.)) )
(/wa f. 7(

since we can choose @ (k) and 7 (1) such that ¢ (k),n (l) — oo as k,l — oo,

1— —
{/;;(f:m)G(k)—)oaS k,[—’a(} and \2/’: (f ‘41[)1[(“—'“(“ kol — 2.

Therefore, we have
M. — lﬂr’;—l

(3.16) hﬂ:w g Z = |A(1 2 ¢ ( By :g))' L

as I, k — oo uniformly with respect to (z,y) € G2, and (2.3) follows.
14
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Combining (3.14)-(3.16) we complete the proof of the theorem. a
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