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1. INTRODUCTION

This paper is devoted to the description of meromorphic solutions for the foll

functional equation:
(1) Mz + g (z) = e**4B,
where g(z) = J() or g(=) = f(z +¢) for o, f,¢(# 0) € C, when n > 1.

Tn particular, when a = f = 0, then (1.1) is reduced to the following swell known
ctional equation, initialed by Gross [8, 9] and Buker [1):

Fermat-type fu
(1.2) IMz) +9"(2)
Below, we ize all the possible ic solutions of equation (1.2)
Theorem 2.3 in Han [10]).

Proposition 1.1. The following assertions hold.
(A) Forn =2, the only nonconstant meromorphic solutions of equation (1.2 ) are the
functions f = 2%z and g = 152 for a nonconstant meromorphic function ;.

(B) Forn = 3, the only nonconstant meromorphic solutions of equation (1.2) are the
functions f =z (1 +>3@p’(h)) and g = g5 (1= Ep'(h) for o nonconstant
entire function h and a cubic oot 0 of unity, where p denotes the Weierstrass p-
function.

(C) For n > 4, there is no nonconstant meromorphic solution for equation (1.2).
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ON THE EQUATION F¥(2) +G¥(2) = E°Z+7

In view of the transformationw = tan (%), where h is an entire function, wes
in the case (A) (for n = 2) the functions f = 227 = sin(h) and g =
are the only entire solutions of equation (1.2). Moreover, the Weierstra
function p(z) with periods w; and w is defined to be

T

1
Plzwiwe) == +

1
T L T
VEZi U2 A0 { (2 + pun + v (pey + ) }

which is an even function and, with appropriately chosen w; and w, satisfies the

equation:
(1.3) (p")2 =dp® - 1.

For meromorphic solutions of partial differential equations similar to equation (1.1),
we refer the reader to Li [11, 12], Chang and Li [4], Han [10], and the references
therein.

In what follows! we assume the familiarity with the basics of Nevanlinna’s theory
of meromorphic functions in C (sec [15]), such as the first and sccond main theorems,
and the standard notation, such as the characteristic fnction T(r, f), the proximity
function m(r, f), and the counting functions N(r,f) (counting multiplicity) and
N(r. f) (ignoring multiplicity). By S(r, f) we denote a quantity satisfying S(r, f) =
o(T(r, f)) as r = 00, except possibly on a set of finite logarithmic measure, which is
not necessarily the same at each occurrence.

2. MAIN RESULTS

We first consider meromorphic solutions of equation £+ ()" = ™ for n > 4 and
7 # 0. According to Proposition 1.1, both £ and £ are constant. Assume f = ey
and f' = c7 to see that c17’ = cy with ¢ +¢§ = 1. If ¢; = 0, then f = 0 and hence
7=0.50, c1 0. If ¢ = 0, then f is a constant and so is 7. When cycz # 0, then y
cannot have zeros and poles, and hence 7"(z) = e®*# with o = n&. This is another

reason why in our study we are focusing on the function *=+#,

Next, for f*+ (/) = e2**?, the function f must be entire, and thus both £

and £ are constant, so that the same conclusion holds as above. Now, for f2 +
( f')’ = e°*+5, the function f must again be entire and, by Proposition 1.1, we have
() = e*5% sin(h(2)) and f/(z) = €5 cos(h(z)), so that § tan(h) = 1~ k. Since
T(r, ') = O (T(r, h)) + S(r,h) as r — oo and @;ﬂﬁ%ﬁ = 400 (see Clunic [6,
Theorem 2 (i)] that extends Polya’s result from [16]), we see that either @ = 0 and
R =1, or h is a constant.

Summarizing the above discussions we can state the following result.
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+ 2.1 The meromorphic solutions [ of the following differential equation:

(2.1) PR Citaaic?
must be entire functions, and the following assertions hold.
(A) Forn =1, the general solutions of (2.1) are [(z)

and f(= 1 4 ae

b ae for o f —1

o = 0 and the general solutions of (2.1) are f(

(C) Forn >3, the gencral sobutions of (2.1) are [(z) ~ de
Here, a, B,a,b,d ¢ C with d” (14 (2)") =1 forn > 1.

Note when n > 2, equation (2.1) may have no meromorphic solution for o

ne ™5k =0,1,...,n — 1. Also, for some related interesting vesults, we refer the
reader to Li and Yang [18], and Li [13].
Now, consider the meromorphic solutions f(z) of the following differen

with ¢ 7 0:

: equation

(22) @)+ e de)=¢

When n > 1, take f(z) = c1e™3” and f(z + ¢) = c2e™5 1o see that 0
with ¢ff +¢ff = 1, inspired by the case (C) of Proposition 1.1 Note that rr
f(z+4¢) = e™ f(z). As aresult, all the trivial meromorphic solutions of (2.2) ace the
functions f(z) = de™5™ with d*(1 + e

Next, we discuss the existence of nontri
n = 3. It should be noted that a similar yet simpler approach has been applicd in
Han and Li [14].

lornzl.

meromorphic solitions for (2.2) when

Theorem 2.2. There is no meromorphic solution of finite order for the difference
equation:
(2.3) @) + oz +¢) = e,

Here, the order of f is defined to be p(f) := lim sup 7(e0)
r—=+40c ac

3. PROOF OF THEOREM 2.2
By Proposition 1.1, one has
{1+ 8o} ...

@) f(z)=%W-c %2 and f(z 1 )=
92
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A routine computation leads to

n{1-Bpa} {1+ Ly +a)}
plh(z)) 7 p(h(=+ )

(32)
Assuming p(f) < o, from (1.3) and the first equality in (3.1), we obtain

3/2(z)p(h(z)) _ 3.

2 (h(z))
B) z+13)

(3.3) +1=p3(h(z)).

ek

Recall the estimate (2.7) from Bank and Langley [2], stating that

(34) T(r,p) = —r*(1+0(1)) and p(p) =2,

A

i the arca of the parallelogram & with vertices 0.wy, wz, @y +wa.

whes
Therefore, taking into account that T(r, ¢®%) = 24 r (1 4+ 0(1)), we can combine

(3.3) and (3.4) to obtain
'

@3) T(p(0) €270, )+ 5T e%%) + 01),

and hence p(p(h)) < o0 as well. By Corollary 1.2 of Edrei and Fuchs [7] (see also
Theorem 1 of Bergweiler [3] for a different and elegant proaf), h must be a polynowial.
A side note here is that 7'(r, p(h)) = O () for some positive integer { > 1.
Notice that when p(zg) = 0, then by (1.3) we have (p')*(2) = —1. Now, we denote
by {z; j’:l all the zeros of p(z) that satisfy |2;| —+ oc as j — oo, and assume that
h(ajx) = 2 for k=1,2,...,deg(h). Then, we have (p')2(h(azx)) = (b')*(2;) = =1.
Suppose there is a subsequence of {a,.k};l with respect to j such that p(h{a; -+
¢)) = 0. Denote this subsequence still by {a;£};Z, and, without loss of generality, fix
the index & below. So, we have (p')2(h(ajx +c)) = —1. Differentiate (3.2) and use

substitution to obtain

e ‘fP’(h(";.k))}P'(h(ﬂ;,k+0))’l'(ﬂ:,k+c ={1+

ac

3 ¥ (h(ajact ) 1o’ (has )W (aj)

from which we observe that one and only one of the following situations can appear:
n{1-iF W e+ o) = {L4 i} Wlay) ¥,
nh(ajp +c) = =W (aje) e,
n { iy isu@} W(azp+c) = {1 = i%} W(age) e

Taking into account that h(z) and h(z + c) are polynomials of the same leading
coefficient, and there are infinitely many a;¢’s with |aj| — 00 as j — oo, we
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conclude that
{1
(3.6) nh'(z+¢) = —l(z) e,

.,{1 Fi }h‘(: ) {1 l(-"}/.'(a, 4

This is possible only if o and ¢ satisfy ¢ 1,4 4 i because =1, ) 443,
When this it true, one has uniformly by (3.6) that h(z)
p(z) has two distinct zeros in &, and thus, in each associated lattice, we obe
that all the zeros {
of) ac. For simplicity, we can consider two c:
or ac # wi,wa,w + wy and ac € &. The form:
the periodicity of p(z) and p'(z), and the latt
a unique double pole in each lattice. We substitute =

b for ac 7 0.

of p(z) are transferred to each other thiough (4 mul

Wy, w2, + Wy,
s of (3.2) and
ir either be

not oeent in v

annot

56 plz) has
~L into (3.2) 1o pet o

contradiction:
v/{lfé,@v’((l)} {1 - )
. am

Thus, p(h(a;4 + ¢)) = 0 may occur only for finitely many a,,’s. Witkout loss of
generality, assume that p(h(a + ¢)) # 0 for each k — 1,2
3> J, with J being a sufficiently large positive integer. Since p(h(a, )} — 0
("2 (b(aj4)) = =1, by (3.2) we have p(h(ass + c)) = o0 for j > J. Obee
0 (logr) = S(r,p(h)), we can write

= 1 1
Nr—s | SN (r,——— ) +2N (r,——
@7 (’ p(h(z))) ( »(h(z») (’ h'rz))
< N(r,p(h(z + ) + 2T(r, 1) + O (log ) < N(r, p(h
Now we use the first equality in (3.1) and estimate (3.4) to obtain

o=

deg(h) and all

ving that

©))) + S(r, p(h).

(38)  T(r,f) < T(r,p(k)) + T(r, p'(h)) + éT(r, %)+ 0 (1) < O (T(r.p(h)))
Hence, in view of (3.5) and the side note after it, we have p(f) = p(p(h)) and S(r. f)
S(r,p(h)). Thus, T(r,e®) = S(r, f). Since all the 7eros of the functions f — ¢ 25,
f=ne™F and f — 2™ (n # 1) are of multiplicities at least 3, from (2. 3) and
Yamanoi's second main theorem (see [17]), we obtain

3
T f)< YN ( i—l—) +N( )+ S0, £)

m=1 ST

:
<3 PR ( ﬁ) + NG, )+ S, ) < 2T 1) + (5, p(0).

=1 3
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Therefore, we have T(r, f) = N(r, f) + S(r, p(h)), and hence m(r, f)
Next, applying the lemma of logarithmic derivative and agaiu usiug the first
equality in (3.1), we get

1 h)h'
(3.9) m (r, Th)) <m(r. f)+m (r ;;’J ) +8(rp(h)) = S(r,p(h)).

Finally, combining (3.7) and (3.9), and applying Theorem 2.1 from Chiang and Feng

[5], we obtain

T(r,p(h)) + 0 (1) =T (r, %) S (r, —“LI(—J)) N (r, m)

(3.10) . p(h(z + ) + S(r.p(h)) < —N(v p(h(z +¢))) + S(r, p(h))
1
< 5T(rp(h(z +c)) + S(rp(h) < §T(r, p(R)) + S(r.p(h)),
which is a contradiction, and the result follows. o

.
4. EXAMPLES

Example 4.1. Let f(z) be given by (3.1) through h(z) = e=. Then p(f) = cc, and

for ¢ = i and each a with €2° = 1, we have f3(z) + f3(z +¢) = e2¥#3 for all 5 & C.

4

2% sin(z) and f(z) = e“F sin(e¥*+z). Then p(f1) <
and each o with ¢ = 1, we have f3(2)-+f2(z+¢) = 218

Example 4.2. Let f,(z)
1and p(f2) = co. Forc =
for j=1,2 and all 3€ C.

Example 4.3. Let fi(2) = e+ £ and fo(z) = e+ + £ Then p(f1) < 1
and p(f2) = 0. For ¢ = im and each a with e = 1, we have f;( )+/,(z¢c) = gas+d
,2and all Be C.

for j =

In contrast to Theorem 2.1, cven though the existence of finite or infinite order
solutions of equation f2(z) + f2(z + ¢) = e®*® may be described for special a and
¢, we could not characterize systematically all the possible solutions of this difference
equation. The same concern oceurs for the existence of infinite order solutions of
equation f3(z) + f3(z + ¢) = e**+ in a systematic manner.

Finally, we briefly consider the equation f(z) + f(z + ¢) = e**+/. Recall (2.2) to
choose f(z) = de®™+P and f(z + ¢) = e°°f(z). When d(1 + ¢°°) = 1, we are done.
The general solutions may be of the form () = 6(z) + de®**? for a meromorphic
function §(z) with 8(2 + ¢) = —8(z) and d(1 + €°°) = 1. In addition, the general
solutions may be of the form f(z) = 6(z) — 2e®+# for ¢° = —1. When n > 2, then
equation (2.2) may have no solution if € = —1.
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