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Abstract. Sampling from various kinds of distributions is an issue of paramount importance
in statistics since it is often the key ingredient for constructing estimators, test procedures or
confidence intervals. In many situations, the exact sampling from a given distribution is
impossible or computationally expensive and, therefore, one needs to resort to approximate
sampling strategies. However, it is only very recently that a mathematical theory providing

non-asymptotic guarantees for approximate sampling problem in the high-dimensional

settings started to be developed. In this paper we introduce a new mathematical framework
that helps to analyze the Stochastic Gradient Descent as a method of sampling, closely related
to Langevin Monte-Carlo.

MSC2010 numbers: 42B25, 42B320.

Keywords: Markov chain Monte Carlo; rates of convergence; approximate sampling;
Langevin algorithm; gradient descent.

1. INTRODUCTION

Let us first introduce the mathematical setting of Langevin samnpling. The general
problem is to sample from the log-concave distribution with density #(#) = cexp(— f()),

where f : 2P — Z satisfies the following two conditions:
(1.1) Strong convexity : f(62) > f(61) + Vf(01)T (62 — 1) + %no, — O|3;
(1.2) Smoothness : |V f(61) — Vf(02)]l2 £ M||6h — 2|2,

for all p-dimensional real vectors 6; and @2. The parameters m and M are positive
numbers and || - ||2 is the Euclidean norm on %?. The problem of sampling from 7 is
closely related to the problem of finding the minimum of the function f : #* — %.
Indeed, suppose we manage to sample from the distribution wg(d) = cg exp(—3f(8)),
where 3 is a large positive number. Then 73 will mainly be concentrated around
the unique minimum point of f and it will have some kind of a spike form. Thus, a
sample from 7 is a high probability approximation of the minimum point. Therefore
considering f to be convex will facilitate our task for characterizing the convergence
of the considered sampling method. For more details see [3] and [10].
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Langevin Monte-Carlo algorithm is one of the methods for the approdimate sanpling
from the target distribution . ‘The idea comes from the following Stochastic Differential

Squation (SDI), named Langevin diffusion:

(1.3) dX (t) = —V (X ())dt + V2dW (1).

Here W is the standard Wiener process or Brownian motion in 27, '['he solution of
(1.3) is a Markov process having @ as invariant distribntion [31]. Tn order w0 uoe 1
fact for our poal, we will use Eunler-Maruyama discretization of (1.3), which can be

found in [15]. Tt goes as follows:
(1.4) Okr1 = Ok — haeys VI (Or) + /2N €,

where &1,&a,..., &k, ... follow Gaussian distribution N(0, [,) and are independent
from each other and ¢q. The latter is the starting point for the algoritiog and it can
be random as well. In particular when the step-sizes liy ave coustantly equal 1o /)
and h is small, then for large enough k’s the distance (Wasserstein, Total Variation)

between the distribution of 0. and @ is small. This algorithun is ealled Gradicns

Langevin Dynamics (GLD) or Langevin Monte-Carlo (LMC) and it is actis

nowadays ([3]-9]).

Instead we will review Stochastic Gradient Descent as a sampling method and reprezent
it as a sampling algorithm. Let us recall SGD for the case of optiniization. Often in
Machine Learning problems we nced to minimize the cinpirical risk. The latter

usually a sum-decomposable function f : %P — #:

n
fel= wle)
1=1
where n is the sample size and ¢; : Z7 — Z, for every i = 1,....n. The classical

algorithm to solve a minimization problem, when mild assnmptions are satisfied, is
the Gradient Descent. Unfortunately when the sample size is large then every step
of Gradient Descent is becoming computationally expensive. That is why Stochastic
Gradient Descent is introduced. The main idea of SGD is to replace the full gradicur in
GD with its unbiased estimate. There are various ways 1o do it, but the most common

lac
DICS a

one is the so called Batch Gradient Descent. In the latter case, onc just sam
mini-batch B (a subset of {1,2,...,n}) and replaces the gradient by ¢z 3 ..; V.,
where cp is a constant depending on |B|. Thus the update rule becomes 0., =
0k — cp 3,z Vgi- For more details see [2].
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The problem of our interest however is not directly related to optimization, but to
sampling. We will show that in the case of a smooth and strongly convex potential
function f SGD yields a convergence of order O(xk2p/z2) ! in Wasserstein error. Tf
in addition to these conditions we also have second-order smoothness, then the rate
improves to O(k?p/z? \ k\/1p/e).

This article is organized as follows: In the next section, we give some remarks
about the past and ongoing research in this area. Section In Section 77 we introdnce
the theoretical setting that we are going to work with. In scction 4 we propose a
mathematical framework which helps to analyze the couvergence. The main results
that provide non-asymptotic upper bounds to convergence rate are presentec in

Section 6.
2. PRIOR WORK

The first and prol')ubly the most influential work providing probabilistic analysis of
the asymptotic properties of the LMC algorithm is decsribed in [15]. However, one of
the recommendations made by the authors of that paper is to avoid using Langevin
algorithm as it is defined in (1.4) or to use it very cautiously, since the ergodicity of the
corresponding Markov chain 6y, is very sensitive to the choice of the parameter h. Even
in the cases where the Langevin diffusion is geometrically ergodic, the inappropriate
choice of i may result the transience of the Markov chain. These findings have strongly
influenced the subsequent studies since all the ensuing research focused essentially on
the Metropolis adjusted version of the LMC, known as Mectropolis adjusted Langevin
algorithm (MALA) and its numerous modifications ([L1]-[16]). In contrast to this, it
is shown that under the strong convexity assumption imposed on f coupled with the
Lipschitz continuity of the gradient of f, one can ensure the non-transience of the
Markov chain 05 by a suitable choice of hy. Later by [5] and [8] it was shown that
the convergence rate in TV distance is O(p/e2) for any initial vector 0.

Another problem of interest is the convergence in Wasserstein distance. In the next
section the reader can find our reasoning to choose Wasserstein distance instead of
TV. The convergence of LMC with this error was recently studied by [6] and [8] and
a rate of O(p/e?) was achieved. In addition to this, in [6] it was shown, that imposing
additional smoothness for function f, meaning Lipschitz-continuity of its Hessian
matrix, implies a better convergence rate of O(,/p/) for LMC. It turns out that in
the case of sum-decomposable potential function, a modified version of LMC achives

10 is the big-O notation, ignoring logarithmic factors.
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a hetter convergence rate. Some of these algorithis have their roots in optimization
like SAGA [4], which was originally proposed in a paper by Defazio ol al. [7] for the
problem of optimization.

The convergence in Lerms of Wasserstein error was studied Ly many authors. (3]
proved the rate O(p/e?) for any deterministic starting point Oy. The saroe convergenee
with improved cocfficients was later shown in [6]. In this section we will formulate
two theorems from [6], which will be used later on. Jefore we state the theorems, lei
us define Wy Wasserstein distance. Ior two probability measures o and v defined on
(%, B(A#P)), Wa distance is defined by

; \ 2
(2.1) Wy, v) = { inf [mm_ W0 — 0"\ adn(o. 0 {

nel(pe)

where the infimum is taken with respeet to all joint distributions 4 having g and v
as marginal distributions. Let us compare this distance to total variation distance.
If we have small Wasserstein for some pi and v, then it implics that their first order
moments are also close. This property does not hold for the total variation distance,
As an example one can check that |6y —dp|lrv = Loper, whereas Waldy, 67 = |00,
is a smooth function increasing function of Euclidean distance between 0 and 4.

Let us now present a non-asymptotic convergence bound for Wasserstein error,

when the constant step-size LMC .

Theorem 2.1 (Theorem 1 from [6]). Asswme that h < (0,2/A). Let | salisfy
conditions (1.1) and (1.2) , thus the following claims hold:

2 ; : e L66M ;. 3
if h < =B 7 then Wa(vie,m) < (1 — mh)KWylvy, w) + ——J’-I-E—-’l','z:ﬁ:

2 o i 1.65Mh,, .4
f h2 e, then Walvic,m) < (Mh = )XW, m) + 5= ().

In practice, a relevant approach to get an accuracy of at most £ is to minirize
the upper bound provided by Theorem 2.1 with respect to A, for a fixed K. Then,
one can choose the smallest K for which the obtained upper bound is smaller than
€. One useful observation is that the second upper bound is an increasing function
of h. Its minimum is always attained at & = 2/(m + M), which means that one can
always look for a step-size in the interval (0,2/(m+ M)] by minimizing the first upper

bound. This can be done using standard methods of optimization.

Remark 2.1. These two upper bounds contain Wo(vy, ), computation of which can

be involving. In order to avoid it, we will bound it from above. If f > 0, we can replace
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it by \/p/m + /2f(0y)/m. Indeed,

”-'_g{l.’n. 7?) 5 \’[/g - i.l(/“ = 0i:'_1

Do/ SaE )
\/;‘1 i \/E(f(”u) = fH),)) = \/;7‘1 e \/ Fr

The first inequality is a corollary from Proposition 1 of [8]. Combining Theorem

IA

2.1 with its remarks we obtain the following. Suppose that we choose & and K so

that
(2.2) h < min (——“ _,,,'252 ) and hK > 1 log (Q(p, €)

: b ) and hK = —log (Q(p€)) .
' % m+ M’ 11M2%p = - log(((p,€))

2f(0y)+mp

0.5ms

from the right-hand side of Theorem will be less than 0.5z, thus Wa(vg, 71) < <.

where Q(p. c) = is a real-valued rational function. Then each of the components

Now, let us discuss the convergence rate of LMC in the case of additional sinoothness.
Below we present 4 theorem that quantifies the non-asymptotic behavior of LMC,
when the potential function has a Lipschitz-continnous Hessian. That is, for every
x,y € #" we have

(2.3) IV2f(2) = V2F(y)|| < Lijz — ylla.

where || - || is the operator norm of matrices.

Theorem 2.2 (Theorem 4 from [6]). Let vy be the distribution of K -th iterate of
the LMC algorithm iterations. Assume that the function [ : %P — % satisfies (1.1),
(1.2) and it is also L-Hessian-Lipschitz. Then for every h < 2/(m + M),

Wa(vi,w) < (1 — mh) X Wy (v, 7) + -I?:—:z-)- + —_lll‘g:"{‘\/p.
Remark 2.2. In order for the improvement of the rate to be visible, let us take a
closer look to the order of step-size h and dimension p. Here we have O(hp) meanwhile

Theorem 2.1 gives only O(\/hp), which is worse as h is considered to be small.

Remark 2.3. Doing analogous analysis as we did for the previous theorem, one can

deduce Lhatl the convergence rale is ()(\/E/E).
3. PROPOSED FRAMEWORK TO ANALYZE SGD

In the following sections we will discuss a special case for potential function f, in

particular when f is a sum-decomposable function, that is

£(6) = _Zg(o, Zy),

47



A, G KARAGULYAN

where n is a very large positive integer, g P« 7 - I is a given smooth function
and Zy...., Z, ave iid random variables with values in some probability space 7. 1o
ease notation, we write ¢;(0) = (0, Z;). We agsume here that the functions g, are
strongly convex with a coeflicient, m, and its gradient is M, Lipschitz-continuons.
Therefore [ is a convex and pradient-Lipschitz function as well, with cocflicients nin,

and nM,. So we have
VI0) = Val0).
i

In order to avoid the computation of n gradients Vg, ab each iteration of the LMC,
we will use the classic Stochastic Gradient Descent algorithm in order to sample
approximately. Let us first recall the algorithm. At cach iteration £ of the algorithm,
we choose a subset By, independent of all the past randomness and update 0, Ly
hn <—
141 = O 2 V.’li(rl},).

b
ic I3

The latter can be rewritten as Oy = Op — bV f(0,.) + h(,., where the noise vectors

¢;. are of the form

] it 1 T
C,‘, == 'I),{E L Vg,(()“ — _’—‘ Z v_f[,{(l’,,l}.

i€ 3 i=1
If b is large, the distribution of ¢, (conditionally to 0) is approximately Ganssian

N,(0, Zi) where the covariance matrix Zy, is given by

il 2 : 1= 1 B T
Iy = = LVyi(ak)V!Ii(ek)T - {1—1 ZV{;JG;.)}{; ZV’I‘IO‘ } ]
=1 i=1 i=1

Below we study a particular case of SGD when the noise vector (. is a normal random
vector with a covariance proportional to identity matrix. We will assume, that Z; =
021, where 0? = n(n—b)/b. The choice of ¢ is intuitive. For details see the Appendix.
Let us formulate the framework we are going to work with.

Assumptions: Suppose g; : #F — #P fori=1...., nand f = ). g;. We will
assume that the functions g1, 2. - . . , g satisfy the assumptions (1.1) and (1.2) with
coefficients m, and M, respectively.

Iterative method:
(3.1) Or41 = 0. — hV f(01.) + h¢.

where (. ~ N (0, ﬂ",‘_—")[,,) Sfor k=152 en
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Problem: Find a solution to this optimization problem
Minimize Kb;
Subject to H}ill Walvic o, w) <&,
(3
where vy pp is the distribution of the K-th iterate of the SGD with step-size I
and batch-size b. In other words, what is the minimum amount of overall gradient

evaluations in order to have an error of .

4. MAIN RESULTS

In this section we present two theorems that solve the problem stated above in
two slightly different cases. For the rest of the paper we denote the condition number

M,/my, by k.

Theorem 4.1. Suppose that the following conditions are satisfied:

=2 2 34 9
PR L T S ] T
4K*p 2+ hn n VMM,
i
nic2 () ~
@1) Kb> dpr*nlog(Q'(p,€))

my(8pr? +e2n) ’
where Q' is a rational function given by formula
2f(0p) + mgp
/ P R 9.
@ (p,e) 0.1mge
then Wa(vicpp,m) <.

Before we bring the proof let us state some remarks regarding this theorem.

Remark 4.1. Since the batch-size b is between 1 and n, hn®/(2+ hn) must also
satisfy this condition. In order to verify thaet, let us substitute h wnth its value.

Therefore we have

n2s?

T 8k2p+ne?
The latter is a monotonically increasing function with respect to £2. Thus taking into

account that n is larger than 9,

2 2

n > n S
53 ) — 8n2 =
5 n” an

The inequality b < n is obvious.

(4.2) )

Remark 4.2. One can notice that, if n — oo, then Kb has an order of O (5‘:-';)
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Proof. As the function [ is a sum of n strongly-convex and gradient-Lipschitz
functions, then it is also a strongly-convex and gradient-Lipschitz function witl
coeflicients m = nmy, and M = nM,, respectively. First let ng express the step-
gize b in terms of Lthe batch-size b. From the formula of b, we oblain f 2l —b).

Thus if we can rewrite the iterative method in the following way:

. . nln—b) :
/),_‘| 1 = O /,V/(”[) - ’I.U_. 0. - /IV_I ((),) | /l\/r_’—r—’h l) 0 0, h'\7jll/’, IE; \/f{/””

where 71,72, - . ., as usual, are independent standard normal p-dimensional random

rectors. Thercfore we got the classic LMC update rale, From the definition of /s
vee

have o

h—

1
/; nM,’

Asi
Thus Theorem 2.1 yields Wa(vye,w) < (1 —nmgh) " Qp, =)+ 1.650/ph. We will give

upper bounds for each component of the right-hand side. Substituting f with its valie

in kv/ph we obtain, that

r

kA ph = l-‘.\
Now let us discuss the other component. As we mentioned in previons sections, if

log(Q'(p,e))  Adpr?
(4.3) K> 0g(Q'(p.g)) _ 4pr Tog(@(0,2),

4K

1

mgnh mynz?
then (1 — nemigh)® Wa(vg,pp, w) will be less than 0.1z, In order o complete the proof

we just need to multiply this lower bound on K by 6. Thus we obtain

4pr2h
1 4 b> —— - log( 'p. =
(4.4) Kb > e log(Q'(p,=)).
Using the definition of i, we obtain the following formula for 4
250
n-e

8K2p + me?’

Substituting the latter in (4.4), we get the required . 0

continuous.

Theorem 5.1. Suppose that the following conditions are satisfied:
€ hn?

h = e e
dkLg\/Mypmax(p.n) 2+ hn’

50




NON-ASYMPTOTIC GUARANTEES FOR. SAMPLING BY ...

2\/_'.—'— z ’_—)
pmax(p,n) < < vpmax(p,n :

n(n—1) dkLg+/M, Myn
If
4 'L, l\r[, 2
(5.1) Kb > ki cpmax(n,n) -log(Q” (p,g))
my(8kLy\/Mypmax(p. n) + ne)
where

2f(bo) +mgp
0.3mge

Q"(pe) =
then Wa(vie,np,7) < €.

Remark 5.1. Again the condition on € is brought to make the choice of parameters
possible. In particular, as mentioned before, b is an integer between 1 and n. Doing
simple calculations and using the aforementioned condition, one can verify that our

Jormula b satisfies this criteria.

?
Remark 5.2. Let us interpret a little the result of the theorem. In the case when our

sample size n tends to infinity, we have O (k\/Mplog (Q(p.<)) /<) complezity.

Proof. The proof is similar to the one for Theorem 4.1. Using the same reasoning
as before f satisfies (1.1), (1.2), (2.3) with m = nmgy, M = nM, and L = nL,,
respectively. As in the previous proof we will represent our iterative method as a
classic Langevin Monte-Carlo update step. We have that

o € z 1
4KkLgy\/Mgpmax(p,n) ~ nh,
therefore (2.2) can be applied:

L, 11
Wa(vicnp.m) < (1— nmqh) Wa(vo,np, ) + 21,hp —Kh-\/]\f,,].'m

Let us express b in terms of ¢, p and n:

Bt e en
24+hn  24n  8kLy\/Mgpmax(p,n)+en :
Thus the condition (5.1) is equivalent to

K> 4k L g/ Myp max(p,n) o log (Q"(p,€))

mgne mgnh

2

b=

From the analysis shown above, this yields that (1 — nmgh)XWa(vone. ) < 0.3c.
Let us proceed to the second component, Lyhp/2mg. From the formula of h, which
is given in the statement of the theorem,
Lohp _ Lgp € e
2my  2my 4dkLg\/Mgpmax(p,n) ~ 8
51
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The latter inequality is true, il we assine that L, M, and 1 are greater than |
Similarly,
uMEnym UM JRR e
Hinyg, Hiny Ar by \/}\ I_,_,p_r;i

Swmnming up these three inequalities we obtain that, Wl 5 < ¢

P, 1) 205

APPENDIX: THE CHOICE OF THE NOISE VARIANCE

In this section we give a little insight on why and how we chose the disiibition
of the noise vectors in 3. Suppose we have a sel, of n numbers A {01,500, ..,05,)
A random variable X is designed in the following way. We take a uniformly random
subset T of A with a fixed size b from the class €y of all subsets of fized size b,

Afterwards we calenlate the value of § Y oier i and assign it 1o X. One can ca

at BIX] = " . a; and therefore if we assume a;’s to be of the same order, then
that It} i
E[X] = O(n) lmpml.ml detail to notice is that it does not depend on b, Un i Loy

the order of the variance is not that easy to gness, so we will hereby calenlate it

Proposition 6.1. Let us define the variance of X by Var(X). Then

nln — 1
Var|X]| =0 (%—l—))
)

Proof.
n? — 5 — .
vai= 2 32 [So| = (3m) ST (T 5 2am)
Cn Iey, Liel i=1 n 1eC, | iel i#jn.GEl |
2 = 1
= n (',’:_1 Z g | n (,',;_, s 5
Fr) -5 Lot e B Rt T
i=1 i#3] i=1 i#]
')l—b 2 Zaa
A @i nb B dech

i=1 i#]

We know that 31", a? = O(n) and Lizi2aia; = O(n(n — 1)). Therefore the order
of the variance is O (n{n — b)/b). =)

Conclusion. In this paper we have introduced a new mathematical framew

which helps to analyze Stochastic Gradient Descent as a sampling merthod, whe

the potential function is strongly convex and has a Lipschitz gradient. Considering

the particular case, where the stochastic term is a normal random vector with a

diagonal covariance matrix, we have shown a convergence rate of O(p/z?). The
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latter is a massive improvement compared to the classic LMC which was giving only
O(np/z*). In the case when we also assumed second-order smoothness, we have got

O(p/e* \ s /Tip/z) convergence rate.
P/ v =7
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