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Abstract. In this paper, we analyze the analytic Feynman integrals on the Wiener
space. We define a new concept. of analytic Feynman integral on the Wiener space,
which is called the generalized analytic Feynman integral, to explain various physical

we evaluate the analytic Feynman integrals

for several important classes of functionals. We also establish various properties of
these generalized analytic Feynman integrals. We conclude the paper by giving several
applications involving the Cameron-Storvick theorem and quantum mechanics.
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_1. INTRODUCTION

Let Cy[0, T] denote the one-parameter Wiener space, that is, the space of continuous
real-valued functions z on [0, 7] with z(0).= 0. Let M denote the class of all Wiener
measurable subsets of Co[0,T], and let m denote the Wiener measure. Observe that

(Co[0,T],M,m) is a complete measure space, and denote the Wiener integral of a
‘Wiener integrable functional F' by :

/ F(z)dm(z).
Col0,T]

Feynman [5] has introduced an integral over a space of paths, and used his integralin a
formal way in his approach to quantum mechanics. Since then the notion of Feynman
integral was developed and was applied in various theories. For the procedure of
analytic continuation, to define the analytic Feynman integral, we refer the reader

CThis research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(2017R1E1A1A03070041).

76



SOME FORMULAS FOR THE GENERALIZED ANALYTIC ...

to [5), [12]- [15], [18, 20]. Many mathematicians have studied the analytic Feynman
integrals of functionals in several classes of functionals (see, [1] - [4], [6, 8, 10, 16, 18,
21, 22]). The differential equation

@y B9, = () ~ V()

is called a diffusion equation with initial condition ¥(u,0) = ¢(u), where A is the
Laplacian and V is an appropriate potential function. Many mathematicians have
considered the Wiener integral of functionals of the form F(A~%z + u), where uis a
real number. It is a well-known fact that the Wiener integral of the functional

(1.2 exp{— /; g v iz@) + u)a‘t}np(»\"*z(T) +u)

gives solutions of the diffusion equation (1.1) by the Feynman-Kac formula. In the
case where time is replaced by imaginary time, this diffusion equation becomes the
Schrédinger equation:

3 200, 1) = ~ 3 A% 1) + V(o)

with initial condition 1(u,0) = y(u). Hence, a solution of Schrddinger equation (1.3)
is obtained via an analytic Feynman integral. In particular, the authors found the
solutions of the diffusion equation (1.1) and the Schrédinger equation (1.3) for the
harmonic oscillator V() = £u? (for a more detailed study see [8, 23]). On the other
hand, it is not easy to find the solutions of the diffusion equation (1.1) and the
Schrddinger equation (1.3) with respect to nonharmonic oscillator.

In this paper we consider the following functional:

T
(14) exp{— L V-t + h(:))d:}qa(,\-!x(r) +h(R),

where h(t) is a continuous function on [0, T]. When h(t) is a constant function, then
the functional F in (1.4) reduces to that of in (1.2). That is, our functional (1.4) is
more general than that of in (1.2). Therefore, the results and formulas for functional
(1.2) will be special cases of the results and formulas obtained in this paper for

functional (1.4).
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2. PRELIMINARIES AND DEFINITIONS

A subset B of Cy[0, T is said to be scale-invari; if pB is M-
for all p > 0, and a scale-invariant measurable set IV is said to be a scale-invariant
null set if m(pN) = 0 for all p > 0. A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.) [11]. Throughout
this paper we will assume that each functional F : Cy[0,T] — C that we conslder is

scale-invariant measurable and that for each p > 0
[ IFm)lin) <oo.
Col0,T]
For v € L0, T] and z € Cy[0, 7Y, let (v, z) denote the Paley-Wicner-Zygmund (PWZ)
stochastic integral. The following assertions hold:
(1) For each v € L[0,T], the PWZ stochastic integral (v,z) exists for a.e. z €
Col0, T
(2) If v € L,[0,T) is a function of bounded variation on [0, T}, then (v, z) is equal
to the Riemann-Stieltjes integral [ v(t)dz(z) for s-a.e. z € Co[0,T].
(3) The PWZ stochastic integral (v, ) has the expected linearity property.
(4) The PWZ stochastic integral (v, ) is a Gaussian process with mean 0 and
variance [|v||3.
For a more detailed study of the PWZ stochastic integral see [7}- [10].
Now we define the analytic Feynman integral of functionals on Wiener space.

Definition 2.1. Let C denote the set of complez numbers, C,. = {\ € C: Re()) > 0},
and let €, = {A € C: A # 0 and Re()) > 0}. Let F : Co[0,T] — C be a measurable
Jfunctional such that for each A > 0 the Wiener integral
IO = / FO~Y2g)dm(z)
Cal0,T]

egists. If there ezists a function J*(X) analytic in C. such that J*(A) = J()) for all
A >0, then J*(X) is defined to be the analytic Wiener integral of F over Co[0,T]
with parameter ), and for A € C we write

anwy
IO = / F(z)dm(z).
Col0,T]
Let g # 0 be a real number and let F be a functional such that J*()\) exists for all

A € Cy. If the following limit exists, we call it the analytic Feynman integral of F
78 :
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with parameter g, and write

anf, > anwy
/;a[n.‘l‘l b *‘P’Tiq /cu[n.’l‘l gl

where A\ — —iq through values in C..
The following theorem provides a well-known integration formula which we will

use several times in this paper.

Theorem 2.1. Let {a1,"-- ,an} be an orthonormal set of functions in L2, and let
f:R™ = C be Borel measurable. Let |#] = /o7 +---+ v2, and let
F(@) = f((@,3), -, (@n, 7)) = £((@,a)).
Then
g P = [ s(@ i)

(2.1) é(il;)*‘/‘nf(ﬁ)m‘p{_@}dﬂ

in the sense that if either side of (2.1) egists, then both sides ezist and the equality
holds.

3. AN ANALOGUE OF THE ANALYTIC FEYNMAN INTEGRAL

Now we explain the importance of the functionals given by equation (1.4). For a
constant k, when the potential function is given by V(u) = %u’, then the equation
(1.1) is called a diffusion equation for harmonic oscillator with potential V. For £ € R,
the function

Walu) = Vu+ ) = 5t e
is the translation of V, and so, the equation (1.1) is called a diffusion equar.ioﬁ for
h i ill with ial V1. However, for an appropriate function h(t) on
[0, 7], the function

Va(u) = V(o hw) = S(u+ hw)®
might be a nonharmonic oscillator.
Example 3.1. Let h(u) = u? defined on [0, 7). Then
Va(u) = £(u 4200 4+ 0).
79
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In this case, the equation (1.1) is called a diffusion equation for a nonharmonic
oscillator with potential V3 because it contains the “ud"term. The above facts show
that in certain physical circumstances the status of the harmonic oscillator can be
exchanged by the status of the nonharmonic oscillator, which can be explained by
studying the Wiener integral of the functional given by (1.4).

Example 8.2. For vy € Rlet h(u) = —u+ /w2 (u? = ?) defined on [0, ’I"l Then
Vite) = Bu?(a? =)
In this case, the equation (1.1) is called a diffusion equation for double-well potential

V4. Thus, the functionals considered in this paper are more useful in applications
than the functionals considered in the earlier papers [1] - [4], [6, 8, 10, 12, 23].

Now we are ready to state the definition of a lized analytic Fey integral.
Definition 3.1. Let h € Co[0,T] be given, and let F : Co[0,T] — C be such that
the function space integral

JN = / F(\~4z + h)dm(z)
Cal0,T]

exists for all X > 0. If there egists a function J*() analytic in C. such that J*()\) =
J() for all X > 0, then J*() is defined to be the modified analytic function space
integral of F' over Co[0,T| with parameter A, and for A € Cy. we write

IOy = / T FoE)
'Co[0,T]

Let q # 0 be a real number and let F' be a functional such that the integral f;:(%ﬂ F(z)dm(z)
ezists for all A € Cy. If the following limit ezists, we call it a modified gencralized
analytic Feynman integral of F with parameter g and we write
anfh ! an}
/c e F(z)dm(z) = ,\ETW /c o F(z)dm(z),

where X approaches —iq through values in C..

Remark 3.1. If h(t) = 0 on [0, T}, then we can write

/c oy ENime) = /c o FEinGo)
8
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and

anfp o nfy
./;:,,[n,'r] (=) (z)—/;(oﬂF(z)dm(z).

4. EXAMPLES INVOLVING GENERALIZED ANALYTIC FEYNMAN INTEGRALS

In this section we establish the exi of the ized analytic Fe
integrals for several classes of functionals. Let M(L2[0, T]) be the class of all complex
valued countably additive Borel measures f on L[0,T].

4.1. The Banach algebra 8. Let 8 be the class of functionals of the form:
@y F@) = [ enfita)d)
- La[0,7]

for s-a.e. z € Co[0, T] for some f € M(L,[0,T]). One can show that § is a Banach

algebra with norm

171 = 1 = /L' o YO

Example 4.1. Let h(t) = [; zx(s)ds for some 2y, € L3[0,T] and let F € § be given
by equation (4.1). Then for all A > 0, we have

/ F(\~}z + h)dm(z)
Co[0,T]

exp{i(v, A4z + h)}df (v)dm(z)

(4.2) = /
Cofo,7] JL20)

1 5

- {~atola + 0050 o
La[0,T]

But the expression above can be extended to the open right-hand plane A = p —ig

with p > 0. Then letting p — 0 we obtain that

wy [ m’n F@ine) = [ ep{- el + it vn o

La(0,7)
and that

I rerima| <111 < oo
Col0,T]

forall g€ R — {0}.
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4.2, The class AP, Let AT be the class of all functionals of the form:

F(z) = f({er,2), -+ (omy 2)) = F((@ ),
where f € LP(R™) for all 1 < p < oo and {ay,** ,n} i8 an orthonormal set in
L0, ).

Example 4.2. Let h(t) = fu‘ 2(s)ds for some 2z, € L3[0,T] and let F € AP, Then
for all g € R— {0}, the generalized analytic Feynman integral of F' exists*and is given
by formula
5 - e

) ./c,.:n Fla)im(z) = (%) ' j. @ exp{i,? ,;1(“’ - (a,»,z,.),)“}da.
Furthermore, we have
[ resame)| < ()" [ @< (%) 1 < oo

oo =\ar) fo o

4.3. The class of Fourier-type functionals. Let S(R") be the Schwartz space of
infinitely differentiable functions f(i) together with all their derivatives each of which

decays at infinity faster than any polynomial of ||~1. Let T be the Fourier transform
of f € 8(R"), that is,

@) 6= (%) : [ 1@ewia-g,

where @ and £ are in R™ and @-&'= u1éy + - + tnén.

Note that the Fourier transform is an isomorphism on the Schwartz space S(R™).
In addition, A*f and A”Tf are elements of S(R™) for all k = 1,2, - - -, where A denotes
the Laplacian.

Next, following [9], we introduce the Fourier-type functionals. Let {a, - ,an} be
an orthonormal set of functions in L2. For f € 8(R™), we set

(6) A*F() = (A*A)(@2)), k=01,
and
@n &FF(z) = BF(@ ), k=01,

The functionals in (4.6) and (4.7) are called Fourier-type functionals defined on the

Wiener space Col0, ).
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Example 4.3. Let AKF be as in (4.7), and let h(t) = f; 2h(s)ds for some z, €
L0, T]. Then it is not hard to show that for all ¢ # 0, the generalized analytic
Feynman integml of AFF exists and is given by the formula:

(4.8) / A’*F(z)dm(z)( ) /.“(A"f)(ﬂ)cxp { it +iv- (&, z;.)g}
fcreachk—o,l,~-~, and hence

anfy
’ / A*F(z)dm(z)
Co[0,7]

5. PROPERTIES OF GENERALIZED ANALYTIC FEYNMAN INTEGRALS

<(3) ; L@ < oo

The following lemma is useful in ishing various ips among
analytic Feynman integrals.

Lemma 5.1. (1) (Translation theorem). Let F be a Wiener integrable functional,
and let zo(t) = j:zﬂ(s)da for some zo € L3[0,T]. Then

60 [ P+ =oof{ Jiat} [ F@)en(enain).

(2) (Fubini theorem for Wiener integrals). Let F' be a Wiener integrable functional
on Co[0,T]. Then for all non-zero real numbers py and ps,

-/;nln»ﬂ (-/t':..[u,n F(pyz, +m12)dm(11)) dm(zz)

; (52) = /(; el F(y/p} + p3z)dm(z)

= £ (/. o PO +aa)in(es) ) dn(es).

In Theorem 5.1 below, we list several relationships in a table format.

Theorem 5.1. Let F be as in Lemma 5.1. Let hj(t) = [y zj(s)ds for some z; €
L3[0,T),j = 1,2,3, and let Hy(z) = F(z) exp{(—ig)(z3,7)} for ¢ € R — {0}. Then
for all non-zero real numbers ¢ and ga with q1 + gz # 0, we have the following
relationships:

1. Commutative:

[ m’ﬂ (f [n’ﬂ Fla-+s)in(a) ) anis) = c::n ([ w’; Fla-+ s)im(y) i),
83
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anfhitha

2. Pubin theorem: [ont%, (f“;‘{.,:;, Flata)inie) ) dnl) = [y Fle)inz).

.
3. Translation theorem: j‘,n[,,,,7 F(z)dm(z) = {Huz,-,u,} Jeumz Hy(z)dm(z).

4, Integration formula: fgn[“.T] ¥ “[,o'n F(z +y)dm(z)dm(y) =
Proof of Relationship 1:
First, using the symmetric property, for all A, 8 > 0, we have >

/ FOa+ Bty + b + ha)d(m x m)(z,y)

calo,T)

é/ oL F(B~ty+ X"}z + by + hy)d(m x m)(y, 7).
[0,

It can be analytically continued in A and f for (), 8), and so we have for all (), 8) €
C; xCy,
anf? 7 canh!
Lo (L Platsinta))dmt)
Co[0,T) \YCol0,T]
anfl / ranh?
= ([ Fe o) duta.
Col0,T] \/Co[0,T]
Next, let E be a subset of ('1+ X é... containing the point (—igi, —igs) and be such
that (), B) € E implies that A+ B # 0. Then the function

= [ ([ plsyintance

is i on E and is unif i on E provided that E is compact. By
the continuity of H and equation (5.3), the Relationship 1 follows.

Proof of Relationship 2:

Using equation (5.2), it follows that for A > 0 and 8 > 0,

(5.3)

S
/czlo.nF('\ 2+ B7dy + by + ha)d(m x m)(,9)

2 .[: 0.7 E(VAT+B72+ by + ha)dm(z).

’l‘hi.slastexpressionisdeﬁnedfor)>0udﬂ>0.ibrﬂ>0itcanbennalytically

continued in A € C;. Also, for A > 0 it can be analytically continued in § € Cy.

Therefore A € Cy,§ € C,. implies that 2 € C,, and hence it can be analytically
84 g
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continued into Cy to equal the generalized analytic Wiener integral:
hithy

64 [ Feam),

Co[0,7)
where = 5. Next, note that for all g1, € R— {0} with g1 + gz # 0, if A — —ig
and B — —igy, then f\fﬁ - —iﬂ-\#’-. Now, using this fact and equation (5.4), we can

anfi? (
»/t;u [0,7)

= lim lm
B—ia A3=iq1 JGyf0,7)
nh1+ha

write

anfyl
/c T y)dm(z)) dm(y)

anfi+ha

F(z)dm(z)

=£&l§% »/c: et F(z)dm(z)
hythy

anf’

= / w5 pz)dm(z),
Col0,7]

which the proof of ionship 2.

Proof of Relationship 3:
Using equation (5.1) with G»(z) = F(A~4z) (instead of F) and zo(t) = X hq(2),

we can write

/ PO}z + ha)dm(z) = / G (@ + z0)dm(z)
Col0,T] Col0,T]

S e ) R CEE T

ool Jinit} [ Foteo(i o)

=oo{-3Ialz} [ o Oz Ak,

It can be analytically continued in A € C.., and hence we have established Relationship
3as A — —ig.

Proof of Relationship 4:

In view of equation (5.2), it follows that for all nonzero real numbers 7 and 8,

/ / FOa + by + by — hy)dm(z:)dm(azz)
Col0,7] JColo,T)

= / F(/ATF Blz)dm(z).
Co[0,T]
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Let A — —ig and B — —i(—g) = iq. Then A=% + 8= —+ 0, and hence Relationship 4

follows.

6. APPLICATION TO THE CAMERON-STORVICK THEOREM

In our first application, we establish the generalized Cameron-Storvick theorem for
the generalized analytic Feynman integral. To do this, we need to define the concept
of first variation of functionals on Col0, T

Definition 6.1. Let F be a functional defined on Co[0,T]. Then the first variation
of F is defined by the formula:

61) 6F(ah) = 2F@+hu)| | mweaT],
ok k=0
if it ezists.

Now we are ready to state the gencralized Cameron-Storvick theorem for the
generalized analytic Feynman iixbeyals.

Theorem 6.1. (Generalized Cameron-Storvick theorem). Let F' be an m-integrable
functional on Cy[0, T such that

sup |0F(z + hlw)|
Ikl<n

is an m-integrable functional on Co[0,T), and let w(t) = f; Zu(8)ds for some z, €
L,[0,T). Then
"

Co':n F(z)dm(z)

anf?
/;:[n OF (zlw)dm(z) =
2 +iq(zu, h): /“"f: Plein(z) —i /m/.“ Ak
" Jenot m=y Cnlo.n(zw'z) (z)dm(z).

86 3
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Proof of Theorem 6.1: First, let Fu(z) = F(z + h) and Gx(z) = Fy(A~%z). Then
for A > 0, we obtain that

¥ ) %
/; s bo + Hu)dm(z) = o [ /c o T iz hr kw)dm(z)]

[ /o e Rtz kw)dm(z)]

k=0
(x4 2
[ /c o PO kw))dm(z)] o

=5 [/Cnlo.Tl Gi(z+ zn)dm(:)]

where xo(t) = Ab kuw(t) = f&: ,\ikzu,(s)ds. Now applying the translation theorem for
functional G, we get

)
k=0

/ SF(A\~}z + hjw)dm(z)
Col0,T]

2
= ge[ee{ ) [ POt ekt it |_

) A2 2 -3
= o [o{ 20t} [ o TOTH 4R

- exp{Ak(zu, A3z + h) — Ak(z, h))}dm(z)]

(6)

k=0

The last expression in (6.3) can be decomposed into three terms

/ FO- 24 BYdm(a) = Mzas )2 f FO-e + h)dm(z)
Col0,7] Golo,T]

+2 / (w3 Az 4 BYF(A 2z + h)dm(a).
Gofo)
It can be analytically continued in A € C., and hence, we have

/M‘ SF (zfuw)dm(z) = /m F(z)dm(z)
Col0,T] Gol0,T]

e /c "[:n F(z)dm(z) + A /c ”[:T] (2, 2) F ()dm(z).

Passing to the limit as A — —ig, we obtain the desired equation.
From Theorem 6.1 we have the following corollary, which is known as ordinary

Cameron-Storvick theorem for the analytic Feynman integral.
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Corollary 6.1. Let h(t) = 0 on [0,T)] and (2w, k)2 = 0. Then Jfor the analytic Feynman
integral we have

" sp(aalinte) = [ Fin(e) —ia [ (wre)Felimte)
z)= = Zwy T, z, d .
./;n[ T S Col0,7] 5 Cal0,T) R

‘We conclude this section by giving two relati i i ized analytic
Feynmau integrals. From Theorems 5.1 and 6.1 we have the following relitionships,
which we state without any conditions.

Relationship R1: (C: vick th , and Relati ips 1 and

2 from Theorem 5.1).

anfld ¢ ranfil an fi3tha
/ 2 (/ i 0F(z +y|w)dm(z)) dm(y) é/ v 6F (z|w)dm(z)
ol0,T) \JCal0,T] Gol0,T]
anfhitha

anf'dte? !
= [5G p(g)dm(z) +i-8 (2, by + b / T ()i
/; o (2)dm(z) tql +qz(z"“ 1+ ha)z Los (2)dm(z)

an [EE
—i WG (5, 2)F (2)dm(2).
@ +a Joyo (2, 2)F (2)dm(2)

To state the next relationship, we first give some observations. Let F' and G be
functionals on Co[0, T}, and let Hy be as in Theorem 5.1. Then for all z, w € Co[0,T]
we have §(FG)(z|w) = 6F(z|w)G(z) + F(2)6G(x|w), provided that it exists. Also,
note that 6H (z|w) = (—iq)(zs, z)H (z), where H(z) = exp{(—ig)(zs,«)}. Hence we

have
(6:4)  8(Hy)(zlw) = 6F (z|w) exp{(~ig)(zs, z)} — iq(zs, 2) F(x) exp{(—iq)(zs, z)}

provided that they exist.
Relationship R2: (Relationship 3 from Theorem 5.1 and equation (6.4)).

an /i3 i : Wi o anfts v -
[ artatyinte) = xp{ i) [ o elw) (i), 2 )imte)

= exo{ Bt} [ lo’n 68, (afu)im(z)
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+i / * e 2P () aep{(—w)(zs,z»dm(z)]
; anfts b
= en ﬂunu;} A e Balein(e) e [ " i)
—% / " (b ) Hy(a)m(a) + ig / (zg,z)F(z) mcp((_.-q)(z,,z)}am(z)].

7. APPLICATION TO QUANTUM MECHANICS
The equation (1.3) with V(u) = a?u?,a € R — {0} is called diffusion equation for
harmonic oscillator:
< a T 9.2
(7.1) —‘,;t-(b(u, t)= 2)‘Alﬁ(‘u,t) — a®uy(u, t)

with the initial condition 1(u, 0) = ¢(u). Hence the solution of the diffusion equation

for harmonic oscillator is given by

/c,.[u,n ¢O 2T exp { = ﬁ; /o i z’(a)da}dm(z).

Also, when time is replaced by imaginary time, the equation (7.1) becomes the
Schrodinger equation for harmonic oscillator:

2) 12900, = —2 A1) + up(u )

with the initial condition %(u,0) = ¢(u). In [8, 16], the authors have described an
approach for finding solutions for the diffusion equation for the harmonic oscillator
(7.1) and.the Schrodi equation for h: i ill (7.2) as follows.
(1) Note that there is a function fm in (R™) so that f.:({‘) = exp{—a’ iﬂjf}}.
=

In fact, fin is given by the inverse Fourier transform ofexp{—a’ ) 5,5,3}.
i=1
Now, let Vin(z) = fm((&,z)). Then Vi, is a Fourier-type functional, and so, ¥, is
also a Fourier-type functional. Furthermore, we have
m

@3 Tote) = e{-0*3_ Ay o1")

i=1
and

. i 2 i 2
Jim 7o) = e { - [ #al,
89
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2
for a.e. € Go[0,T], where fm = ((m—fﬁ) . Also, we have |Va(z)| < 1 for all
m=1,2,--+, and

i 2 [T
Jim_@(@(T))Vm(z) = lp(::(T))exp{ e / 5 (n)dn}
m—eo o
for a.e. z € Co[0, T)-
(2) The solution of the diffusion equation for harmonic oscillator (7.1) is the limit
of Wiener integrals for Fourier-type functionals. Assume that ¢ is a bounded function.
Then the limit of Wiener integrals for the Fourier-type functionals

i [ e D) T ba)im(a)
m=% Jeolo,T)
is a solution of the diffusion equation for i il (7.1). Furth
the solution of the Schrédinger equation for harmonic oscillator (7.2) is the limit of
analytic Feynman integrals for the Fourier-type functionals,
an;
i [ " D) T(eimia)
Col0,7]
is a solution of the Schrédinger equation for harmonic oscillator (7.2).
(3) In particular, we can choose the following initial condition:
v =e={ & M2

where A is areal constant. In view of the Sct equation this lition corresponds
to a pulse wave packet with constant amplitude A in the given range of |u| < L/2
(see [17, 19]). Then the solution of the diffusion equation for harmonic oscillator with

the wave packet is:

m : 1422
: (G —3)’m*\ ) 27T\
A..P-‘."wg(zaﬂiw el

Furthermore, the solution of the Schrédinger equation for harmonic oscillator with
the ‘wave packet is:

" M) (e)im(a) = A lim m(—w)

m=00 Jgy0,7] moboo 20T — (j — 3)?n%

- ) - e ),

It was not easy to obtain the solutions for the diffusion equation and the Schrédinger
equation for nonharmonic oscillators. However, we would like to obtain the solutions
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of these i by using the analytic Feynman integral introduced in
Section 3. Given the potential function V(u) = a®u?,a € R — {0}, if we take A(u)
s0 that V(u+ h(u)) is the potential function for the nonharmonic oscillator, then we

can conclude that the solution of the diffusion equation for nonharmonic oscillator
is the limit of Wiener integrals for Fourier-type functionals. That is, the limit of the
Wicner integrals for the Fourier-type functionals:
m (A 32(T) + A(T))Vim(A 2z + h)dm(z)
M= Jeolo,1)
is a solution of the diffusion equation for nonharmonic oscillator, and the solution of

the i equation for is the limit of analytic Feynman

integrals for the Fourier-type f\mctiona.ls Furthermore,

i [ o) @in)

m=00 Jgyl0.1)

is a solution of the Schrodinger equation for.the nonharmonic oscillator (7.2).
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