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Abstract. Let L=—A + V be a Schrédinger operator, where A is the Laplacian
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1. INTRODUCTION
In this paper, we consider the Schrédinger differential operator on R™ (n > 3):
 L=-A+V(z),

where A is the Laplacian operator on R", and V is a nonnegative potential belonging
to certain reverse Holder class.

A nonnegative locally L? integrable function ¥(z) on R™ is said to belong to the
class B, (1 < g < o0) if there exists a constant C' > 0 such that the reverse Holder
inequality

1/q
1 1
(1) (m B@J)V"(y)dv) <c (m o V(v)dv)

holds for every z € R” and 0 < r < oo, where B(z,r) denotes the ball centered at
z and radius . In i ifVisa i )} ial, then V € Be. It is
worth to point out that if V' € B, for some g > 1, then there exist € > 0, depending
only n, and a constant C (as in (1.1)) such that V' € Bgy.. Throughout this paper,
we always assume that 0 £ V € By /5.

* OThe research was supported by the NNSF (11771023) and (11571289) of China.
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The study of the Schrédinger operator L = —A + V' has recently attracted much
attention (see [1, 2, 5, 6, 12, 15], and references therein). In particular, in Shen [12] it
was proved that the Schrédinger type operators: V(—A + V)~1V, V(=A + V)~1/2,
(~A + V)72V with V € By, and (-A + V)7 with 7 € R and V € By, are
standard Calderén-Zygmund operators.

Recently, Bongioanni et al. (see [1]) proved the LP(R™)(1 < p < 00) boundedness
for of Riesz iated with Schrédi with
BMO(p) functions (which include the class BMO functions), and then, in [2], they

the weighted bounded of Riesz fracti integrals and
Littl d-Paley functi i with Schradis operator with weights from
the class Af, which includes the class of Muckenhoupt weights. Very recently,
[13 14], one of the authors of this paper has blished weighted norm i
for some Schrddinger type operators, which include commutators of Riesz transforms,
1 integrals, and Littl d-Paley functions related to Schrodi
(see also [3, 4]).

In this paper, we continue our research to study weighted norm inequalities for
area functions related to Schradi and their To state the
main result of this paper, we first introduce some definitions. The area function Sp
related to Schrodinger operators is defined by

= 12
So(f)(w)=(/; [ le(f)(u)I’dvt..n) :

whete
(Q:f)(x)—t“(‘ﬂ‘" f) @, To=cF, (2,8) €R% = (0,00) xR"

The commutator of Sq with b € BMO(p) is defined by
1/2

Saulf)(a) = ( [ [, Jeca - dufm)
The following two theorems are the main results of this paper.

Theorem 1.1. Let 1 < p < c0. [fw € Af (to be defined in Section 2), then there
egists a constant C such that

[1S@(Flzew) < Cllfllzogw)-
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Ifw e A, then there exists a constant C > 0 such that for any A > 0
w({z €R™: [Sq(f)(@)| > A}) < % /. M (@)w(a)dz.

The next theorem contains weighted norm inequalities for the commutator Sqb-

Theorem 1.2, Let b € BMO(p) (to be defined in Section 2) and 1 < p < oc. If
w € AP, then there exists a constant C such that y

15,6 (Al ow) < Clitll Bato I fll o gwy-
Ifw € Af, then there ezists a constant C > 0 such that for any A >0

w({z € R™: [Squ(f)(=)] > A}) < C‘/ln U(A—z)‘ (1 +log* (@)) w(z)dz.

The rest of the paper is organized as follows. In Section 2, we introduce some
notation and state some basic results. In Section 3, we establish a number of lemmas,
which play a crucial role in this paper. Finally, in Section 4 , we prove our main
results - Theorems 1.1 and 1.2.

Throughout the paper, we let C to denote constants that are independent of the
main parameters inyolved, but whose value may vary from line to line. The notation
A ~ B means that there exists a constant C > 1 such that 1/C' < A/B< C.

2. PRELIMINARIES

We first recall some notation. Given a ball B = B(z,r) and a number A > 0,
by AB we will denote the )-dilated ball, which is the ball with the same center z
and with radius Ar. Similarly, by Q(z,r) we will denote the cube centered at z with
the side length r, and AQ(z,r) := Q(z, ) (here and below only cubes with sides
parallel to the coordinate axes are considered). Given a Lebesgue measurable set £
and a weight w, by |E| we denote the Lebesgue measure of E and W(E) = [pwda.
For 0 < p < 00, by LP(w) we denote the LP-weighted space with norm 1oy =
(g £ @) [P(y)dy) 7.

The function my(z) is defined by

1 1
= = P — Vi <1l;.
P(@) my() v {r =2 /s(:.r) ey < 1}
Obviously, 0 < my(z) < 00 if V # 0. In particular, we have my(z) = 1 for V = 1
and my (z) ~ (1 + []) for V = |z[2.
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Lemma 2.1. (see [12]). There ezist constants ly > 0 and Co > 1 such that

(1 +lz - ylmy (@)™ < mvﬁ < Co (L+ o — ylmy(@)/ ),

In pamcular, my(z) ~my(y) if [z — y| < C/my ().

For a ball B = B(zg,r) with center at zp and radius r and a number 6 > 0, we
denote Wg(B) = (1 +1/p(x0))’.

A weight will always mean a nonnegative locally integrable function. As in [2], we
say that a weight w belongs to the class A," (1 < p < ), if there is a constant C
such that for all balls B = B(z, ),

(m /,,w(v) dy) (m / w-ﬁ(ﬂ)dy),_l .

Also, we say that a nonnegative function w satisfies the A’;"B condition if there exists
a constant C such that for all balls B,

M(w)(z) < Cuw(z), ae. z€R?,

where
M31(0) = sup gz | 1701

Since ¥g(B) > 1, we obviously have A, (= A,‘?’ for 1 < p < o0, where A, denotes the
class of classical Muckenhoupt weights (see [7] and [9]). Note that in some cases we
have the embedding Ap CCA;-'for15p<co. Indeed, let § >N and 0 <y < 6,
then it is easy to check that w(z) = (1 + |z])~"*) g Ay = Upz1 4p and w(z)dz is
not a doubling measure, but w(z) = (1 + [z)~™*" € A’l’" provided that V =1 and
To(B(ao, 7)) = (147",

Also, we remark that in the above definitions of A#" (p > 1) and My,g, the balls
can be replaced by cubes because Wg(B) < Wg(2B) < 2°Wg(B). For V = 0 and
6 =0, instead of Mo,0f(z) we use the notation M f(z), which is the classical Hardy-
Littlewood maximal function. It is easy to see that |f(z)| < MY f(z) < Mf(z) for
a.e. £ € R™ and 6 > 0. For convenience, in the rest of this paper, for a fixed § > 0,
instead of Ws(B) and A2* we use the notation ¥(B) and A2, respectively.

The next lemma follows from the definition of the class 42 (1 < p < c0).

Lemma 2.2. Let 1 < p < co. Then the following assertions hold.

() If1<p1 <pa <oo, then A C Af,.
(i) w € A2 if and only if ™7 € A%, where 1/p+1/p/ = 1.
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In [1], Bongioanni et al. have introduced a new space BMO(p) defined by

1
I flamom = L W‘/Blf(z) ~ fnldz < oo,
where fp = ti7 [5 f(4)dy, ¥(B) = (1+1/p(w0))°, B = B(zo,7), and 0 > 0.

In particular, in [1] it was proved the following result for the space BM 0O(p).
Lemma 2.3. Let 6 >0 and 1 < 8 < 0. If b € BMO(p), then

.
r

1 1/s v
(W /E lb— balu) < Co,sllbllzmore) (1 & F”)) :
for all B = B(z,r) with z € R and r > 0, where 8’ = (Ip + 1)6.

Obviously, the classical BMO is properly embedded into BM O(p). More examples
can be found in [1].

Applying Lemma 2.3, one of the the authors of this Ppaper proved the following
John-Nirenberg type inequality for space BMO(p) (see [13]).

Proposition 2.1. Let f € BMO(p). There evist positive constants 7 and C such
that
1o it )
8Up = T |f(z) - dz < C,
181 /™ \ lawon2e®) /@ ~ o1

uhere fi = tiy [5 FW)dy, Yo!(B) = (1-+1/p(0))"", B = B(zo,1), and’ = (ly+1).

We remark that in the above definitions of A;, BMO(p) and My, the balls can
be replaced by cubes.

We also will need the dyadic maximal operator M‘e.,, f(z) and the dyadic sharp
maximal operator M",v,,f(:n), which for 0 < < oo are defined by the following
formulas:

At 1
M= e, o TG, N0
and
MY, f(z)= i i g
Vnf (@) 1£) - fal d”:eqi“zpp(zo) T Joeury |£ldy

1
suj T
=ea.r<l:(7 11 Jatzar)
~ sup inf— y)—Cldy+  su — dz,
=€Qr<p(an) © [Q] Jq(zor) ViR =carsrian FQVTQ Joeur
where Qs denotes the dyadic cube Q(zo, ) and fg = 181 Jo f(@)dz.
The following versions of dyadic maximal and dyadic sharp maximal operators:

Mo (@) = My (151514 )
4
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and 3
M}, f(@) = My, (171 (@)
will be the main tools in our scheme.

In [13], one of the the authors of this paper proved the following results.
Theorem 2.1. Let 0 < p, 1, § < o0 and w € A. There exists a positive constant
C such that

/ MA f(@Pu(z)is < C / M} f(aPu(@)is.

Rn R
Further, let ¢ : (0,00) = (0,00) be a doubling function, then there ezists a positive
constant C such that ,

supp(u((z € R": Mfyf(z) > X)) < Compy(ul(z € B™: M}, f(z) > X))

>0 >
for any smooth function f for which the left hand-hand side is finite.
Proposition 2.2. Let 1 <p<oo andw € AS. If p <p1 < 0, then

/l |My f(z)[P*w(z)dz < Cp /l |f (@) w(z)da.
Further, let 1 <p < oo, then w € A} if and only if
wlfe R Myfa) > < 2 [ |f@Puleds.
R

From Proposition 2.2 it follows that My may be unbounded on LP(w) for allw € A3
and 1 < p < oco. We will need a variant of maximal operator My,, (0 < 7 < o) defined
as follows: i

My, f(z) = sUp 7——es / dy.
vind (2) = 590 rryary [, F @ 4
Theorem 2.2. Let 1 < p < oo and p' = p/(p—1), and let w € AS. Then there ezists
a constant C > 0 such that
1Mvp £l 2(w) < Cllflzow)-

Finally, we recall some basic definitions and facts about Orlicz spaces, referring to
[11] for a complete account.

A function B(t) : [0,00) — [0,00) is called a Young’s function if it is continuous,
convex, increasing and satisfies ®(0) = 0 and B — oo as ¢ —+ 0. For a Young’s
function B, we define the B-average of a function f over a cube Q by means of the
following Luxemberg norm:

s =izt {3 >0: ﬁ/qs('fg—”)') wsi).
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If A, B and C are Young’s functions such that
AT)BTH () <C7H(E)
where A~! is the Young’s complementary function associated with A, then we have
Ifgllc. < 2 f|arll9llz R
The examples to be considered in our study will be A~() = log(1 +¢), B7(t) =
t/log(e + 1) and C~(t) = t. Then A(t) ~ ' and B(t) ~ tlog(e +t), whith give the
gencralized Holder’s inequality:

1
= dy < b
|Q|/‘;|f!l| ly < [|fllaqllgllz.a

For these examples, if b € BMO(p) and bg denotes its B-average over the cube @,
in view of Proposition 2.1, we get

(b = @)/ %0 (Q)lle=pr,@ < ClibllBMOH),

where 6’ = (1+ lp)6.
Also, we define the corresponding maximal functions:

Mpf(z) = o £,

and ;
My,pf(z)= sup ¥(Q)"||f|z.e-
Q:zeQ

3. SOME LEMMAS

In this section, we establish some estimates, which will play a crucial role in
the proofs of the main results of this paper. We first introduce some notation and
definitions. We define the space B = L*(R}+, dydt/t") to be the sct of measurable
functions a : R} — C endowed the norm |a|p = (fn;*’ la(y, t)[? dydt/t™)H/? < cc.
By M(R") we denote the set of measurable functions a : R* —+ C, and by M(R", B)
we denote the set of Bochner-measurable functions h : R™ — B. The space L?(R", B)
is defined to be the set of functions h € M(R™, B) endowed the finite norm:

o= [ o)

We deine sq(/)(e) = (/5 IQu/(@)%)"". Iois known tht fsq(£)]a = gl see
Lemma 4.1 of [6]).
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Let ¢ < 1 be a nonnegative infinitely differentiable function on R such that
(s) = 1for 0 < 8 < 1and ¢(s) = 0 for s > 2. Then the function (z,y) =
%w(l"—fﬂ) satisfies

I I (min{lz-ril,lz’—ul))’

(61 lpumy) - el )l € O xpa

for [z — y| > 2|z — 2’|
Now we consider an operator 5 : M(R™) —+ M(R™, B) defined as follows:

(32 51@) = {8 @) = 1Pz 1)Qef )}

n41 !
(wt)eRY

which has an associated kernel given by

(3.3) K(z,2) = {t‘“w(w,v)Qc(v, z)}

(wt)erIH
‘We first recall some properties of the function Q;.

Lemma 3.1. (see [6]) There ezist positive constants ¢ and dg < 1 such that for every
1> 0 there is a constant C) so that the following inequalities hold:

O a1+ ,{v))-'m(-d’t—‘,"‘l),

do -t
®  lehn-ade <o (i ‘) o (14 55+ 55 oo (-
for all |B| < ¢;

Lemma 3.2. Let K(z,2) and 6o be as above, then for any | > 0 we have

G 1
(1 +[z=2|(o(e)~* + p(2) 1))} |z — g’

(3.4) |R(z,2)ls <

(3.5)

IR (@ )R (& 2 < g -

/|fo
1+ ]z - 2l(p(e) " + p(2) ™))} | = 2]+

if |z—2| > 2Jz—2'],

(3.6)
IR (2,0 (2 < el

CFE= TG T AT e i b= > 2eel

Proof. We adapt the arguments applied in the proof of Theorem 4.1 of [8]. Without
loss of generality, we can assume that p(z) < |« — z|. We first prove the inequality
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(3.4). By Lemma 3.1(a), for any N, 1> 0 we can write
2 2
|2 / / ! lei(, v)l IQz(v. A g

./"/lz-,,m ,iﬂ (LHW—"’W)_-N) (m) -2l i

-2
=t/ ()

<c /
AUAIUAJ |z—y|/2
i=J1+Ja+Js

where the sets A1, A and As, constituting a partition of R", are given b‘y
= {yeRr:jy—z|> 2z},
Aa={yeR*: Y=z <ly— 2 < 2o~}
Ag={yeR :ly—2| < flo—2]}.
For y € A, we have |z — 2| < 4|y — 2| < |z — | < 2|y — 2|, and hence

c 00 1 t -2 .

ol o L)

; lecal2fe-st ie-aia B \PGE) Y
< Cp(2)* / dy

|z=y[2|=

c |z
€ [ —
T e -2 ( p(2)
For y € Az, we have |z —y| < 3|z — 2| and |z — 2| ~ |y — 2|, and hence

7 & /Elz—tl 1 2N ( t )—zl 4 o 1 £\

< By — 2 \o(2) + / o (—) dt ) d

? a2 \Jizaiy2 % Iy — 2PV \p(2) 3f—a) 7 \ p(z) y
i= Jaa + Jab.

For Jza, we have

T <GP /

TR

o [ — P
-2

= 1
/Iz el /2 e Gy

]l:—v(<3|=—x|
e —
le - 22V le—vi<3lz—s) le— 1/|5"""+"

C (l=—4

<
v li—lP"( o(2)
in which we take n < N'— 1 < 3n, and for Jas, we get

Go()* / c (|a:—-z[)_m
I S e < —— -
%S o e yen Y ST\ 0@ )

Thus, from the above inequalities it follows that

C  (lz=2\*
asitm (5w
48




'WEIGHTED NORM INEQUALITIES FOR AREA FUNCTIONS ...

Finally, for y € A3, we have |y — 2| < 3|z — z| and |z — 2| ~ |z — y], and hence

00 ﬂdt
5k <C /’ /‘ )%
2 lv-sl<die—s Jie-si/2 Bl

< _Cplz)

z — z[3n+2l le-vi<slzs|

Cc (]1—:]

= f=e \ o)
From the above inequalities and Lemma 2.3, we obtain the inequality (3.4).
To prove the inequality (3.5), let us consider |z — 2| > 2|z — 2|, denote a =
min{|z—yl, |~ y|}, and define B = {y : [z—y| > 2|z —'|}. Then, by Lemma 3.1(b)
and the inequality (3.1), we can write

K2 - K@ B = [ [ loo) - e P P
o —a'® e s
<ef, /,.,, e e () _ 9

C 1 2] 7 did I+1II
—_—— = II.
/5- o2 B G = 2PN (,,(,)) i

For y € B, we have [&/ — y| > |z — y|/2, and hence a > |z — y|/2. Denoting B, =
BNn{y:|z—y| > |z —z|/2}, we get

tﬂN -2
I <Clz-2' 2‘/ / _———— ( ) didy
P [, [T T )

t
+Clz — 2|2 ——( ) dtd;
e=a [ e ()
=1+

For y € B, we have

L <Clz-] / /.,. LG
. <Clz— P&
Je=si2le—el/2Jja—gifs BPHIHEE
<Clz -7 2l dy

lo—yl2jz—s1/2 l—y[Pnakta
T Zop

lz =2\~
(&)
For y € B\ By, we have |y — z| ~ |z — 2|, and hence

|z—2| aN £\
L <Clz -2 / / (—) dtds
B B\B: Jiz-ui/a i""”“ v=2P" \p(z) i

o 12N t -2
+Clz — — = didy := Ip, + Inp.
sl /E\B. /l, e () =Tt
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Then
|z —2']2 / > o)
I <Ci—px e i | d
N e .
o — (2)
<C——= s
e L e 4
lz—2| 2
- -t 1
<o(b5) i
wheren+1< N—1< 352 and 5
00 2
2)
Iy <Cls-I* | ETrE ey
< P2
=~ z|‘°"“‘*" o-visla—sl/2
zl 2

lo=2\* |z—a
se(5zl) o=

IZ—ZI) -

(2) |z — z[an+2"

To estimate I, we notice that if y € B, then |a’ — y| < 3|z — «/|, and hence

< / / / /°° o()" B
-2 Jis—vissiz—e iwr—ia) BFI 4 Ty —apen 4 = it

Since the above two integrals are similar, we estimate only 11y, the estimate for II,
can be obtained similarly.

We consider the set (B%)1 = B°N{y : [« —y| > |z — 2|/2}, and notice that for
y € (B°)1, we have |z —y| ~ |& — 2| and |y — z| < 2|z — 2|, and for y € B°\ (B,
we have |z — 2| ~ |y — 2| and |:c—v] < |z — 2|/2. Thus, we can write

/- / |z—2| 2N
a0 e,
®): Jje—yi/2 ""*“" Be\@2); Jie-yi/2 t"‘““‘ =2
L /| |t5"+1+” dtdy =TTy + Iy + ILy,.
ol €)1 V |z—2]

Then, for I}, we have

In this way, we get.
I<C (

()%
I < e
he <C o = y|3"+"dy
Col2)* dy
= |z = zjAniatal g |x—y|<1|z-:’[ Jz—y|n-2
=2\ Jo-a'
< s )
<o(5F) i
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For I, we take N =n + 1, to obtain

2L tﬂvﬂ-ﬂ
Iy <C / At b
1b 5e\(3 Jiaira PR [y — gpanes
Cp(z] ) 1

ST =g Ol
le = 24242 i cote o) J& — y["=3
—?

=2\ I
< Sl
o(55) i
For I, since [z — z| > 2|z — y|, we have

a2

IL. <C e L

Be\(Be), |2

Cpéz)& /‘ dy

= = ZI"“"”" le-yi<2lz—z| |& — 9|3

le—2\™* |z—o?

=

Combining the above inequalities and using Lemma 2.1, we get the inequality (3.5).
Now we proceed to prove the inequality (3.6). To this end, we consider |z — z| >

2|z —2'| and define E = {y : [y — 2| > |z — z|/2}. Note that Q:(z,y) = Q(y, ), and

hence we can apply Lemma 3.1(b) to obtain

tea) =Koy = [ [ ot SPI) - 0l ) prdy
1IQt(vv ¥) - Qu(«/,v)|* dtdy
< Clz—o* _/ - /Iv—xl " ta..fgl::w(ﬁ%ﬁ
som-eth | [ b e

+Clz — z’I""’/ /Iv Ilz%w ly
s=IIL + IIL,.

<
R Jly—si2 144

For I11;, we then have

—a o

260 p(2)% z — z| |z — a![%0
s o=t [ ot <0 (55) i
If y € E°, then |y — 2| < |z — 2|/2 < |z — y| < 2|z — 2|, and hence

L < Clo—2/|% sl p()" B ity = I I
< Clz— + b w y e e — = +. .
=l /s- flv-.lla /ls—xl R ) Fadie <2
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For ITF, and I11a, we have the following estimates:

o — o[ / / plz)*
<C dtd;
ITha le— ,|2N o Jy=zi/a t.ln+l+uu =N+l 0

[z— /| pz)*
£ e — 22V Jy-sicte=si2 T e T @
<cflz=2 |z — 2’|
=7\ p(2) [Er= R At
(weta.ked+50<N—l<(3n+269)/2).md ;

Il < Clo — /| / /|= llmdllly

p(Z)"Iz a/[Ho c(' A g o
= 2P N ) o=
Combining the above i lity (3.6). o

Lemma 3.3. Let 0 < p,n < oo and let w € A%, then the following inequalities hold:
/ I5(f) (@) pw(z)ds < C / |My;nf (@) Pw(z)dz
sup)"’w((z eR™: [5(N=)s > AP < CB“PA”W({I E€R"™: My,f(z) > \}),

Proof. By Fubini’s theorem and the property of sq f, we have
15(Islla < Cllsa(la < Clflz-

By Lemma 3.2 and the theory of vector valued singular integrals the result will be
proved by showing that the kernel K of § is a standard vector valued Calder6n-
Zygmund kernel, and so )§|5 is bounded on LP(R™)(1 < p < o0) and of weak type
(1,1). In view of the inequality |f(z)| < Mg, f(z) a.e z € R", and Theorem 2.1, to
prove the lemma, we need only to show that for any 0 < < co and 0 < 6 < n/(n+1)
the following incquality holds:
37 M} (15(f)|s)(@) < CMyy(f)(2), a.e z€R™,
We fix z € R and assume that z € Q = Q(zo,7) (dyadic cube). Decompose f =
f1+ fa, where fi = fxg with @ = Q(z,8/ar). To prove the inequality (3.7), we
consider the following two possible cases: r < p(zo) and r > p(zo).

Case 1: r < p(zo)- Let Cg = |S(f)(z0)|s- Since 0 < § < 1, we can write

b 1/6
(|Q| f IS(wia - ozwu) <(|Q| / 15 w)ts ~ 572 z.,>|aml:)
<o(@ /. Is(h)(v)ladv) +C(|o| Lo~ 5(f2)(=to)|adrl) .
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To estimate the term I, we recall that |§(f)|5 is of weak type (1,1), and note that
p(x) ~ plao) for any = € Q and ¥(Q) ~ 1. Hence we can apply Kolmogorov’s
inequality (see [10]), to obtain

689 1 <gllfisle < & /Q 1)l dy < CMynf (z).

To estimate the term II, we let Qx = Q(zo, 2“*'r) and & = 7+ 1. Then, taking | > fa
and using (3.5), we obtain

1 <& [ B0 - e

< % / 1K) - B(o,w)lplf @)ldwdy
< 1R (0, ) — R (w0, 0)|al f(w)ldwdy
1@l Jg Q J)zo-ul>ar

1K (v,0) = K (@0,w)lf ()| dudzdy

IA

a k)
] qg 2k r<fzg—w|<2HH1r

e
E 3 (1+ 25rmy (o)) (2F+1r)" / £(@w)ldeo
9—kéo
B, e Z e S TG

<G Zz"“wm(f)(z) < CiMy(f)(@)-
k=1

[, 1ras

Case 2: r 2 p(xo). In this case, noting that o :=1/§ > n+ 1, we get

o (i fq I§(f1)(u)lfadv)w _ﬁ(!;ﬁl / |§(f1)(v)l"adu)w

W(Q)a, (1 [ B ar) ™
=L +1II.

For I, similar to I, we have the following estimate

e m),,, aIBlzse
< ST / 170 < OMyf(2).

(3.10)
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As for I'Ty, taking | = @16+ 1, and using (3.5) and Lemma 2.1, we get
L < @ / 15(fa)@)lsdy < — i / / Il?(u,u)|5|f(w)]riud1/
@ /Qg; / - IR )l )y
(8.11) ¢] E < T+ 21:,/”(10))1]0; I / £ (@)ldw

e E  rm T, e
< O3 24 1)e) < Ctn(1)e).
k=1

From (3.8)-(3.11), we get (3.7). Lemma 3.3 is proved. (u]

Lemma 3.4. Let b€ BMO(p) and (lg+1) <7 < 00, and let 0 < 26 < e < 1, Then
for any f € G§°(R™) and the following inequality holds:
f‘:;al,,z()ﬂ” S1fl8)(=) < Cllblloato)(ME(15(1)IB) @H+Miiog vn(f) ), ae. =€ R",
Proof. Observe first; that for any constant A we have
[6,8)f(z) = (8(=) ~ NS(£)(@) — 5((b~ N )(a).

As above, we fix z € R™ and assume that z € Q = Q(o, ) (dyadic cube). Decompose
f=Ffi+ fa, where fy = fxp with @ = Q(z,8/nr).

To prove the inequality (3.12), again we consider the following two possible cases:
7 < p(zo) and r > p(zo).

Case 1: r < p(zo). We first fix A = by, the average of boon (). Since 0 < § < 1, we
then can write

L 3 3 1/8
(W /Q | 106, S1F@IE — |S((b—ba)f)(zo)li‘;|dv) !
< (Wl| / 1118, 517 @)l = 5((6 — ba) ) @o)lE dy)
1/5
<0 (ig1 | o -rSrcmita) +C(,Q, i IS((b/"o)fi)(w)Iadv)

(|Q] / 16~ bg)fa)(0) - 56~ ba)fn)(zn)ladu) = I+IT+1IL.
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Then for any 1 < 7 < €/6, note that p(z) ~ p(=o) for any = € G and ¥(Q) ~ 1.
Hence, by Lemma 2.3, for the term I we obtain the estimate

ey T <0(gg - dv) (,Q| PR du)
< Cllbllzao M5, (15 @)ls) (=),
where 1/7'+1/y=1.
To estimate the term I7, we recall that |55 is of weak type (1,1), and note that
p(z) ~ p(zo) for any z € § and ¥(Q) ~ 1. Hence, by Kolmogorov’s inequality and
Proposition 2.1, we get

1< 2 15(6- b)f1)l e

(3.14) P
: |Q| (b= bg)f(v)| dy < CMy 105,V (2)-

For the term II1, we let bg, = bq(zeav+1y) aud 8’ = (Ip + 1)6. Then, in view of
Lemmas 2.1 and 3.2, we can write
(3.15)

s / 1505~ be) 2)(4) — 5((b — bg) ) (ao)lm dy
/ / 1R (4,) - B (2,0)]a](6w) — bg) () dudy

[zn—w|>27‘
/ - 1R (00) = Rar)lpl(60) - bg) o)y

ak_, z-r<]:,,—wl<2l+l
E e +a'=r/p'(zu‘»'|o_u / 1p) ol f )
o-kéy

‘ C‘é T+ B/ plao))

1
WD))(’”‘W/ [6(w) = bqu[|f(w)|dw

E(TW

A A
° o| Q a:>|

IA

+C

meﬁnlqllbo—bml/ 1 (w)ldes

<a Z 27 bl ao(e) Mtog £.vin (£)(2) + Cilbl B310() Mvia(f) @) Z kako
< Club"BMG(p)MLlu‘L vin(F)(@),
where | = (7+2)6', and in the last inequality we have used the following inequalities:

Myn(£)(®) S Miiog1,vn(£)(z) and  [bg —bau| < C(1+2%/p(a0))’ bl smoge)-
55



L. TANG, J. WANG, H. ZHU

Case 2: r > p(%o). Since 0 < 26 < € < 1, we have a = /5 and ¢/ > 2. Hence,

we can write

|, aishe)”

‘1'_(2)7 (]:TI s 1/6
- (@ [a 1(66) — b)) a) - 5o : /I;a)f)(v)lfa ),
<Ot (131, 106) - kB 0)th ) :

10505 (7 [, BG -t oo an)

& 1/5
+C /o 156 - b))l dy) = L+ IR +1TT,.

1 1
@)r (W

Then noting that lp + 1 < 7 for any 2 < 7 < ¢/6, by Lemma 2.3 we obtain the
following estimate for I:

1/(r's)
Y

Lo Y
e 1 <0g5 (1 Jy oo -tar ) i
3.16 V9/(Q) 1 ) 3 2
XW(Q).-n/(m (:y(q)ﬂm_i ./; 1S(£ )(ﬂ)h; dll)
< Clltllzao M5, (15(F)1s)(),

where 1/y' +1/y=1.
To estimate 111, we recall that |S|g is of weak type (1, 1), and use Kolmogorov’s
inequality and Proposition 2.1, to obtain

{ 04 -
1 < g B0 - bo) lalne

(3.17) Gl o2
< gar g Jy 0t

< CMyiog1,vnf(3).
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Finally, to estimate IIIj, we let bg, = bg(zy,2++ir) and 8’ = (Ip + 1)6. Then, we use
Lemmeas 2.1 and 3.2 with I = (n+2)6’ + 1, to obtain
(3.18)

meg / 15(0 - bg) ) @lm by

‘i T / IR0l () — b))y
<& /a 3, A IR (@ w)(o0) b))y
k=2 T

r<|zo—w| <2EH
1
o E: T A Jp, o)~ e

1

i
X T Ly, M) - balf s

0L, T T e

1
s e oo """/ /)l

<a Zz_kllbllsuo(,)Muo:L vin(£) (@) + Cillbll Brsroey Myin(£) (z) E k2"

<G ”b"BMD(p)ML 1og L,V (£)(2)-

From (3.13)-(3.18), we get (3.12). Lemma 3.4 is proved. O

Finally, we recall the following results proved in [13, 14].
Lemma 3.5. Let 0 < 1 < o0 and My, af be locally integrable. Then there exist
positive constants Cy and C; independent of f and = such that

CiMyMy,p41f (%) £ MpiogL,vin+1£(2) < CaMyyaMy,g/af(z)-

Lemma 8.6. Let 2 < 1 < o0, w € Af and B(t) = tlog(e + t). Then there eists o
constant C > 0 such that for all t >0
619)  w({zeR™: Maynf@>t)<C / ('f ’”) oo

Proof. Let K be any compact subset in {z € R™ : MLiogLpn(f)(z) > A}). For
any z € K, by a standard covering lemma, it is possible to choose cubes Q1,++ ,Qmu
with pairwise disjoint interiors such that X C UjL,3Q; and [|fllziogzes > A
j=1,--+,m. This implies

vl < | L9 (14105 (L)) 4,
Q
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From the last inequality we obtain
w(3Qy) < C¥(Q;)w(@s) = C¥Q))*I il 55y aT (w )jl)le

w(Q) Lfw)l + (MWl
‘I’(QJ)fle Q, (Hlog If((u)l
dy

<0mfuI(Z) f(,\)l (“’l"g (—))
- / Jfa (m +(lf<")|))w(y)uu

implying (3.19). o
4. PROOF OF MAIN RESULTS

Proof of Theorem 1.1. We first notice that

(1) Sq(f)(@) < CI5(f)(@)l for every z € R™.

Thus, the desired results follow from (4.1), Lemmas 3.2, Theorem 2.2 and Proposition

2.2. u]
Proof of Theorem 1.2. We first notice that

(42) Sau(f)() < Cflib, 51 (@) for every z € R™.

Using arguments similar to those applied in [10], the inequality (4.2), Lemmas
3.3-3.6, Proposition 2.1, and Theorems 1.1, 2.1 and 2.2, we can obtain the desired

results. u]
Remark. It can be shown that the analogs of Theorems 1.1 and 1.2 hold for spaces

BMOs, (p) aud AS® if 6, # 6.
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