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Abstract. This article is concerned with demonstrating the power and simplicity of
sww (special weakly wandering) sequences. We calculate an sww growth sequence
for the infinite measure preserving random walk transformation. From this we obtain
the first explicit eww (exhaustive weakly wandering) sequence for the transformation.
The exhaustive property of the eww sequence is a “gift” from the sww sequence and
requires no additional work. Indeed we know of no other method for finding explicit
eww sequences for the random walk map or any other infinite ergodic transformation.
The result follows from a detailed analysis of the proof of Theorem 3.3.12 in [1] as
applied to the random walk transformation from which an sww growth sequence is
obtained. We explain the significance of sww sequences in the construction of eww

sequences.
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1. INTRODUCTION

Every i i i ion T' of a Lebesgue space (X, B, m) with
no finite invariant measure equivalent with m has exhaustive weakly wandering
sequences (defined below). However, for most ions no explicit exh
weakly wandering sequences are known, and in particular given a specific T, it is not
clear how to find an explicit exhaustive weakly wandering sequence for it.

In this article, we examine the infinite measure preserving random walk transformation
(see next section) and derive an sww growth sequence for it (defined below). Using
this we prove that the integer sequence {16+ : § = 1,2,3,...}, and every infinite

of it, is an exh ive weakly deri qn for the random walk
transformation. The method employed here is general enough that it applies to a wide
range of other maps.
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For the sake of completeness and clarity of exposition, we repeat some results that
were presented in [1].

1.1. History. The definition of mixing in ergodic theory, for a transformation 7'
preserving a probability measure 4 is

(1.1) ..Ii,’l WT"AN B) = p(A)u(B)
for all measurable sets A and B. There have been several attempts to extend this
definition of mixing to ergodic transft ions that preserve a o-finite infihite measure.

The first attempt in this direction was by Eberhard Hopf when in 1937 in his famous
book Ergodentheorie [2] he devoted to it, section 17 titled “Ein Beispiel fiir Mischung
bei unendlichem m(f)". His goal was to extend the notion of mixing for finite
measure preserving transformations to infinite measure preserving transformations.
He presented a slight variation of the random walk transformation on the integers. His
example started with the classic random walk on the nonnegative integers: for n > 0,
n— {n— 1,n+ 1} with probability {1, 3} and 0 — {0, 1} with probability {3, 1}.
This he considered as a map of the infinite strip [0,00) X [0,1) which preserved the
infinite Lebesgue measure. Being in an infinite measure space he replaced equation
(1.1) with a ratio version. However he was only able to prove (equation 17.1 in [2])

@) m(ANT"B) e m(A)m(B) :

m(CNT"D) " m(C)m(D)
for Jordan measurable sets of finite measure with m(C)m(D) # 0. Then he concluded
that if the above were shown to be true for all measurable sets of finite measure then
“metric transitivity"( that is, ergodicity) of T would follow. He then ended the section
with “Dieser Beweis verlagt jedoch tiefere Hilfsmittel."

Now we know this cannot be done. In 1964, Hajian and Kakutani [3] defined weakly
wandering sets and showed that all infinite measure preserving ergodic transformations
possess weakly wandering sets. These are sets with an infinite number of mutually
disjoint images under the transformation T'. Replacing the sets C and D with the
same weakly wandering set in equation (1.2) shows the convergence fails. Further
historical details and attempts at defining mixing in infinite measure spaces can be
found in Lenci [4]. : i

In what follows we do more. We discuss the random walk transformation T on

n— o

the integers and exhibit some properties of it, that show how far T is from possessing
any type of “mixing"feature. We do this by showing the existence and construction
4 5
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of specific eww sequences (defined below) that T' possesses. We also exhibit some
number theoretic properties of these sequences.

1.2. Definitions and Preliminaries. We id ions T' that are invertible
onto maps defined on a o-finite Lebesgue measure space (X,B,m). As usual, all
statements are to be understood as “modulo sets of measure zero and all sets will be

by or ion. We assume all the transformations T' we
consider are measurable [A € B <= TA € B|, and non-singular [m(4) = 0 <=
m(TA) = 0]. We say T is a measure preserving transformation if m(T'A) = m(A) for
all A € B. Two measures m and  defined on the same measurable space (X, B) are
equivalent (m ~ /4) if m and p have the same sets of measure zero. There are many

1 of ergodicity. We use the foll
_e T'is ergodic if TA = A implies m(A) = 0 or m(X \ 4) =

An ergodic transformation T is an infinite ergodic transformation if it is a measure
preserving transformation defined on the infinite measure space (X, B,m).
of integers {ns}

i

Following [1], we consider the following i
to an infinite ergodic transformation T'.

Definition 1.1.

o {n;} is a weakly wandering (ww) sequence for T if for some set A of positive
measure THANT™A =0 fori#j.

o {n;} is an eshaustive weakly wandering (eww) sequence for T if for some set
A of positive measure X = [Ji2) T™ A(disj).

o {n;}is a special (or at times called strongly) weakly wnndenny (sww) sequence
for T if there exists a set A of positive measure such that for i,5,k,1 >0
and i > j we have T™~™+¥ A0 Tm=mH' A — () whenever one of the indices
{4,J,k,1} is larger than all the others o i=1>k.

o We call the set A above, a ww, eww, or sww set respectively (for T', with the
sequence {n;}), and at times we say {n;} is a ww, eww, or sww sequence (for
T with the set A).

The definition of ww sequences first appeared in [3] where it was shown that they
exist for every infinite ergodic transformation. There are many examples of infinite
ergodic transformations in the literature; however, for almost any example, it has
not been possible to exhibit a specific ww sequence for the transformation. There is
one notable exception: the infinite ergodic example 7' in [5] which was constructed

5
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for the purpose of exhibiting an explicit ww sequence for it. In that example it was
noticed that the constructed ww sequence happened to be an eww sequence, Except
for the transformation T in [5] and some similar ones, it is not that easy to construct
specific ww sequences for any of the known infinite ergodic transformations — though
we know they must exist. However, to our knowledge, it is ically i ible to
construct eww sequences for any of those transformations. The construction of uwmw
sequences entails showing for some sequence and some set W the rﬁutually digjoint
images of the set W. For eww sequences on the other hand one nceds to sHow further
that the mutually disjoint images of the set W fill up the whole space X.

In [6], Jones and Krengel present a proof that eww sequences exist for all infinite

ergodic transformations. In outline, their proof is a icated back-and-forth ind
existence proof. They build their sequence one integer at a time while simultaneously
adjusting their set. The set is built up in a two step process. At each step they must
take a bit away from the set so that it will be disjoint for the next integer and then
they have to add a bit backin order to build up the set to be exhaustive. As a practical
matter, no one to date has been able to use this method to construct an actual eww
sequence for any transformation.

To overcome this difficulty sww were i in [1]. The definiti
of an sww sequence appears to be more complicated than that of an eww sequence.
However it is designed in such a way that it can be easily applied. The construction of
sww sequences is similar to the construction of ww sequences. By this we mean that
both sequences are concerned only with the construction of a set A whose images
under the sequence are mutually disjoint, and this is relatively easy. Once the set A
is constructed in the case of an sww sequence, a second easily performed automatic
construction produces the derived set W. For ergodic transformations the fact that
the mutually disjoint images of the derived set W are exhaustive follows from the
definitions.

In addition, sww sequences give a lot more. When the transformation is ergodic,
not only is the seq! an eq| for the iated derived set, but every
infinite subsequence of it is again an eww sequence with a similarly defined derived
set W. This hereditary property follows from the definitions of both ww and sww
sequences but not for eww sequences. That is, if the images of a set A are mutually
disjoint under a sequence, they are still mutually disjoint for any infinite subsequence
of it; but the set may not be exhaustive for the same sequence. For example, the eww

6
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sequence given in [5] has many infinite subsequernices which are not eww (just remove
any single non-zero integer from the sequence).
1.3. The Derived Set. To clarify the comments made above, and to make this
article self contained, we make some general observations and discuss a few results
that are covered in [1] and will be used in the sequel.

For a sequence of integers {n; : i > 0} and any set A with m(4) >0,

let ng =0, A0=A and Wn=T"“‘An,

A =TA\ U T™Wo, and Wy= UT A,

and in g(meml forp>2

00 P
(1.3) Ap=TPA\ | T Wy, and W, = | JT~™4;.
3 r=0 i=0

o
Let us call the set W = U W, the derived set from the set A and the sequence
(u,) Then for anyp>0 0 we have
U T™W > TPAU U T"Wp-y which implies U ITW > U TPA.

From the above we conclude with the following remark:
Remark 1.1. Let W be the derived set from the set A and the sequence {n;}. If
{ns} is an sww sequence then

o )
(1.4) U rmw (disj) > | 4.
=0 =0
To show (1.4) it is enough to show T™W NT™W = f for 1, > 0 and i > j. For this
it is sufficient to show that
(1.5) T A NT™ ™A =0 for i,j,k1>0, and i>j.
1t is clear from (1.3) that for any integer r > 0
(1.6) ApNT™"™4,=0 if p>s.

If i = k > max{j, 1} then (1.5) follows from (1.6). In all the other cases we note that
A, C TPA forall p >0, and (1.5) then follows from the properties defining the
sww sequence {n;}.
For the next theorem we define the following:
T
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Definition 1.2. Let {0 < Ny < Ny < -} be an increasing sequence of positive
integers. Then, for any increasing sequence of positive integers {0 =79 < n; <ny <

(D) I ng—ni—g > N; foralli>1 = {n} is a ww sequence for 7' then {N;}
is a ww growth sequence for T,
and .

() If ny—2n;_1 > Niforalli>1 => {n;} is an sww sequence for T' then
{N;} is an sww growth sequence for T

Theorem 1.1. Let T be a messurable and nonsingular transformation defined on
(X, B,m), and suppose there is a set A of positive measure satisfying limp o0 m(T™AN
A) = 0. Then there exists an increasing sequence of positive integers {N;} which is
both & ww and an sww growth sequence for T'.

Proof. The proof of the Theorem is contained in detail in [1]. Here we sketch a proof
and show the similarity of the role of ww and sww sequences in constructing the ww
and sww set Ay for each. Later, we apply this construction to find an explicit sww
growth sequence for the random walk transformation on the integers.

Let A be a set of positive measure with m(4) < oo, and suppose
(6% nl.i_fxgam(T"AnA) =0.
For positive € < m(A), and fori > 1let € = m

Using (1.7) we choose an increasing sequence of positive integers
{0< N{ < Nj < ---} such that for each i > 1, m(T"ANA)<¢
for all n > N}. We let N; = N} +ifori>1.

To show {N;} is a ww growth sequence we let {0 =79 < ny < nz < -:-} be any
increasing sequence of integers satisfying n; — n;—; > Nifor i > 1.

(18 Fori>0and 0 <j <iwehavern; —nj >ni —niy > N;.
Next we let,
oo i-1
a=JUrm4ana
i=1j=0

It is not too difficult to show that m(A’) < € and the set Ag = A\ A’ is a ww set
with the sequence {n;}.
To show {N;} is an sww growth sequence we let {0 =ng < ny <ny < ---} be
any increasing sequence of integers satisfying n; — 2n;—; > N; for i > 1. For each
8 .
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i > 1 we consider the set of integers S; = {5 : s'= an; + bn; + cn + dny + e} where
ae{1,2}, bede{0,£1}, ee{0,%1,+2,..., %}, 0<jkl<i.

In the sets S; we also require that at most two of the numbers b, ¢, d be negative.
Then the cardinality of S;, |Si| < 2i33%(2i + 1). Since {n; : i > 0} is an increasing
sequence of positive integers we have for s € S;

s=an;+bn;+eng+dm+e>ni—2ni1—i2 N;

Similarly as before we let

N

i

o
A= Ur4na
=168 4

Again, it is not difficult to show that m(A’) < e and the set A9 = A\ 4’ is an suw
set with the sequence {n;}. o
Remark 1.2. For an ergodic ion T the following is an i di
of the definition:

o
(1.9 m(4)>0 = |JTPA=X.

=0

Then (1.4) in Remark 1.1 together with (1.9) above imply that all sww sequences for
an ergodic transformation are eww sequences for T'.

Next for an ergodic transformation 7' we extend the definition of ww and sww
growth sequences to eww growth sequences for T'.

(IT) An increasing sequence {0 < Ny < Na < ---} of positive integers is an eww
growth sequence for an ergodic transformation T if any increasing sequence
{0=ng <n1 <my < -} of positive integers that satisfies n; — 2n;—1 > N;
fori>1 = {n;} is an eww sequence for T'.

Then for ergodic transformations every sww growth sequence is an eww growth
sequence. Finally we conclude with the following Corollary to Theorem 1.1.

Corollary 1.1. Every infinite ergodic transformation T' that posesses a set A of
positive measure with ,.ll,"‘}g m(T"AN A) =0 has eww growth sequences.
2. INFINITE MEASURE PRESERVING RANDOM WALK ON THE INTEGERS

2.1. Random Walk on the Integers. We begin, as did Hopf (page 61 of [2]), with
the Baker’s transformation S defined on the unit square Z = {(z,y): 0<z <1, 0<

y<1}
_ ) (@2=z,9/2) if 0
S(:’y)_{(z:c—l,(y+l)/2) i 1<
9

<z<i,
<1l



8. EIGEN, A. HAJIAN, V. PRASAD =

The map S is obviously a finite (probability) measure preserving invertible transformation.
Hopf [2] proved it was mixing in the sense that (1.1) holds for all measurable sets. The
proof begins by analyzing how S operates on dyadic rectangles. It is then a standard
approximation argument to extend the mixing result from dyadic rectangles to all
measurable sets. From this mixing property it follows that the map is ergodic (i.e.
metrically transitive). There are now multiple proofs of the argodicity of the Baker’s
map and in fact a lot more is known. For example it is well-known to be Bemoulh
‘We extend the transformation S to the two-sided infinite strip
{(z,y) : —00 < z < 00, 0 < y < 1} by a skew product construction as follows.
Identify each square {(z,y) :n <z <n+1, 0 <y < 1} as (Z,n). The infinite strip
(—00,00) X [0, 1) with area measure is the space Z xZ = J,cz(Z, n) with the measure
which is the product of the Lebesgue area measure on Z and the counting measure on
the integers. Consider the skewing function ¢ : Z — {1, 1} defined by ¢(z,y) = —
if 0 <z < 1/2 and ¢(z,y) = 1if 1/2 < z < 1. The random walk transformation on
Z x Z is (see p. 62-63, [1])

T((2,9),m) = (S(a,4)sn + é(=,4))
‘We refer to this map T as infinite measure preserving random walk on Z. This example
is a variation of Hopf’s example on the one sided infinite strip [0,00) x [0,1).

Theorem 2.1. The infinite measure preserving random walk transformation is ergodic.

Although Hopf never completed the proof of the ergodicity of the random walk
on the gative integers its ergodicity and that of the random
walk on the integers T' are now well known (see [7] and [4]). An element.n.ry proof
of the ergodicity of T' can be given by ining the induced fc on
(2,0) and recognizing it as a finite measure preserving Bernoulli map (similar to
recognizing the Baker’s map as Bernoulli). More precisely, the induced map on every
square Z x {n} is a Bernoulli map, and each square Z x {n} can be mapped to any
portion of every other square.

2.2. An sww sequence for Random Walk. We are now in a position to derive
an explicit sww growth sequence for T and we emphasize how simple and short it is
once one has the sww definition. Specifically we duplicate the steps of the proof given
in Theorem 1.1 to the random walk transformation 7.
The necessary inequalities used in calculating the sww growth sequence come from
the next, lemma.
10
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Lemma 2.1. For the infinite measure preserving random walk transformation T'
described above, the set (Z,0) satisfies the inequality
1
— <m (T%*(2,0)n(2,0)) < for all k> 0.
ok (T**(2,0n(2,0) < ‘/— Jor
Proof. For an odd integer n > 0 we have m (T™(Z,0)N (Z,0)) = 0, and for an
even integer n = 2k, k > 1 we have:

k(2k — 1)1 e — 1)
m(THZ,0N(Z0) = (%)2—15 = k(k[zu‘ 5 'H:!é_ffzk)ll[)!‘ A (2:.21:)!1!)'[ ;
Using induction it is easy to show:
(2k— 1)l 1
@I < Worrs for k>1.
It is also easy to show:
i 1 (2k - 1)l
VL I
Combining the n.borvc we get:
Sl ak 1
\/5_1: m <m (T%(2,0)n(2,0)) < o ‘/_ fork>1.

o
‘We use the lemma above to get an sww growth sequence for the random walk
transformation. This will also be an sww and an eww sequence.

Theorem 2.2. The sequence {N; = 16%4 : i > 1} is both an sww growth sequence
and an eww sequence for T the infinite measure preserving random walk transformation.

Proof. For the random walk transformation T' we showed in Lemma 2.1
1
T%(Z,0)n (Z,0)) < —=-
mZeENNE N
Therefore specializing the part of the proof given after the statement of Theorem 1.1

to the random walk T', the set A = (Z,0) and e = 1/2, we can choose N so that for

alln> Nj ;

From this we conclude that N} > 8(2i + 1)i®4* and we have the growth sequence
8(2i + 1)i%4* + 4. This can be “neatened"to the growth sequence 16(2i +1)i%4* which
can be bounded by

m(T?(Z,0) N (2,0)) < #

N; = 4248 — 1648 > 1.

This is also an sww growth sequence.
Clearly this implies that the sequence 16+ is also a growth sequence.
11
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Since 7' is ergodic, we use Condition II of Definition 1.2 comparing {16*+4} to the
previous growth sequence {163} obtaining
167 — 2. 160-DH = (16 — 2) - 16"
which shows that {164} is also an swwsequence for the random walk transformation. 0
3. APPLICATION TO TILINGS OF THE INTEGERS

As a special case consider the integers Z with the counting measure  and denote
the translation transformation T : (Z, 4) = (Z, ), T(n) = n + 1. This is an ergodic,
infinite measure preserving, invertible transformation, albeit with an atomic measure,
and we can consider the analog of Theorem 1.1 for this map.

First we note that an infinite subset of integers {n; : # > 1} (denoted simply by
{n:}) is weakly wandering for T in this context means there exists another subset
{m;} of the integers such that

{ni} +{ms} = {m} ® {m;}
By this it is meant that the sum is direct, n; + m; = n; +m; if and only if n; = n;
and m; =m;.

Further, to say that {n;} is eww means there exists {m;} which is direct with {n;}
and the sum contains all integers, i.e., {n:} ® {m;} = Z. This says that {n;} tiles the
integers Z and we call {n;} a tile.

The case when {n;} (or {m;}) is finite is a very active area of research with many
open questions. This finite case has been studied using a wide range of techniques
including cyclotomic polynomials, fourier analysis and the theory of finite cyclic
groups. None of these methods however apply in the case when both {n} and {m;}
are infinite. This is the situation in which we are interested in obtaining an analog of
Theorem 1.1.

In [1] it is shown that the following provides an analog of part II of Theorem 1.1
and replaces the eww growth condition by a limit.

Theorem 8.1. Any infinite sequence {ni} = {ng =0 < n1 < ny---} of nonnegative
integers satisfying ;]l::lelg i —2n;_ = 0o tiles the integers.

A ising of this, which emphasizes the difference between finite
and infinite tiles, is that such an infinite tile has the hereditary property that any
finite set of non-zero integers can be removed and the resulting sequence still tiles the
integers. This is not true for finite tiles and is not true for all infinite tiles.

12 '
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This theorem was first proved using ergodic theory techniques for the translation

transformation T [8], but J. Schmerl (privati ication) gave a strictly

proof which appears in [1].

Note that, the analogous ww growth condition for part I of Theorem 1.1 is not
true: There exist sequences of integers {n;} which satisfy lim(n; — n;—1) = oo, yet
there is no infinite subset {m;} with which {n;} is direct let alone tiles the integers.

4. QUESTIONS

In this section we gather a few questions about the random walk transformation.
Question 1. The eww sequence obtained in Theorem 2.2 has the derived set W as
an eww set associated with it. Is the measure of W infinite or finite?

Question 2. Transformations can have many different eww sequences and sets. Does
thie random walk transformation T' have another eww sequence whose eww set has
finite measure?

Question 3. If Sisa ingul ion which with the random
walk T is it measure preserving?
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