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Abstract. In this paper, we show that the norm of the Bergman projection on
1-spaces in the upper half-plane is comparable to csc(n/q). Then we extend
this result to  more general class of domains, known as the homogencous Siegel
domains of type I1.
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1. INTRODUCTION

In the recent paper (1], K. Zhu has obtained sharp norm estimates for Bergman
n on LP-spaces in the unit ball of C™. In this paper, we first extend this result

proj
to [79-spaces in the upper half-plane, that is, . = {z =z +iy, x € R, y > 0},
and then, the obtained result we extend to a more gencral class of domains, known
as the homogeneous Siegel domains of type IL

Tt will be convenient to introduce the mixed normed spaces for functions defined
on Tl Let 0 < p,q < 00 and v > 0, and let f(z + iy) be a measurable function on
I1. Then, with the usual conventions if p = 0o or g = oo, we denote

Wlpao = ( [ (e iu)l’dZ)q/yy""'iy>‘/q

Definition 1.1. For all 0 < p,q < oo, the mized normed space Li* is defined to
be the set of measurable functions on IL;. such that ||f|pq,s < o0. The space AL" is
defined to be the set of holomorphic functions on IL;. such that ||fpqv < 0.

It is worth to observe that these spaces were extensively studied in the literature
(see [1, 2, 4] - [8]). For instance, in [2] it was proved that AR? = {0} if and only if
v <0, and that the orthogonal projection P, from the Hilbert space L2* = L2 onto
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1. GONESSA

he space 422 = A2 can be extended 10 a bounded operator on LE? if and only if

1 < p.g < co. Also, the explicit expression of P, is given by the following formula:

too 0
/ / 2 o)+ i) dudv,

-l
:—m)

The operator P, is called the weighted Bergman projection.
Our first main result is the following theorem.

where

B,(2,w

Theorem 1.1. Let 1 < p,q < oo and v > 0. Then there exist positive constants Cy
and Oy independent of p and q such that

@1 Croselrn/q) < 1P| < Caescl/a).

2. PROOF OF THEOREM 1.1

The proof of the theorem is based on two estimates stated below. One of them is
the refined version of the Schur lemma (see [16]). The other is an opfimal pointwise

cstimate for functions from A29 (see [§]).
Lemma 2.1. [16] Suppose H(z.y) is a positive kernel and
= /\ He, )/ ()d(y)

is the associated integral operator. Let 1 < p.q < oo with 1/p+1/q = 1. If there exists
@ positive function ¢(x) and two positive constants Cy and Cs such that

[ Haoto ) <ot wex

/ He0)(o(@)Pdu@) < Calpw), ve X,

then the operator T is bounded on LP(X. du). Moreover, the norm of the operator T
on LP(X. ) does not exceed CICE

Proposition 2.1. 8] Let 1 < p,q < 0o and v > 0. Then there exists a positive
constant € independent of p and g such that |f(z +iy)] < Cy™5H|flpqu for all
J €A and x4y €T,

In this section we prove our first main result - Theorem 1.1,
34
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Proof of Theorem 1.1. Denote f,(x) = f(z +iy) and

B

P} f(z) :/ / By (2 + i) f(u + v} dudv.

IS

Then we can write
i
122 fons = ([ 102 D0l 8)

and

=
EEE=e [ (o hla)
o
o L

where ¢ = 2% and gyale) = (:Jul) “". Using Minkowski and Young

inequalities we obtain
o

P} £)llzoey € /a lgyollzo eyl folluocey” ™.

Morcover, simple calculations yield:

VAL(5) .
Il = g+
Therefore
2
1) PR, <O / ( /ﬂ 0l au) oy,
where € = —:‘1}—
Now we mtmduce the ingredients for Schur’s lemma:
400
Thiy) = / (94 0)ho)? o
and (v) = v~ Then it s easy to see that
K
0) i

400
/ (y+0)™" (o) v = ),
o

T(%)ry
[Curarora = D0,
0

and consequently

(2) KT 500 € g
: L1(0,400) S F(,,) L#(0.420)-
We easily deduce from (2.1) and (2.2) that
@3) 1Puflpaw <0 (2) T (5) o
‘where

P )

~ VAN
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3. GONESSA

No the second inequality in (1.1), that is, ||P,| < C'ese(r/q) follows from (2.3) and

the inequality

e

The proof of (2.4) is given in the second part of the paper. Note that in the above
inequalities, C is a posi
equality in (1.1), we first apply Lemma 2.1 to get
Cyt Pz + i)
Moae

ive constant independent of p and ¢. To prove the first

93)

[12.] 2

Then taking f(z+iy) = 375y~ Xp. ) (e+iy) and D

from the mean value property and some easy calculations, we obtain
7 (atily+1 ,

(26) P,,/(rﬂy):#‘(#) and || fllpq < C

forall ¢ +iy € Iy
Finally, combining (2:5) and (2.6), and taking 2 = e~ and 4 < y < ¥, we obtain
|IP.]| = Cq > Cese(x/q) for all ¢ > 2. In the case 1 < ¢ < 2 the result follows from

duality argument. o

3. BERGMAN PROJECTION AND SIEGEL DOMAINS

We fix a positive integer n > 3 and denote by D a domain in €, We use do to
denote the Lebesgue measure defined in C* and P to denote the orthogonal projection
from the Hilbert space I2(1D, dv) onto the space A%(D, dv), consisting of holomorphic
functions on 1. It is well-known that P is an infegral operator defined on L2(D, dr).
The orthogonal projection P is called Bergman projection and its kevuel & is called
Bergman kernel. I the following, D will be a homogencous Siegel domain of type IT,
The goal of the second part of this paper s to extend the result obtained by K. Zlu

1 domai

[13], to the Sieg
The main object in this part of the paper is the Siegel domain associated with a
Lomogencous cone. So, in this section, we recall the description of an open strictly

s c

convex lomogencons cone from T-algebra, introduce the notion of a homogencous

Siogel domain of type I, and state our second main result.

3.L. Homogeneous cone. We use the same notation as in [13]. We consider a (xcal)
matrix algebra U of rank k with canonical decomposition:
u= @ w,
e
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such that Uy sUsx C Ugk and W Uye = 0 for j # I We assume that U has the
structure of T-algebra (in the seuse of [9]), in which an involution is given by z+ » 2*.

This structure implies that the subspaces U; ; satisfy the relation U;; = Ec;, where

= ci and dim U, = ny; = nyj. Also, the matrix ¢ = ¥7_, c; is  unit element
for the algebra U Let p be the unique isomorphism from U; ; onto R with p(e;) = 1
foralli=1,---,r. We consider the subalgebra T C U consisting of upper triangular
matrices, and let

H={LeT:pllis) >0, i=1,-- 1}

be the subgroup of upper triangular matrices whose diagonal element are positive.
Denote by V the vector space of Hermitian matrices in U V = {z € U: 2" =z}.
We set n = T2 nyi, mi = ¥y, iy, and observe that

dimV =n=r+Y mi=r+) n.
= =
The vector space V' becomes an Euclidean space with the inner product: (zjy) =
tr{ay*), whore tr(z) = 57, p(zi). Next, we define Q = {ss" : 5 € H), and observe
that, by a theorcm of Vinberg (see [14], p. 384), @ is an open convex homogeacous
cone containing no entir straight lines, in which the group H acts simply trausitively

via the transformation:

m(w) : wu' = w(w)ue’] = (wu)(w'v')  (wue H).

Thus, to every element y € 2 corresponds a unique ¢ € H such that y = 7(t)[e] = t-e.

We assume that {2 is irreducible, and hence rank (§2) = r. Note that all homogeneous
convex coues can be constructed in this way (sec [14] p. 397). As in [13], we denote
by Q; the fundamental rational functions in © given by Q;(y) = p(tj;)%, when
y=teeq.

We consider the matrix algebra with involution W which differs from 1 only on
its grading, and put Wy = Wpr_irpr—y (i = Lo+ 7). In [14], it was proved
that U’ is also a T-algebra and V/ =V, where V is the subspace of U’ consisting of
Hermitian matrices. We define the subalgebra

T= @ ¥

1gigjgr

of W', consisting of lower triangular matrices, and the subgroup H' of T whose
diagonal elements are positive. We have I' = {t" : t € T} and H' = {t' : t € H}. The
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corresponding homogencous cone coincides with the dual cone of @, namely

={€eV':(zl) >0, Veel\oh

't € Q*, we define

One also has (see [14], p. 390) Q* = {#*¢ H}. For £
3(6) = pl¢2), and observe that the following identity holds: Qj(t* - ¢) = Q;(t-¢)
We use the following notation: for all x € , £ € " and @ = (a1, , ;) € R, we

@ =@ ad @)1O=]1C)@

o= i=1
We put 7 = (ri,- ) € BT with Hmi+ni). Fory e Qand j=1,--- 1,
we have Q;(n(t)y) = Q5(x)Q;(v). Therefore, for any s € H, we get Q" (r(s)a) =
detn(5)Q7 (z) since (see [14], p. 388) deta(s) = Q7(s - ¢). Note that the above
properties are also valid if we replace Q; by @} and = € © by & € 0. T the

following we call eq the element e.

3.2 Homogeneous Siegel domains. Let VS = V41’ be the complexification of

V. Then each element of V' is identified with a vector in €. The coordinates of a

point = € C* are arranged in the form: 2 = (z1, -, 2,), where 2; = (2,
i=2 ,7, and
5 €€, ny= (] A5 e, 1<i<g<n

Forall j=1,:-- ,r weset ej; = z, where 2;; = 1 and the other coordinates are equal

to zero, and denote

ea= e =(1,0,1,+,0,1).
=i

Let. m € N. For cach row vector u € C™, we denote by v’ the transpose of u. Given
m % m Hermitian matrices By, -+~ . Hy, we define an Q-Hermitian homogeneous form
F:C"xC" - C" as F(u,v) = (i, - ,ull,¥), (4,0) € C™ x €™, such that
(i) Fuu)e®
(il) Flu,u)=0if only if u=0;

(iii) for every t € I1, there exists £ € GL(m, C) such that t - F(u,u) = F{(iu

The homogencous Sicgel domain of type 11 associated with the cone @ and with a
V—Hermitian homogeneous form F; C™ x €™ — C* is defined by

DS, F) = {(2,u) € C" x C™ : Smz = F(u,u) € 0},
3
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Using the above decomposition of an element in C™, we can write
Flu,u) = (Fy(u,u), Fa(u,w), Fa(u,u), -+ , Fe(u,u), Frr(u,v)),
where fori=1,--- v and j =2+ ,7,

Falu,u) = ulal, F(uu)=(Fij(uu), - Fmy(u,u)

andfor1<i<j<rand (=1-,n,
FPwu) =uBl8, Fyj(u,) = (F (), S ).

We have the decomposition €™ = [T7., €;, where € is the subspace of € on which

Fu is positive definite. In what follows, we denote by b the vector (b, -+ .b,) € N" and

by D the Sicgel domain of sccond kind associated with the open convex homogencous

cone © and the -Hermitian homogeneous form F.
3.3. Statement of the second main result. For each (z,u) € D, we adopt the
following notation:
dV, (2,u) = Q*~477(Smz — F(u,u))dv(z)dv(u)
with the convention that if y = Smz, then
AVi(y,w) = Q“47(y - Flu,u))dydu(u),

where du is the Lebesgue measure on C', and [ =n or [ =m.

For p,q € [1,400] and v € R, let L2 denote the (Banach) space of measurable
functions on D such that

Wl =(/m Pl !f(r+"ym)l"d=r)meru(v,u))l/n<+oo.

We define the weighted Bergman space A% to be the subspace of LI}, formed by its
holomorphic functions. Observe that @®~2" (Smz— F(u, u))dv(z)du(u) is the invariant
‘measure with respect to the group of automorphism of D (see [9], p. 56). We denote
by P, the integral operator on LE? defined by
Puf(2)=/ By((z,u), 1y £))f (, )dVa (),
D
and by P} we denote the weighted Bergman projection, defined by

I’.T!(Z)=/ 1Bu((2 ), (w, )| fw, )V (w, 1),
D

where "
B ) =4 (252 - )
39



1. GONI

is the weighted Bergman kernel, that is, the reproducing kernel of A2(D).

Also, we denote by [P, | the norm of P, on L27. It is well kuown (sce, c.g. [12])
that P and P, can be extended to bounded operators on 4% for some p. € 1, +oc]
v;) € R” such that v; > Tt0sth

owing theorem is the second main result of this paper. The proof is given

and v
The

in Section 3.

Theorem 3.1. If P} is extended to a bounded operator on L34, then there csist
positive constants Cy and Ca, depending only on v, m and n but not on p and q, such
that

Cresc”(w/q) < Pl € Coesc”(v/a)

Now we state two lemmas and a proposition, proved in [13] and [12], which will
play a key role in our analysis in the subsequent parts of this paper. We first adopt
the following notation for the generalized gamma functions:

1o, 0 o

To(a) [l e Q" (5)dx

(o) = [ Qe =

where I s the usual gamma function.

Lenuma 3.1. (13, Lemma 4.20. Let &= (@, a,...,a,) € K. The integral

)=, 'Q (#)

converges if and only of a; > 1+ n;+ 2, j=1,...,7. In this case, we have J,(y) =
aQ % (y), where

d (ye)

(2myra-leltiring, (o — 7)
T3 (e/2)

=

Lemma 3.2. (13, Lemma 4.19]. Let o = (ju, o,
" For all y €, the integral

Iy / Qy+ Q" (W

i) ER and Xk = (A, Mgy M) €

is finite if and only if X > B, g+ X < <%, G
Jux(y) = My Q4N (y), where

-7 In this case, we have

Lo(\lq.
Lou(=p1)
1

My, =
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Proposition 3.1. [12, Proposition 5.2]. Let w,t € C™, y € Q + Flu.u) and j &
Ot F(t,). For A= (50,

1Ar) ERT, the integral

Ty, 3]

/ QMy + G+ F(t,£) - 2Re Flu,t))dv(t)

converges if \j — b; > 5, o7 In this case, there is  positive constant Cy

such that I(y, u,§) = CAQ~**(y - Flu,u) + j).

4. AN OPTIMAL POINTWISE ESTIMATE IN SIEGEL DOMAINS

The proof of our second main result - Theorem 3.1, requires pointwise estimates
in tubular (resp. Siegel) domains. So, we need more precise versions of pointwise

estimates in the above domains.

Lemma 4.1. Let v = (v, ) € R be such that v; > 5" j =1,.-- r, and
let { be a holomorphic function on tube domains Ty := V +iQ (the so-called Siegel
domains of type I), such that

Wl = ( i |f<z+»'y)v%)ma"-*(ww)w<+m.

Then there is a positive constant C' independent of p and q such that
/(@ +iy)| < CQ¥F W) Ipaw
Jor all + iy € Ty.
Proof. Let t€ be an extension of ¢ = m(s) to VE = V + iV, defined as follows:
(2 +iy) = tw+ity and t(iy) = ity for all z+iy € V. Then using the mean value
property, the Holder inequality and formulas (2.9) - (2.10) from [13] (p. 484), we can
write
flz+iy) = fotS(t™'z+ieq)
Ife+ig) [ et sy
|&—t-tx|<1

eB(ent)
< Cllfotlpaw < CQTFF W llpars

n

where B(eq, 1) is the Bergman ball of radius 1 centered at eq, and
C=a" sup Q"™(y)max(1,Q"™"(y))-
VEB(en,1)
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Proposition 4.1: et v = (M, 1) € R besuch that vy > 2utpths j =

Lowr, and let f be a hnlmnm‘plun function on D. Then there esists o positie

constant C independent of p and q such tha

/(e +iy.u)| < CQ™ (= F@u)lflpaw

for all (2 + iy.u) € D.

Proof. Consider the following functions: i (z+iy) = [(x+iy,u), fo(w) = f(x+iy.u)
t(z+iy,u) = (v +i(y+ F(u, 1)), u), and use the pointwise estimate in tube domains,
to obtain

[fe+ipa)] = [(fotn(e+ily=-Fluu)l
Ty = Fa W) o il

In

Therefore

ql) 1/q
1 ol (/ ([ 1o+ 7+ 20w, u)m) @t w./)
i ¥ i
= ( I e ([ oh(mm)' “rterg - Fru,u»w> :

where h(v) = v+ u. Finally, using the mean value property for holomorphic function

J20h, the Minkowski and Holder inequalities, and Fubint’s theorem we conclude that
1o lngw <71 las 0

The tiext lemma play a key role to estimate the Bergman projection iu the Siegel
domains. We use the following uotation:

Kol(yu), (3:6) = Q73 (y +§ ~ 2ReF(u, 1))
Lemma 4.2. There exists a positive constant C' independent of p such that
(B lisvany <G / / K., 6,00l vt dVal.0)
om Jarrt

where fy(z) = [+ iy,

Proof. We set
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SHARP NORM ESTIMATES FOR WEIGHTED BERGMAN

and use Minkowski and Young incqualitics, and Lemma 3.2 to obtain
| "

WP fyullLovas) < m(// / Iy+iu) * F3.(2)dV ()| d;)
v |[Jem Jasry |

[ ([ ssion sorae) " i

o [ [ loaien St
Cm JO4F(LL)

n

A

IA

duy / / 19w +5.000 | o) el otvraay@Vi (1)
T JO4F(L,e)
<of [ Kl @ a0,
™ JO+F(t,t)
where the symbol # stands for convolution. a
5. PROOF OF THEOREM 3.1
Observe first that by Lemma 4.2 we have
g
1B Sl ( L] (Tl\fv,:llu(v.m(wu))"dV.,(y,u)) :
€ SOy F(uw)
where
o= [ [ Kl @006 9040
'Cm JO+F(L,t)
Next, it is casy to seo that
60 [ 0,696 00 < O
™ S (u,u)
and
69 [ [ 6067 600 < O ),
o JOHF(L)

where p(y,u) = Q'(y = F(w,u)), 7=(n,"-,%) € R". Therefore, we have

%=

fin

and

M with 241 )
¢ ¢

Ta-(v-3)

So, using Schur’s lemma, we get, |[P, | < CM.
Next, taking into account the symmetry of sine function and the conjugacy between

q and ¢, we only need to consider the case where q is very large. In this case,
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is bounded from above and below, and satisfies the

I

wetion T

relation:

~ g s

because T (2 1) ~ 1 when = is a small positive mumber. Thus, there exists
4 positive constant 4 independent of p and ¢, but depending on v, m, n and 7, such
that |2, < Ci cse” . Now, we estimate [P, from below, assuming that ¢ > 2. In
the case 1 < ¢ < 2, the estimate will follow by duality argument and the symmetry
of function sin %, Noting that for ¢ > 2 the constant sin(x/q) is comparable to 1/q,

i view of the pointwise estimate, we obtain

5, ClRf@+iywlQ

Ll Wrer

y,u) € D. So, taking

QT (= Pl 0o 00+ 9,0,

fla+iyu) =
where B({ieq.0). 1) is the Euclidean ball of radius 1 centered at (ieq.0), we obtain
2+ "(yw‘"u))

2

17 zc‘oﬁ

U € (R —e) NQ. Here
P, f(x+iy,u)

and [[f]lpq.0 < C. Finally, for z = e~%p, u = 0 and y € Bleq, 1), we get [P, > Cq',
and the result follows. a]

As an immediate consequence of Theorem 3.1, we can state the following result.

Corollary 5.1. Let v = (v1, -+ ,v) € R be such that v; > 23
P

if

is extended to o bounded opemtw o AL spicesof bibe\domaitis Ty then Uhere

exist positive constants Cy and Cy, depending on v, m and n, but not on p and q,
such that
Cresc'(/q) < P < Caese”(w/g).

Proof. The result follows from Theorem 3.1. It suffices to sce that if £ = 0 and
m =0, then D =Tq. o

Remark 5.1. Our main results show how fast the norm of the weighted Bevgman
projection I, on LM-spaces grows as g increases and v is fixed. Moreover, the results
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do not depend on p. In this respect, it would be of interest to determine hor
norm of 1%, grows when v increases and g is fixed.
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