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1. INTRODUCTION

The notation and definitions, used in this section, will be given in the next section
of the paper. It is well-known that (for details see [14]):

I1Sasll, < cplifll,» when p>1,
where S, f is the n-th partial sum with respect to bounded Vilenkin system.
Moreover, the following more stronger result is also known (sce [11]):
I5° 1, < cpllFll,» when f€Lp p>1,
where §*f = suppeq |Sufl-
L i [13] ined a t ided i for Lebesgue L, with

respect to Vilenkin system. By using this result, we casily can show that for every
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ble function f, the Su f to f in Ly-norm if and only if

sup Ly, < ¢ < oc.
ket

Poir and uniform and some imation properties of partial
sums in L-norm were studied by a number of authors (see, e.g, the papers by
Goginava [9], Goginava and ian [10], Avdispahi¢ and Memié [2], and refcrences

therein). Fine [4] obtained sufficient conditions for the uniform convergence which are
timated the

in complete analogy with the Dini-Lipschitz conditions. Guli¢ev [12] has
stants and

rate of uniform convergence of a Walsh-Fourier scries by using Lebesgue cos
modulus of continuity. Uniform convergence of a subsequence of partial sums with
respect to Walsh system was investigated also in [8]. This problem for a Vilenkin
group G,, was considered by Blahota [3], Fridli [5] and Gat [7].

It is known (for details see, e.g., [18]) that the Vilenkin system does not form a
basis in the space L; (Gm) . Moreover, there is a function f in the martingale Hardy
space TT; (Gm) such that the sequence of partial sums of f is not bounded in L, (G )-
norm, but a subsequence S, of partial sums is bounded from the martingale Hardy
space Hy (Gm) to the Lebesgue space Ly (Gm), for all p > 0.

In [21] it was proved that if 0 < p < 1 and {ax : k € N} is an increasing sequence
of nonnegative integers such that ’

(1.1) sup p (ax) < o0,
keN
where p(n) = || — (n) and
(n) =min{j € N:n; #0}, |n|=max{j€N:n; 50},
forn = Li," iMj, n; € Zm, (j € N), then the restricted maximal operator

gnaf

sup |Se f|

ken

is brunded from the Hardy space H, to the Lebesgue space Lj,.
Moreover, if 0 < p <1 and {ax : k€ N} isan i i of

integers satisfying the condition
(1.2) sup p (ax) = oo,
kel
then there exists a martingale f € H, such that
sup || S, = 00.
Sup [|San iz, e
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It immediately follows that for any p > 0 and f € H,,, the following restricted maximal

operator

551 = sup|Sar £l
nen
3
where My i= 1, My o= I m; and m := (mo, my,...) is a sequence of positive

integers not less than 2, which generates the Vilenkin system, is bounded frowm the
Hardy space H) to the space L, :

(13) 53], < 06w, - £ & e

For the Vilenkin system, Simon [15] proved that there is an absolute constant ¢,

depending only on p, such that

i
w4 SIS < s,
k=1

2—p

forall f € I, (Gin), where 0 < p < 1.In [17] we proved that the sequence {1/k2~7 : k € N}
can not be improved.

A similar theorem for p = 1 with respect to the unbounded Vilenkin systems was
proved in Gat [6].

In [18] we proved that if 0 <p < 1, f € Hp(Gm) and

w(lf) o( 2 )asn‘oo

— =0 — — o0,

Mn™" ) #y(Gm) MaPE

then

(1.3) []Sn,‘f—fll,,_—)o as k — oo.

Moreover, for every p € (0, 1) there exists a martingale f € Hy(G'm), for which

i ik
— =0(—7=—=] asn—-oco
A (Mn f) Hy(G) (M,‘./"-‘)

and

11Skf = fliz, (Gm) =0 as k— co.
In [20] we investigated some (Hp. Hy), (Hp, Lp) and (Hp, Lp,oo) type inequalities for
>subsequences of partial sums of Walsh-Fourier series for 0 <p < 1.

In this paper, we derive ct izati f b ded: of sub of partial
sums with respect to the Vilenkin system on the martingale Hardy spaces A, when

0 < p < 1. Moreover, we find necessary and i iti for the dul
of continuity of f € Hp, which provide convergence of subsequences of partial sums
79



G. Ti

EPIINADZE

on the martingale Hardy spaces Hp. It is also proved that these results are the best

possible in a special sense. As applications, we point out some known and new resul

Tle paper is organized as follows: In Section 2 we present nceessary notation and
definitions, and state a number of auxiliary lemmas, needed in the proofs of the
main results. Some of these lemmas are new and represent independent interest. The
formulations and detailed proofs of the main results and some of their consequences

are given in Scctions 3 and 4.

2. PRELIMINARIES

Let N, denote the set of the positive integers, and N = M, U {0}. Let m = (mg,
1y, ...) denote a sequence of positive integers not less than 2. By Z,, = {0, 1, ..., my—
1} we denote the additive group of integers modulo my, and define the group G,,
to be the complete direct product of the group Z,,, with the product of the discrete
topologies of Z,n,’s. The direct product p of the measures ux. ({5}) :=1/ms (j € Z,n,)
is the Haar measure on G,, with 1 (Grn) = 1.

If the sequence m (mg,ma,...) is bounded, then the group ¢7,, is called a
bounded Vilenkin group, else it is called an unbounded Vilenkin group. The elements
(0,1, -0y 5, -.) (Tk € Ziny)-

It is easy to give a base for the neighborhoods of G,,,:

of the group G,, are represented by sequences x

Io(a) = G, Tu(@) ={y € Cum |t =20, ., ¥n—1 =Tu} (z € Gy, n € N).

Denote I, := I, (0) for n € N and T, := Gy, \ In. It is clear that

@1) Tv = |J L\ Lps.

If we define the so-called generalized number system based on mn in the following way

My := |, Myy1 := mu.My (k € N), then every n € N can uniquely be expressed as
=

n= 3 n;M;, where nj € Z,,, (j € N) and only a finite number of n’s differ from

=0
zero. For all n € N we define
(n)

For a natural number n = 532, n; M, we define the functions » and v* as follows:

min{j € N : n; # 0}, |n

max{j € N:n; # 0}, p(n)=|n|— (n).

= =
v(n) =3 0541 — 6] + 00, v () =355,
j=1 i=1
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ON THE CONVERGENCE OF PARTIAL SUMS ...
where §; — signn; — sign(Sn;), 65 — |9On; — 1|§; and S is the inverse operation
for a @ by == (ax + bx)modmy. The norms (or quasi-norms) of the spaces Lp(Gim)
and Ly, (Gm) (0 < p < o) are respectively defined by
W= [ 1P di WFl, o = supa (> 2
G A>0
Next., on the group G,, we introduce an orthonormal system, which is called the

Vilenkin system. To this end, we first define the complex-valued functions r. (2) :

G,y — €, called the i ions, as follows:
7% (2) 1= exp (2mizk/my) (2=-1, 2€Gm, keN).
Now define the Vilenkin system 1 := (1, : n € N) on Gy as follows:
Yal@) = Hr@  (nem).
Notice that in the special case where m = 2, that is, my. = 2 for all k € N, the above
defined s; pmn s called the Walsh-Paley system. Observe that the Vilenkin system is
orthonormal and complete in Lz (Gim) (see, e.g. [1, 22]). If f € L; (G,n), then we can
define the Fouriei coefficients, the partial sums of the Fourier series, and the Dirichlet

kernel for the Vilenkin system 4 in the usual manner as follows:
F@ = [ s Gem

e o
Suf + =3 F(k)¥x, Du=) th, (neN).
k=0

=0
Recall that (see [1])

M, if zel
(22) D, (x) ={ M
and
= mym1
(2.3) Do=tn|> Da, Y, 3]
=

Moreover, if n € N and 2 € T, \ Tap1, 0 < s < N — 1, then the following estimates
hold (see Tephnadze [16, 19]):

(2.4) 1Dn(@)| = | Doty (@) 2 Meny,  |nl # (n)
and
@3 S 1Pee=0lau < S
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The n-th Lebesgue constant L, for the Vilenkin system 3 is defined by
= || Dall; -

1t is known that for every n = Y52, n:M;, the following two-sided estimate is true

(see Lukomskii |13|)»

(2.6) ;11 (n) + —u (n) + = < Ly < —u (n) +4v* (n) — 1,

where A := SUp,,ey M-

The g-algebra generated by the intervals {I,(z):x € G,,} we denote by f,,
(n € N), and by f = (fa,n € N) we denote a martingale with respect to f ,, (n € N)
(for details sce Weisz [23]).

The maximal function of a martingale f is defined by

= sup | 7|.
In the case where f € Li(Gm), the ma.xxma.l function can also be given by the

following formula:

@)= f (W) dp (u)]|.

neh T @) (r)l
For 0 < p < oo the Hardy martingale spaces Hp (G'm) consist of all martingales, for
which [|fllz, := lf*]l, < oo

Let X = X(Gm) denote either the space L;(G.) or the space of continuous

Tu(=)

functions C'(Gym)- The corresponding norm is denoted by | - |x. The modulus of
continuity, when X = C (Gpm) and the integral modulus of continuity, when X =
L, (Gyn) are defined by
X
w(5mt), = UGB = FOl

The modulus of inuity in the Hardy

spaces Hp (Gm) (0 < p < 1) can
be defned as follows:
,f) = 1F = Saau iy -
If [ € L1 (Gwm), then it is easy t.o show that the sequence (Sir,f:n €N) is a
martingale. If f = (fa,n € N) is a martingale then the Vilenkin-Fourier coefficients
must be defined in a slightly different manner:
Foy=jim [ @@ dnto).
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Notice that the Vilenkin-Fourier coefficients of f € Ly (Gr) are the same as the
imartingale (Sur, f:n € N) obtained from f . A bounded measurable function a is

called a p-atom if there exists an interval I such that

[ i =
J1

Observe that for 0 < p < 1, the martingale Hardy spaces H, (Gm) have alomic

lalle < n@™",  supp(a) c I.

characterizations (for details sce, e.g., Weisz [23, 24]):

Lemma 2.1. A martingale f = (fu.n € N) is in Hp (0 < p < 1) if and only if there
ezist a sequence (ax, k € N) of p-atoms and a sequence (jux, k € N) of real numbers
such that, for everyn € N

o o
(2.7) > urSm,ar = fu a.e., where > luwl? < 0.

k=0 k=0

Moreover,

oo 1/p
£l s, ~ i (E |m|") )
k=0

where the infimum is taken over all decompositions of f of form (2.7).

By using the atomic decomposition of martingales / € Hp, we can construct a
counterexample, which plays a central role to prove the sharpness of our main results,
and it will be used several times in this paper (for details see Tephnadze [21], Section
1.7., Example 1.48).

Lemma 2.2. Let 0 < p < 1, A = SUPpey Mn, and {Ax : k € N} be a sequence of real

numbers such that
o0

(2.8) I S ep < 0.
i=
Let {ax : k € N} be a sequence of p-atoms defined by
MMt
= M 5
L= (DMIu..IH DM|,.,‘|) g

where |ax| := max {j € N: (ax); # 0} and (ax); denotes the j-th binary coefficient
of ax € N. Then f= (fa: n €N), where
fai= > e,
{k: |ew|<n}
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is a martingale, f € H, for all0 <p<1, and
Aupii/Ert .
—el, e §c1\1|n..|,---, Mo, 41 — 1}, k€N,

2.9) o) = U
¢ o, i# U {Miaatses Miia =1}
Further, let Mja,) < Jj < Mja,+1, L € N. Then

1/p-1 ;
PO i VAt\nllDJ—MI"“

Sif = Smy,+
=1 M, MMMYP 0 Dy s
= M| A |~.| Y et 11
(2100 = Z——(DMIA i DMM) +—= - il

-, the iny ic relation holds:

1/p
=
@) w (%f) o X MP| a noo,
n "/ Hy(Gm) (& jani=n}

There exists a close connection between the H, and L, norms of partial sums (sce

Tephnadze [21], Section 1.7., Examplel.45):

Lemma 2.8. Let My < n < Myy1 and Saf be the n-th partial sum with respect to
Vilenkin system, where f € H,, for some 0 < p < 1. Then for every n € N we have

the following estimate:

U5 Fly < 15Tl < | sup, 1w+ 0rty < |Br], + -
|

0<i<k

3. CONVERGENCE OF SUBSEQUENCES OF PARTIAL SUMS ON THE MARTINGALE
HARDY SPACES

Our first main result in this paper is the following theorem.

Theorem 3.1. The following assertions hold.
a) Let 0 <p < 1 and [ € H,. Then there exists an absolute constani cp, depending
only on p, such that

1/p—1
M,
1Suflla, < — 7= N flla, -
» IU(") -

b) Let 0 < p < 1 and {n,: k &N} be an i ing sequ of
integers such that condition (1.2) is satisfied, and let {®,, : n € N} be any nondecreasing
84
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nee isfying the Iiti
Ji=
(3.1) Tl
ke M,
Then there ezists a martingale | € Hy, such that
sup Snnf = oo.
ken |l Pay lr,
Proof. We first prove assertion a}. Suppose that
MR
(3.2) i < cplflle, -
il s

Then according to Lemma 2.3 and estimates (1.3) and (3.2) we get

|| ppt/r—
MU,

1/p—1
M sf‘ S"§;‘f""+|w
B W,

(n)
’\1‘ 71

(3.3) < cpliflls, -

In view of Lemma 2.1 and (3.3), the proof of part a) of the theorem will be completed,

if we show that

Mg o

A

(3.4) / % dp < ¢ < oo,
G| Ml

for every p-atom a, with support J and g (I) = Mz".
‘We may assume that this arbitrary p-atom a has support I = Ix. It is easy to see
that Spa = 0, when My > n. Therefore, we can suppose that My < n. According to

flallo < MY?, we can write

M Swa@)| M el

©3) T | S g [ 1ona=0laue)
.

—MW‘MW )

n(z—t)|du(t).
Illllnll"_ In
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Let 2 € In. Since # —t € Iy, t € In and v (n) +v* (n) < c([n| - (n)) = cp(n), we
can apply (2.6) to obtain
MU Sua (@) ) o g

| 1pe@lauco

I lwlxll;z—\ A[yxllp—n
MYPTMYP (v () + v* ()
)
(3.6) < & 737
My
M M (inl = () _ edf#p (m)
=% Ml/v— = 2/’(")“/7‘*”
and
M Sua (@)
- tn) S 2 (n) 5
Ex) ./1.,v , T ’ dap(z) < 2P(n)(1—1’) Scais oo

Tetz € I \T41,0Ss<N-1<(n)or0<s<(n) < N—-1.Thenz—t e Lo\ Tos1
for t € Iy. Combining (2.2) and (2.3) we get D,, (x —t) = 0, and

1/p—1
MUE s,

" (39 e
M

Leta € I\ 41, 0< () <s S N—10r0<(n) <s< N—1.Thenz—t € I,\ ,s,
for t € In. Hence, applying (2.5), we get
|1\l'/"_‘5,.n. (z)j HMIP MY? 1,

3.9 >
T T ar

Combining (2.1), (3.8) and (3.9), we obtain

= oMM,

1/p—1 2 N-1 1/p—1 14
e / M Sna =5 / M Sua
w| St | MY,
N-1
., c,,]ﬂ
< o / il o ap = oMey® <ep<oo.
1.§,.) Bt I L= C"Z TR

This completes the procf of part a) of the theorem.

Now we proceed to prove part b) of the theorem. To this end, observe first that
under the condition (3.1), there exists a sequence {ax : k € N} C {nr: k € M} such
that
Y

(3.11) < oo,

(1-p)/2
Mo,
86
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We note that such increasing sequence {ay : k € N}, which satisfies condition (3.11),
can be constructed.

Let [ = (fn,n € N) be the martingale from Lemma 2.2, where
(3.12) 5% MGV
.12 o= —t

(1 /p—1)/2

Mo,
In view of (3.12) we conclude that (2.8) is satisfied, and hence, using Lemma 2.2, we
obtain that [ € Hp.

Next, using (2.10) with Ar defined by (3.12), we get

Sanf 18 ¢ 2,0 /9~

B 11 /2

Sl 7I>T§ MOBDENESD 212 (M|n,,(+:—mu|.
% =0

(1/p-1)/2 (1 /p=D)/2
Mg 7™ Mg} " Dou—Mya,|
ou?

+ =I+IL

Hence, according to (3.11), we can write
A
= wipront

e <L s Ten) 0 |l 0/p-D) (pp — Dy,
W%, = q,a_ 2 A‘fg(.,l.]”/’ law| ( lanl+1 |.,,,|) |L-.=<
(1-p)/2g5p/2
(3.13) < (I,%“M“‘—"(H%<§T<r<oo
oo M

Let # € I{ay) \ Z(aw)+1- Then we can apply (2.4) to conclude that
MOV /=02
Lokl {aw) ™Moy
(3.14) |1 o i
(1/p=1)/2p r(1/p+1)/2
Mg, " Moy
= o2 .
Combining (3.13) and (3.14), for sufficiently large k, we can write
St ||
Do,
C‘J(l—P)/2}wu+p)/2 c1\{(1/»—1)/71\,[(1/1’+1)/2
Mlowl  law) Mg Mgy

> 1, - M2, 2 3 IO,

5 lok |
w7 pSz€Gm: |12 - o
A

cM(l—p)/zluuﬂa)/Z EM(I p)/2

s {T @\ a1} 2 W —ooas k— oo

o8
This completes the proof of part b) of the theorem. a
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The next corollary contains equi I izations of I of subseq
of partial sums with respect to the Vilenkin system of martingales [ € H,, in terms
of measurable properties of the Dirichlet kernel.

Corollary 3.1. The following assertions hold.

a) Let 0 < p < 1 and f € Hy. Then there exists an absolute constant c;,, depending

only on p, such that

181, < o (nps {supp (DW)DMP 2 1L, -

b) Let 0 < p < 1 and {ni: k € N} be an i i of
integers such that
(3.15) sup zux/s {supp (Dn, )} = oo,
keN
and let {®,, : n € N} be any nond ing sequence, satisfying the conditi
i (ke {supp (D, )PP
™

Then there exists a martingale f € Hy such that

oS o

ken || ®ny llp, . -

Remark 3.1. Corollary 3.1 shows that when 0 < p < 1, the main reason of
divergence of partial sums of a Vilenkin-Fourier series is the unboundedness of Fourier
coefficients, but in the case where the measure of the support of nj-th Dirichlet kernel
tends to zero, then the divergence rate drops and in the case when it is maximally
small, that is,

1

1 (suppDn,) = O ('ﬁ—) as k=00, (M, <nk< M, 1),

Inl
then we have convergence.
Proof. Combining (2.2) and (2.3) we get 1(,.,\1(,,}“ C suppD,, C Iy and

<
2M‘ & u{suppDn} < M 75

Since Mjp) < 1 < Mjnj41, we immediately get
Mijn
2M )

AMjny
M’

< nps {supp (Dn)} <

where A = sup,,cy mn-
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It follows that

Y e Al/p=1,
—mr < (nu fsupp (D)PMPt < Sl
aNHete & W S M

The result follows by using these estimates in Theorem 3.1. a
As special c:
that are of particular interest. Tn Corollaries 3.2-3.4 that follow we list some of them.

ses of Theorem 3.1, we can infer a number of known and new results

Corollary 3.2. Let 0 < p < 1, [ € Hy and {ny. : k € N} be an increasing sequence

of nonnegative integers. Then
1Snefll, < e llfllg,
if and only if condition (1.1) is satisfied.

Proof. It is easy to show that

ootm) < Mimel o yptni,
T M@y ~
where A = sup,, ey M- It follows that
1/p—1
wup Mo
keN MI/P=T
()

)

<ec<oo
if and only if (1.1) holds. Thus, the result follows from Theorem 3.1. n

Corollary 3.3. Let n € N and 0 < p < 1. Then there evists a martingale [ € H,

such that
(3.16) sup ||Sar,+1 £, . = 0.
neN

Proof. It is easy to check that

(3.17) Mo +1]=n, (My+1)=0
and
(3.18) p(My+1)=n.

By using Corollary 3.2 we obtain that there exists a martingale f € H, (0 <p < 1)
such that (3.16) holds. The proof is complete. m]
Corollary 3.4. Letn €N, 0<p<1 and f € Hy. Then

(3.19) ]|5Ar,.+.\l,._,f||,,_ < cpllflle, -
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Proof. Similar to (3.17) and (3.18), we obtain

M+ Myoa| =n, (Mp+Mu1)=n-1

and p(M, + M,—1) = 1. By using Corollary 3.2 we immediately get the inequality
(3.19) for all 0 < p < 1. The proof is complete. o
Corollary 3.5. Letn €N, 0<p <1 and f € H,. Then

(3.20) ISar, fllg, < cplfllg,, -

Proof. Similar to (3.17) and (3.18) we obtain |M,| = n, (M,) =n and p(M,,) = 0.
Using Corollary 3.2 we get the inequality (3.20) for all 0 < p < 1. o

4. NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE OF PARTIAL SUMS
IN TERMS OF MODULUS OF CONTINUITY

The main result of this section is the following theorem.

Theorem 4.1. The following assertions hold.
o) Let 0 <p <1, [ € Hy and M <n < M1 Then there ezists an absolute
constant c,, depending only on p, such that

-1 =
WD el < 2 () b<p<t,
> = T O\ ) w6
Moreover, if {ni : k € N} is an @ ing seqt of ive integers such that
1 My
(4.2) w (—/) =o|—725| as koo,
Minil ™™ ) 11,06 R
then
(4.3) IS0 f = fllg, =0 as k— co.
b) Lei {ny : k € N} be an i ing sequence of ive integers such that the

condition (1.2) is satisfied. Then there ezist a martingale f € H, and a subsequence
{au : k € N} C {nx : k € N}, for which

a My

(1.4) @ (Tf) =0 ) e koo
loul "™/ 11,06y Mgy

and

(4.5) k@a I1Saf = £llz,,. >¢>0 as k—co.
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Proof. Let 0 < p < 1. Then, by Theorem 3.1, we get

150f = £y, < 1Snf — Sau Iy + 530t — F1,
1/p-1
S (S — D)y + IS0 — 11, < (220 4 1) e,
= 1S (Sssf — D, M b, < M(,ﬂ/),,_, +1 | wh, A[L‘f

and

cpMHP?
[l = ( L

M\ f) ()

Next, it is easy to see that relation (4.3) immediately follows from (4.1) and (4.2).
‘Thus, the assertion a) is proved. To prove part b) of the theorem, we first note
that under the conditions of part b), there exists a subsequence {ax:k € N} C
{nk : k € N} such that

Miny
4.6, as k— oo
(4.6) i Too
; £20/p-1) 1/p-1
@ ”h(.l/ < Miaver.
. e .
Mg M(nm)

Let f = (fu,n € N) be the martingale from Lemma 2.2, where
M
(o)
@8 o
My
Applying (4.6) and (4.7) with \x as in (4.8), we conclude that (2.8) is satisfied, and
hence by Lemma 2.2, we obtain that f € Hp.
Using (4.8) with Ay as in (4.8), we get
I’/ll 1 MM
(o) {ar)
(4.9) J)n,(c,..) < Z M]/;’_’ =0 M;,;]_ as k — oo.

Jexsl v

Next, applying (2.10) with A as in (4.8), we obtain
Tl

Sanf = Sa, + MU% 0nn,, Diem

2 M) for Loy \ Kax)+2, and

In view of (2.4) we conclude that |Day—»,,

(4.10) My {2 € G |Dasmsty| 2 Man }

Moy b {T@\an 1} 2 M3
a1
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TFinally, in view of Corollary 3.5 and formula (4.10), for sufficiently large k, we can
write
WSenf = FMipe = M5 IDayll e = ISt f = Flliy

M5 Doz,
Bl

This completes the proof of part b) of the theorem.
Theorem 4.1 is proved. o
Next, we present a simple consequence of Theorem 4.1, which was proved in
Tephnadze [18]:
Corollary 4.1. The following assertions hold.
a) Let0<p<1, f € Hy and

e el
Mo’ ) by(Gony MyEE
Then

I8kF = Fllg, =0 as k= oo.

b) For every 0 < p < 1 there exists a martingale f € H, for which

1 1
wlgrfs O e
(M.. M"Y yiany

and
I1Sef = fll, . =0 as k— oo

Finally, we present a result that contains equivalent conditions for the modulus of

in terms of 2 properties of the Dirichlet kernel, which provide

boundedness of the subsequences of partial sums with respect to the Vilenkin system

of martingales [ € Hy.

C llary 4.2. The following assertions hold.
a) Let 0 <p <1, f € Hy and My <n < Mgy,. Then there evists an absolule
constant c,, depending only on p, such that
= X
15t = Sl S o o ouppD) s, (5h.7). @ <p<).

Moreover, if {n : k € N} is a sequence of nonnegative integers such that

1 1
w —,f) =0 ——m—— as k — oo,
(M inal”™ ) @y (("’kﬁ‘ (suppD, )"/ "")
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then (4.3) holds.
b) Let {ny. : k € N} be an inc; ing of ive integers such that the

condition (1.2) is satisfied. Then there ezist o martingale f € H, and a subsequence
{0+ k € N} C {ny. : k € N}, for which

1
w ( 1 -/’) =0l etk oo
Miowl "™/ H,(Gm) (st (suppDa,))'/®

and

AVli_uqul.s‘mf—)'H,,,,,‘>«:>(1 as k — co.
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