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operator with symbol @ that fixes the origin and 0 < |¢/(0)} < 1. This paper explores sufficient:
conditions that ensure all the holomorphic solutions of Schrdder equation for the compositi
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the results obtained for composition operators are extended 10 the case of weighted composition
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1. INTRODUCTION

Let D be the unit disk of the complex plane €, and let (D) denote the space of
holomorphic functions defined on the unit disk D. Recall that a holomorphic function
[ defined on D is said to be in the Bloch-type space B, for some o > 0 if

sup(1— |21*)°1f'(2)] < oo
€D
Notice that under the Bloch-type norm:
(¢B)] 17z, = 1£(@)I + sup(L — 1213215 (2),

the space B, becomes a Banach space. From the definition of Bloch-type spaces, it
immediately follows that B, C Bg for a < B and Bo C H™ for a < 1.

The Bloch type spaces have been studied extensively by many authors (see [1}, [8],
and references therein). In [§], it has been shown that the Bloch-type norm for a > 1
is equivalent to the a — 1 Lipschitz-type norm:

(1.2) 1£ll3., =~ sup(1— [21%)*7Hf (=), f€Ba, a>1.
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Composing functions f in H(D) with any holomorphic self-map ¢ of D, induces a
Jinear transformation, denoted by C, and called a composition operator on J((D):
Colf = fop.
For any u € H(D) we define the weighted composition operator uC, on 3(D) as

follows:
uCu(f) = (u)(f o).

In this paper, we study hol bi ions f of the ing Schréder’s equation:

(1.3) (Cp)f(2) = Af(2),

and of the ling wei & i

(1.4) uCpf = A,

where ) is a complex constant.

Assuming that  fixes the origin and satisfies 0 < |/(0)| < 1, Konigs [5] showed
that the set of all holomorphic ions of ion (1.3) (the eigenfunctions of the
operator C,, acting on H(D)) is exactly {o™}72¢, where o, the principal eigenfunciion
of Cy, is called Kdnigs function of p.

Following the Kénigs work, Hosokawa and Nguyen [4] showed that the set of all

i it of the
where v is the principal eigenfunction of uC,, and o is the Konigs function.

d uC, acting on H(D) is exactly {vo™}3o,,

According to a general result of Hammond [2], if uC,, is compact on any Banach space

of holomorphic functions on D i P i then all the e, ions vo’™

belong to a Banach space. Under somewhat strong restrictions on the growths of u
and ¢ near the boundary of the unit disk, Hosokawa and Nguyen [4] showed that all

the ei i vo™ are eij i of uC,, acting on the Bloch space B.

Our ¢oal in this paper is to obtain conditions under which all the eigenfunctions
vo™ belong to a Bloch-type space Bq.

The rest of the paper is organized as follows. Section 2 contains some preliminary
results. In Section 3 we present our main results iti
Theorem 3.1 i i diti ing all the ci i o™ to belong
to Bloch type spaces B, for @ < 1. Similar results for @ = 1 and @ > 1 are presented

in Theorems 3.2 and 3.3, respectively. In Section 4 we prove results concerning the
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2. PRELIMINARIES

We recall the following criterion for boundedness of the operator uC. on the Bloch-
type spaces B, (see [6, Theorem 2.1]).
Theorem 2.1. Let u be an analytic function on D, ¢ be an analytic self-map of D,
and let o be a positive real number. Then the following assertions hold.

1. If 0 < a < 1, then uC, is bounded on By, if and only if u € B, and

R
ROl G pamele Pl sEm

Y

. The operator uC, is bounded on B if and only if the following conditions are
satisfied.
(@) sup.cn [/ (2)1(1 — 121%) log r=draye <20,
(®) sup.ep [u() Rl ()] < co.

3. If a > 1, then uC,, is bounded on B, if and only if the following conditions

are satisfied.

(a) sup.cp |“'(l)|(14_yla‘,:)lp)]a——r < oo,

(8) sup,ep lu(2) | Eililin= ¢ (2)] < oo.
=

The following theorem provides a compactness criterion for the operator uC,

acting on By, (see [6, Theorem 3.1]).

Theorem 2.2. Let u be a holomorphic function on D and let o be a holomorphic
self-map of D. Let o be a positive real number, and let uC,, be bounded on B,. Then
the following assertions hold.

1. If0 < a < 1, then uCy, is compact on Bq if and only if

) =)=,
lim u(z)| = —— |/ ()] =
o )l(l —!w(z)l‘)“l‘p( J
2. The operator uC,, is compact on B if and only if the following conditions are

satisfied.

(@) lmjp(eyyon- [w/(2)I (1~ |2[2) Jog fr=pikaey = O
o

(1) oo (@) Ry 1o (2) = 0.

. Ifa > 1, then uC, is compact on B, if and only if the following conditions
are satisfied.

e
(a) Timjp(sy)on- 102 o= =
63
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(®) timyop - () k=l ()] = 0.

Remark 2.1. If in Theorems 2.1 and 2.2 we assume u = 1, then they provide a

criterion for and of ition operators C', acling on the

Bloch-type spaces Bo.

The ing two th are 1 I for our work. Theorem 2.3 is the

famous Konigs theorem about the solutions of Schroder equations (see [5] and |7,

Chapter 6]).

Theorem 2.3 (Kénigs theorem (1884)). Assume that  is a holomorphic self-map
of D such that ((0) = 0 and 0 < |'(0)| < 1. Then the following assertions hold.
(i) The sequence of functions

. er(2)
ox(z) = FOF

where @y is the k* iteration of @, converges uniformly on a compact subset
of D to a non-constent function o that satisfies (1.3) with A = '(0).

(i) f and X satisfy (1.3) if and only if there is a positive integer n such that
A=¢'(0)" and f is a constant multiple of o™.

The next theorem chb izes all the ci i of a weigh ition

operator under some restriction on the symbol (sce [4]).

Theorem 2.4. Assume that @ is a holomorphic self-map of D and u is a holomorphic
map of D such that u(0) # 0, ¢(0) = 0 and 0 < [¢'(0)] < 1. Then the following
statements hold.
(i) The sequence of functions
S u(Z)u(v(z')‘z-d-):(m_l(Z)),
where @y is the kt* iteration of @, converges to a non-constant holomorphic
function v of D that satisfies (1.4) with A = u(0).

(i) f and X satisfy (1.4) if and only if f = vo™ and A = u(0)¢'(0)", where n
is a nonnegative integer and o is a solution of the Schrider cquation (1.3)
gop=¢'(0)o.
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3. COMPOSITION OPERATORS
In this section, we obtain sufficient conditions that ensure all the eigenfunctions
o™ of a composition opcrator to belong to B, for some positive number a and for all
positive integers n.
Definition 3.1. Given a number o > 0, the Hyperbolic o-derivative of a function ¢

at z € D is defined by

1-[22)® ¢'(2)
Sy = A=lsl =),
€ T —le@P)*
For a = 1, it simply is called the Hyperbolic derivative of ¢ at z, and is denoted

by ™ (2).

Definition 3.2. Let ¢ be a holomorphic self-map of D such that (0) = 0 and

0 < |¢/(0)] < 1, and let @,, be the m" iteration of ¢ for some fixed nonnegative

integer m. Then we say that ¢ satisfies condition (A) if there exists a nonnegative

integer m such that

(1= lem@))® ¢ (@m(2))]
(1 = lem+1 ()%

for all z € D and for some fixed « > 0.

(A) e (@m ()] = < IO

Remark 3.1. If condition (A) is satisfied for some m, then it also is satisfied for all

nonnegative integers greater than m.

The following example provides a family of maps that satisfies condition (A). The
example is borrowed from [3].

Example 3.1. Consider a map v that maps the unit disk univalently to the right
half plane. This map is given by formula:

1+z
==
For any t € (0,1), define
_12)t -1
@@ =0T

1t is well known that ¢ maps the unit disk into itself for each t € (0, 1) (see [7]) .

These maps are known as lens maps.
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Tt fea

pe=1""orloy g

T L

&= |

Claim 3.1. The map ¢ satisfies the condition (A) for & = 1 and m = 0, that is,
12 (2)| < |i2(0)| for all ¢ € (0,1) and for all z € D.

Proof. Clearly, we have ¢¢(0) = 0 and

2t (' G

el =2

" 2 s
Since 7'(z) = A—a Vesee that [p}(0)] = ¢. It is known that the image of
touches the boundary of the unit disk non-tangentially at 1 and —1. Now we put

w = ~(z) = e to obtain

2 =1
(h) 2t w1
= 261w [ilwi]
lec™ ()l )
1—|z?
AP — Jwf — 17
66
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On the other hand, we have

st 12 = |wt =12 = (w* + 1){wf + 1) — (w' — 1)( 1) =

=(w' + 1)@ + 1) — (w* — 1)@ — 1) = 2(w' +T") = 2 (™ + e7%) = 4 +' costh).
2

) = e (e 2

Also, we have w' = 7'(2) = Gz aud

22 ¢t x|‘_m"m|

W) () —
lee™ (2)] el
Using z = =qune get
+
h)
e @) =
_Jw+1P—Jw—1? trt"!  d47rcos0 tr'~! _ tcosd
. 4 rtcostd) 4 rtcostd  costd’

If z € (—1,1), then 4(z) € Ry. Therefore 0 = 0 and so |p{™(z)| = t. On the other
hand, if = € D \ (=1,1), then |6] € (0,7/2). Hence costd > cosd > 0, and so
1¢"(2)| < t. This completes the proof. o

Remark 3.2. From the proof of Claim 3.1, we see that (™ (2)] -» 0 as z approaches
the boundary of the unit disk along the real-azis. Hence the composition operator with

symbol @, is a non-compact operator on B.

The followi ition, which idesa i dition for Konigs function

to belong to Bloch -type spaces, plays an important role in the proofs of our main

results.

Proposition 3.1. Assume that the operator C,, is bounded on B.., and ¢ satisfies
condition (A) for some o > 0 and for some fired nonnegative integer m. Then o
belongs to B,.

Proof. Since the operator C,, is bounded on B, there exists a positive number M
such that

(3.1) (1— 221’ (2)] < M(1 — |p(z))*  for z € D.
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For m given by the assumption, choose a nonnegative integer k such that k& > m. For

z € D, we have

(1 = 21221 (2)] = (1 = [22)* |9 (Pr—1(2))¢ (Ph-2(2))-- 0 (Pm—1(2)) (@in(2))..
= (1= |z 19’ ()¢ (9(2) - (@m—1(2))¢' (2m(2)) - (P1-2(2)) ¢ (211 (2)]-
By using (3.1), we obtain
A= zP)e(=) <

< M1 =@ [/ (2(2) 9 (Pim—1(2))2 (@m(2)-- 9 (Er=2(2)) & (11 (2)]-

Again using (3.1) repeatedly, we get
(1= [2%)°@k ()] SM™ (1 = |om(2)*) e (9 (2)) - (0r-1(2)]
Now using condition (A) repeatedly, we get
(1= [2)leh(2)] SM™|9/ ()%™ (1 = [eon(=)[)".

Thus, we have

Mm e
—lw(n),n’hmk—»w (1= lpe(2)?) < FIOEN

lim (1 — |2[?)*
k—oc

m
implying that (1—|2|2)%|o’(z)| < % Hence, o € B,,. Proposition 3.1 is proved.
o

The ing corollary provides a i ition that ensures all the integer

powers of the Konigs function to belong to Bloch-type spaces B, for o < 1.

Theorem 3.1. Suppose a < 1. If operator C,, is bounded on B, and y satisfies the
condition (A), then o™ € B, for all positive integers n.
Proof. From Proposition 3.1, we see that 0 € Ba. Let H* denote the space of
bounded holomorphic functions on the unit disk D. Since B, C H* for a < 1, there
exists « positive constant C' such that ||o|la~ < C, and
(1 = =)@ (2))] =(1 = [21)* In 0" (2) o’ (2)]
<llollz. n le™ 7 (2)]
<n |lo||s, C"1
Hence, 0" € B, for all positive integers n. o
The following theorem gives a sufficient condition that ensures all the integer

powers of Konigs function to belong to the Bloch space.
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Theorem 3.2. Let  be a holomorphic self-map of D such that (0) = 0 and 0 <
|#(0)] < 1. Also, assume that

1|z
=) log

Then operator C,, is bounded on B and o™ € B for all positive integers n.

1 —[—[
(3.2) sebon —E ()| < ¥’ (0)| forall z € D.
_I_UT

Proof. The boundedness of C, on the Bloch space follows from Schwarz-Pick theorem.

From the hypmh«is of the theorem, we have

(3.3) (1—[2]*)log 7= l |Iw (2)] < 1¢'()(1 ~ ()1 log === Iw(Z)I for all z € D.

Let k be a positive mheger then we have

[CRERIA (2)I10g1 B —(1 = 12)le’ (2)¢' (9(2)) -0 (261 (2)) | log

=(1— [2[*)1og 14 (2)¢ (@(2)) - (P11 (2))]-

T

2|

By using (3.3), we see that

(1 = [=P)leh(a) 108 =1 </ OI(L = o)) o8 ol (o)) (it (I

And using (3.3) repeatedly, we get

(1~ 2Pl Tog Ty =IO = lon()P) o oy

<2l (L= lon() 108 Ty

Since loga < @ for = > 1, we have
2

(1= Pk o 2 <a O
Hence,
v
ol B s 2 .
Jim (1= 121 [ hog 2 = (1~ e (Dl tos T2 < 4, 2D,
showing that
@9 o' < :

_
— |22 s

(1 —|z?)log 7= B

Recall that o(0) = 0. Now we obtain an estimate for o. We have

: . e N
@i = | [ e < [ 1o eac < [ o e =L

T—|tz]
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a4 [ (tow=2zy)]. = 4 [ (ton 21 ~romton)].

Next, by using (3.4) and the above obtained estimate for o, we get

(1= [2P)(e™(2)) =(1 = |21*) n |o"~(2) o'(2)|
n—-1 i
= loglogz)

2
<amn (loglog o
1 log =7

Finally, it is easy to see that the right-hand side of the last expression teds to zero as
|2l = 1. Hence o™ € ‘B for all positive integers n. o

Let us recall the Lipschitz-type norm, which is equivalent to the usual norm, defined
for function f € By, a > 1 by

=2 £ ()l

lI£ll5, = sup(1—
z€D

Next, we present results for the Bloch-type spaces B, for o > 1. We start with the
following definition.

Definition 3.3. Suppose f € B, for some a > 0, then we define the Bloch number
of f by by =inf {a: f € Ba}.

Proposition 3.2. Suppose 8 > 0. Then f™ € Bay, for all positive integers n if and
only if by ie at most 1.

Proof. Suppose " € Bg; for all positive integers n. We have to show that bp< 1.
On the contrary, assume by > 1. Then there exists a positive integer ng such that
1<1+ % < by. Now, in view of definition of Lipschitz-type norm, we see that for
any fixed positive integer Af there exists z € D such that

M < (1= |2P)PIm ()] {1 = |22/ f ()1 = (1= 2P £,
showing that
M < sup(1 = |z?)?|f (@)™ = [|/]|n,,,-
z€D

Since A is an arbitrary positive integer, we have fm0 ¢ Bg1. Which is a contradiction.
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Conversely, suppose that by < 1. Since B, C B for all a < 1, then clearly f € B.
For any fixed 8 > 0 and for any fixed positive integer n, we have

(= 228 ()] =(1 = [P Inf "~ (=) £(2)]
=a(1 = PP I~ [P (E)]
” 1 n—1
<nl 7l = 147 (Ul log =)

2 1 =
= n1— 1228 (1
nlre) @ - 1) (o) -
The last expression goes to zero as |2| — 1, showing that f" € Bgy, for all positive

integers n. g

Theorem 3.3. Let @ be a holomorphic self-map of D such that o(0) = 0 and 0 <
|#'(0) < 1, and let a > 1. If |¢™)(2)| < |¢(0)] for all = € D, then operator C, is
bounded on B, and o™ € B, for all positive integers n.

Proof. Since ") (2)| < |¢'(0)] for all z € D, by Proposition 3.1 we have o € B. So
by < 1. Therefore the result follows from Proposition 3.2. o

4. WEIGHTED COMPOSITION OPERATORS

Recall that if u is a holomorphic function of the unit disk, and ¢ is a holomorphic

self-map of the unit disk, then the o] for hted ition operator
is given by
(4.1) u(2)f(e(2)) = Af(2):

where f € H(D) and A is a complex constant.

Also, recall that if %(0) # 0, ¢(0) = 0 and 0 < |p' (0)] < 1, then the solutions of
equation (4.1) are given by Theorem 2.4. The principal cor di
to the eigenvalue «(0) we denote by v, and observe that all the other eigenfunctions
arc of the form vo™, where o is the Kénigs function of ¢ and n is a positive intcger.

Hosokawa and Nguyen [4] studied the equation (4.1) in the Bloch space and obtained

the following result.

Theorem 4.1. Let @ be a holomorphic self-map of D with p(0) = 0 and 0 < |¢'(0)] <
1, and let u be a holomorphic map of D such that w(0) # 0. Assume that operator
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uC, is bounded on ‘B. Further, for 0 <r < 1, we set
M(p) = = le(2)ls G = (e (2)e(2)] + [u(z)¢' (2)]).
ol=r 2l=r
and assume that the following conditions are satisfied:
(i) timyo1 log(1 — 1) log M (p) = co.
(ii) 10g |a,| < €log(1 — ) log My(¢),
where € > 0 is a constant satisfying e10g [|@lloo > —1.
Then vo™ € B for all nonnegative integers n.
Now we proceed to obtain conditions on the weight u and on the symbol ¢ of the
weighted composition operators uC,, that ensure g™ to belong to Bloch-type spaces
B, for some & > 0 and for all nonnegative integers n. We begin with the following

remark.

Remark 4.1. Let f be a holomorphic function defined on D. If || f'lloc < M for some
M >0, then we have
176 = 50 = | [ sr'rar] < ["1e e < a1 [ jeio
L h L

If, in addition, f also satisfies f(0) =0, then ||fllc < M.
Proposition 4.1. Let @ be a univalent holomorphic self-map of the unit disk with
@(0) = 0 and 0 < [¢(0)] < 1, and let o be the Konigs function of p. Then o is
bounded if and only if there is a positive integer k such that [/l < 1.
Proof. Suppose that o is bounded. Since  is univalent,  is also univalent (seo [7],
p. 91). Since o is bounded univalent map, there is a positive integer & such that
llekllos < 1 (see [7]).

Conversely, suppose there is a positive integer k such that llexllee < 1. Since
@(w(2)) = ¢'(0)a(z), we have

7(pk(2)) = o(p(0r-1(2)) = ¢'(0)a(¢r-1(2)) = @' (0)*o(2).

Clearly the left-hand side of the last relation is bounded, and therefore o is also
bounded, which completes the proof. o

Theorem 4.2. Let ¢ be a univalent holomorphic self-map of the unit disk with ¢(0) =
0 and 0 < [¢/(0)| < 1 satisfying |p®=)(2)| < |¢/(0)] for all z € D and for some fized
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o < 1. If u is a holomorphic map of D such that u(0) # 0 and f|u’||- < oc, then

operator uC,, is bounded on B, and va™ € By for all nonncgative integers n.

Proof. Since [[ulloc < [|[t']|sc +[u(0)| < oo and |p4=)(2)] < |/(0)], the operator uC,,
is bounded on B, for some a < 1.

Since |p~)(2)] < |¢'(0)] for some & < 1, in view of Proposition 3.1, we see that

& € B, for a < 1, and hence is Next, since @ is uni s also
Consequently, there exists a nonnegative integer & such that ||¢xflac < 1. Composing
@i—1 on both sides of the Schréder equation (4.1) from right, we get

(4.2) u(pr-1(2))f(pr(2)) = Af(Pr-1(2))-

The left-hand side of the above equation is bounded, and so is f o ¢r—.. Hence,
differentiating both side of (4.2), we get

' (pr-1(2)) Ph-1(2) fler(2)) +ulpr-1(2)) F(¢r(2)) i(2) = AF (@r—1(2)) hei (2)-

Next, multiplying both sides of the last equation by (1—|z|?)%, and using boundedness
of |/ llss, [tllss, £ o @r and f' o r, we see that there exists a constant M such that

@3) (=PI (r-1())eh-1 ()] < ML= |21 (k-2 (2)] + I (2])-

The right-hand side of the above i ity is uni y 1 ded, and the
left-hand side is bounded. Again, we @r—2 on (4.1), to get

u(pr—2(2))f(r-1(2)) = Af (pr-2(2))-

Now we differentiate the above equation, then multiply by both sides by (1 — |z|*),
and use (4.2) and (4.3) to show that (1 — [2[2)*|f"(k-2(2))¥}_»(2)| is bounded.
Continuing this process, we see that that sup,c.p(1 — |2[2)®| f(2)| is bounded, and
hence f € Ba. By Theorem 2.4, any holomorphic f satisfying (4.1) is of the form vo™
for some positive integer n, implying that vo™ € B, for all nonncgative integers n.
‘This completes the proof. Theorem 4.2 is proved. a

The foll two th give ions that ensure vo™ to belong to

Bloch-type spaces B, for some a > 1 and for all nonnegative integers n.

Theorem 4.3. Let ¢ be a holomorphic self-map of the unit disk with (0) =0 and
0 < |¢'(0)] < 1, and let u be a holomorphic map of D such that u(0) # 0. Assume
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that for a fized positive number 3
|'u(z)|ﬁ(-1_—7—% < |u(0)]  forall z € D.
Then the following statements hold.
(i) If ") (2)| < | (0)| for all z € D and for some « < 1, then vo™ € By,
for all nonnegative integers n.
(i) If o™ (2)] < |¢'(0)| for all z € D, then va™ € By, for some p > 3 and for

all nonnegative integers n.

Proof. We first prove the assertion (i). From the definition of v (see Theorem 2.4),

we have
(4 = )P lon(a)] =1 = ey LAl ()

<a- M(Z)lr)ﬁ|"(‘P(ﬂ);1‘(o;llk(f‘k—x @)l =1

Hence (1 — [2?)?[v(2)] = limk—oe(1 — [2]2)?|ur(2)] < 1. Since = is arbitrary, we have
sup(1 — [22)?|v(z)]. < 0.
2€D

On the other hand, the assumption |p("'=)(z)| < |'(0)] and Proposition 3.1 imply
that 0" € B, C H*™ for all nonnegative integer n. Therefore,

sup(1 — |z*)?|u(2)0™ ()| < o0

z€D
for all ive integers n. Considering the equi norm (see (1.2)), we conclude
that vo™ € B4 for all nonnegative integers n. This completes the proof of assertion

(i)-

Lo prove the assertion (ii), observe first that from the proof of part (i), we have
(4.4) sup(1 — |2|2)P|v(2)] < oo.
2€D

On the other hand, since |p®) ()| < |¢’(0)}, Proposition 3.1 implies that o € B, and
hence there exists a number M > 0 such that

2
B

(4.5) la(2)l < Mlog
74
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Next, using equations (4.4) and (4.5), with some constant C > 0 we have
(1 = 2P le()em (@) ={(1 — |2 H(1 - |z12)P~Pla™(2)1}
<CM(1 - |z|?)*#
= (g =)

Finally, it is easy to see that the last expression goes to zero as |z| — 1. Hence,

ve™ € By for all nonnegative integers n. Theorem 4.3 is proved. o

Theorem 4.4. Let ¢ be a holomorphic self-map of the unit disk with (0) =0 and
0 < |¢'(0)] < 1, and let u be a holomorphic map of D such that w(V) # 0. Suppose
that 8 is a positive integer and the followi Ji are

2)8  loy

) |u(z)|1—|i|)2—51 g “" <|u(0)] for allz€D
( —|'P(Z)l) o8 =TamnF

() o™ (z )I—,‘

% el

Then vo™ € By for all nonnegative integers n.

<|'(0)] for all z€D.

Proof. In view of the definition of v (see Theorem 2.4) and the condition (i), we

can write
., 2 ) 2 ju(2)u(@(2)). c—1(2)
e |z|-)”lngm)—,,lvk(z)| — (1 - 2P log = Iu(z)u(w(Z))‘ :.t(m 1(2)
2 |u(p(2))-....-u(pr-1(2))|
<(1 - |e(2)I?)? log T=Te@D? Ju(@)FT

2
<(1 = | (2)[2)? oy ——52"1— 2)])? lo
(1= |px(2)[*)" log TP (1 =[x (2)]) log
Since logz < x for > 1, we have
2
1— |21%)? log ———=|ux(2)| < 27+,
a-—|z* g(l_lzl)gl )1
So taking limit as k approaches to oo, we see that

2p+1
(4.6) =R @I < o
=T

S o=
(1 = lex(x)D?"

On the other hand, since ¢ satisfies condition (ii), in view of equation (3.5), there
exists K > 0 such that

(4.7) lo(2)] < Kloglog 7 _2

Now using (4.6) and (4.7), we get
8+1 rn
(@~ PP < 2 (togtos 2
log 2 T
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Clearly the right-hand side of the above equation goes to 0 as |z| — 1. Using the
norm defined in (1.2), we conclude that vo™ € Bgyy for all nonnegative integers n.
Theorem 4.4 is proved. (=]

This paper is based on a research which forms a part of the author’s Ph.D.
dissertation from University of Toledo. The author wishes to express his deep gratitude

to his dissertation adviser Professor Zeljko Cutkovi.
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