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Abstract. In this paper, for an one-dimensional semilincar wave equation we study a mixed
prablem with a nonlinear boundary condition. The questions of uniqueness and existence of
global and blow-up solutions of this problem are investi ing on the nonlineari
nature appearing both in the equation and in the boundary condition.
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a priori

1. INTRODUCTION. THE STATEMENT OF THE PROBLEM

In this paper, in the domain Dy = {(z.¢) € R?: 0 <z <1, 0 <t < T} of the
plane of independent variables z and ¢, we consider a mixed problem of determination
of a solution u(x,t) of a semilinear wave equation of the form:
(1.1) Lu = up — tzz + 9(u) = f(x.t), (2,t) € Dr,
satisfying the initial conditions:
(12) u(,0) = ¢(z), w(x,0) =), 0<z<l,
and the boundary conditions:
(1.3) uz(0,t) = Flu(0,8)] + a(t), u-(l,t) = B(t)u(l,t) +~(t), 0<t<T,
where g, f, ¢, ¥, a, 8, 7 and F are given functions, and wu is the unknown real
function.
Note that for f € C(Dr), g € C(R), F € CX(R), ¢ € C2([0,1]), ¥ € C1([0,1]), @, B, v €
C*([0,T}), necessary conditions of solvability of the problem (1.1)-(1.3) in the class

9The research was supported by Shota Rustaveli National Science Foundation grant No FR/86/5-
109/14.
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5.8 K
C*(Dr) are the following second order consistency conditions:
#'(0) = Flp(0)] + a(0).  '(0) = F'[sp(0)]¢:(0) + o’ (0),
£(1) = BO)p(1) +7(0), #'(1) = B'(0)(1) + BOY(I) ++(0).
Weset =Ty UwoUTy, where Ty :2 =0, 0 t<T; wo:t=0,0<e <l Ty:

(1.4)

=0 0<t<T.
Definition 1.1. Let the functions
feC(Dr), g. FeC®),

G e (o). wec(ol). o b, vec(o,T)
satisfy the following first order i it
(1.6) &(0) = Flp(0)] +a(0), /(1) = B(0)p(l) +~(0).

A function u is said to be a strong generalized solution of the problem (1.1)-(1.3) of
the class C' in the domain Dr if u € C(Dr), and there exists a sequence of functions
tn € C*(Dr) such that the following conditions are satisfied:

(1L.7) Sl — wlleyy =0, lim 1Lt = fleas,) =0,
(18) Jim (-, 0) = @lleren =0, Jim (-, 0) = Yo = 0,
(1.9) S e (0. ) = Flun(0.)] = aOll e,y = 05

(1.10) Jim flune(, ) — BCYuall,-) — 7(4)“0(,.’) =0.

Remark 1.1. In the case @ = 0 and v = 0, in Definition 1.1 we assume that the
sequence uy is such that w, €C *(Br,T1,T2) i= {v € C*(Dy) : (vs — F(o))je, =
0, (e — A)lr, = 0}.
Remark 1.2. It is clear that the classical solution u € C2(D) of the problem (1.1)-
(1.3) is a strong generalized solution of that problem of the class C in the domain
Dy

fwte that nonlinear boundary conditions of the form (1.3) arise, for instance, in
the description of the process of longitudinal vibrations of a spring in the case of
elastic fixing one of its endpoints, when tension is not subjected to linear Hooke’s law
and is a nonlinear function of blending (see [1], p. 41], as well as, in the description

of in the distri If-vibrating systems (see [2], p. 405 and [3]).

The problem (1.1)-(1.3) in the case of one-dimensional spatial variable, as well
as, its multivariate version has been studied in a mumber of papers (sce, e.g., [4]-[8],
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and references therein). On the whole, in these papers the solution u = u(a.1) of
the problems of interest are considered in the energetic spaces, when the solution
and its partial derivatives for a fixed ¢ belong to Sobolev spaces with respeet to
the spatial variables. In the paper [9], for equation (1.1) was investigated the mixed
problem, when at the endpoint z = / is imposed Dirichlet homogeneous condition.
When jumping from this case to the case of Robin type boundary condition (see
condition (1.3) with @ = ), additional difficulties arise not only of technical nature,
but also in obtaining a priori estimate of the solution, as well as, in construction of
a reprosentation of a solution of the corresponding lincar problem, which plays an
essential role in obtaining of au existence theorem.

In this paper, we study the problem (1.1)-(1.3) in the class of continuous functions
for sufficiently broad classes of nonlinear functions, appearing both in the problem
(1.1)= (1:3):

The paper is organized as follows. In Section 2, under some conditions imposed on
functions g, F,a, 8,7 appearing in equation (1.1), we obtain a priori estimate for a
strong g(n(‘r».hzed solution u of the problem (1.1)-(1.3) of the class C in the domain
Dy in the sense of Definition 1.1. In Section 3, we reduce the problem (1.1)- (1.3)
to an equivalent system of Volterra type nonlinear integral equations in the class
of continuous functions. Section 4 is devoted to the proof of local solvability of the
problem (1.1)-(1.3) in variable ¢. In Section 5, we prove & uniqueness theorem for
a solution of the nonlinear mixed problem (1.1)-(1.3). In Section 6, we consider the
question of solvability on the whole in the domain Dy, 7' < L of the problem (1.1)-
(1.3) in the class of continuous functions, as well as, the question of existence of a
global classical solution of this problem in the dowmain Doo. Finally, in Section 7, we
consider the question of existence of a blow-up solution of the problem (1.1)-(1 .3).

2. AN A PRIORI ESTIMATE OF A SOLUTION OF THE PROBLEM (1.1)-(1.3)
Consider the following conditions:

@1 Gle) = [ gl > ~Mis® M,

.
F(s1)ds1 2 —M3 Vs€R,
o

(2:2) a=7=0, BeCY[0,T]), B(®) <0, () =0, 0<t<T,

where M; = const >0, 1<i<3.
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Lemma 2.1. Let the conditions (2.1) and (2.2) be satisfied. Then for a strong
generalized solution u of the problem (1.1)-(1.3) of the class C in the domain Dy

in the sense of Definition 1.1 the following a priori estimate is Sulfilled:

- y
llelio@ey < el fllamn + callelicrwn + callvlicws +eall Gl e,

(2.3) +esl| Flle-ie@ e + €6

where ¢; = C.(I\J-,.A’[n.ﬂ‘[;;,l,T,ﬂ(U)), 1 < i < G are positive constants, independent
of functions u, f,p and b.

Proof. Let u be a strong generalized solution u of the problem (1.1)-(1.3) of the class
C in the domain Dr. Then by (2.2), Definition 1.1 and Remark 1.1, there exists a
sequence of functions un €& 2(Dr,T1,T2), such that the limiting relations (1.7) and
(1.8) are satisfied.

Denote
(2.4) fu = Ltn,
(2.5) @, nlwos  Wn = Untlwy-

Multiplying both sides of equality (2.4) by .. and integrating over the domain
D,, 0< 7 <T, we obtain

es i / (42 )edadt — / T / (G (g un)) dadt = / Fatinedzds.
Dy D. D, D,

Weset w,:t=7,0<2<l; N<7<T. Let v = (vz, ) be the unit vector of the

exterior normal to 8D;. It is easy to see that

@0 =0, 0X7<T, wr, =-1, vilr, =1,
lror, =0, Vilwy = =1, ¥lu, =1, 0<7<T.
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Applying integration by parts (Green’s formula), and taking into account (2.5), (2.7),
o) 5
and that u, €C 2(Dp,T1.T3), we can write

: / (2 )ittt / G5 )] dmdt = 5 / At / Gl i )rids
Dy Y

oD, oD,
=3 [utte—3 / ide + / Glgsun)ds — / Glos )iz,
/ Unstimdadt = / [tnstinte — (tnsting)<]dadt = & / (w2, )ikt
D,
(28)
= / natheds =/ / w2 vds+ / Unatimaclt — / Bununidt
oD, D Ty Tar

1 1
=3 [uhetz-3 / hatzt [ mstnedt = ZHrIET)
w, wo Tir

+%ﬂ(0)¢3(1) i % / Bruldt,
T
where Iy, = Iy N{t <7}, i=1,2.
In view of (2.8), the equality (2.6) we can write in the form:
5 / Sttt =2 [ tnsundt = BYET) + BOAD + [ Bl
Tir Tz,

(2.9) +/(u,’,z +u?ll)da'+2/(;(g; up)dz — /(<p3u+v 2)da: —Q/G(g; on)da.

Since up €6 2(Dr.T1,T2), we have
= - pun(0r)
/ st / Flun(0,8)] dun(0,2) = / Fs)ds
o, (] @nl(0)
0 un(0,7)
(2.10) - / Fs)ds + / F(s)ds.
#n(0) (]
In view of (2.1), (2.2) and (2.10), from (2.9) we obtain
wnlr) = e+ ud)de <2 [ Frumdzdt— BOGAWD + [ (e + vz
Wy D, wo

(211) 42 / G(g; pn)dz + 2My / w2dz +2 / ) F(s)ds + 2(Mal + Ma).
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Next, since by (2.5)

(212) ) = o)+ [ " o, )l
we have

T 2 T
lene, P < 25300) +2( [ st t) < 200+ 21 [,

implying that

(213) 3 < 2ol + 20w,

where w, is as in (2.11).
Taking into account (2.13) and the following inequalities

2fntnt < Wne + o Wfaltaion) S LNl
/ W2 dedt = / [ / u,’“dn;]llts / wa(t)dt,
B, S o

/(v?,, +43)dr + 2/5'(9: @)z < U@ lB o) + Ul + 201Gl leaDllcn)
o o

2/:"(“) F(s)ds < 20a (O Fllct-lonoLieaom < @n0) + IFNZ (o0, em )
M lnlZ, g0 + 95(0) = BOYREWD + Uiy < @M+ 1+ [BO)enl o,
HUE w0 < WU1nlIE o) + 10 E ) S loll@nllEn s
lp := maz (4Mil + 1+ |B(0)],1),

from (2.11) we get

P
Wy T) < (4MLT + 1)/w,.(t)dt + lT||f,.||“c(7’T) + lollnlZn gy + UlnlZiun
o

+2UG(1gl lenDllcws + IFNE (- ton@)iono + 2(Mal + Ms).

Therefore, in view of Gronwall’s lemma, we obtain

wa(7) £ [lTIIf..IIf;(ﬁT, +inll@nllEa wo + Ul + 201G gl el e

(2.14) HIFNE - tomtionom + 2(Mal + Mﬂ)] oxp [TEMT +1)].
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For (a,t) € Dy, by integrating with respect to variable £ € [0, 1] the following obvious

inequality

£ L
(e OFF = Jun(&0) + [ wnsen, O] < 2hune,0F +2 [ ue(a 1,
Je o

we obtain
2 'l
(215) luntan ) < 2 [l (€ OP e + 20, ).
n
By similar arguments, in view of (2.12), we obtain

. A
/ (2, Pz < 2 al sy + 2 / I / 2 (o)
o 55

.
<2ty + 2 wnlodde
Hence, taking into account (2.15), we get

2 4 0
lin O < Honlyay +4 [ () + 20 2)

S 4 2 2
(2.16) < 7lenllZa +6 e wa(0) < l@allEwe) + 61 Jmax, wa(0).

Next, taking into account (2.14), (2.16) and the obvious inequality (z:’,;
.

2i=1

i|, we obtain
llle@ny < 2lealloen + [IVGT“fu"c(ﬁ-,-) + V6llallenllcr we)
3
+VB][nll s + 20V3IGC gl leaDllE ey + VOUIFllc(1en @] 1en©D)

+2\/3I( Ml + Ma)] exp [27IT(MIT + 1)].
Finally, by (1.7), (1.8) and (2.5), passing to the limit (as # — co) in the last inequality
we get

llelo@ry < 2lellows + [W("Tilfﬂc(:j,.) + V6llallpllcr wn + VBl
+2VBIG: DN ey + VEUFlet-toonizn

(2.17) +24/3I(Mal + Ms)] exp [27'T(4MIT + 1)].

Lemma 2.1 is proved.
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Remark 2.1. It follows from (2.17) that the constants ¢;, 1< i < 6, in the estimate

(2.3) are given by

1 = IV6Tco, ca=2+/6lloco, c3=1V6Beo, ca=21V3co, c5=Viley,
6 = 2/3I(Mal + M)eo, where co := exp [2-'T(4M\T + 1)].

Remark 2.2. We give examples of classes of functions, which appears frequently in

(2.18)

applications and for which the conditions in (2.1) are fulfilled:
1. g(s) = go(s)sgns + as + b, where gy € C(R), go > 0; a,b,s € B;
2. F(s) = Fo(s)sgns + as + b, where Fy € C(R), Fy 2 0; a,b,5 € R, a > 0;
3.9 € O(R), g|(_oo,0) € L1(=09,0); 9| (g 400y = O (for instance, g(s) = exps, s € B).

3. REDUCTION OF THE PROBLEM (1.1)-(1.3) TO A SYSTEM OF VOLTERRA TYPE
NONLINEAR INTEGRAL EQUATIONS

We first represent the solution in the domain D of the following mixed lincar

problem

(3.1) Ow = wy — wew = f(z,), (2,t) € Dy,

(3.2) w(@,0) = p(z), wi(x,0)=1x), 0<z <L,

(3.3) wx(0,8) = &(t), w.(l,t)=7(), 0<t<y,
e

in quadratures in a convenient form, where =

(3.4) Fec' D). pec®@U), vec(ol), & e (o.n)

are given fi t isfying the fc ing second order diti

(3:5) #(0)=3(0), ¥'(0)=&(0), ¢'@)=50), ¥'()=7(0)

and w ¢ C?(D)) is the unknown function.
Below the solution of the problem (3.1)-(3.3) we represent in the form:
(3.6) w(z,t) = Ay (F, %7)(z,8) + Ba(p, ¥)(x,8), (x,%) € Dy,
with operators A, and By, which will be constructed in explicit form.
To this end, the domain Dy, being a square with vertices at the points O(0,0),
A(0,2), B(l,1) and C(1,0), we split into four right triangles Ay := AOO,C, Ay =

A001 4, Ay := ACO\B and Aq := AO1 AB, where the point O; (4, 4) is the center
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of the square Dj. It is known that the solution of the problem (3.1)-(3.3) in the
triangle A, is given by the following formula (see [1], p. 59):

w(z,t) = % [p(z — t) + o(z +t)]

i s
@7 5 [ wmare g [ Fendan @oeas
2 /et 2 Ja,

where Q1 , denotes the triangle with vertices at the points (z,2), (z—#,0) and (+,0).

To obtain the solution of the problem (3.1)-(3.3) in the other triangles Az, Ay and
Ay, we use the following equality (see [10], p. 173):

e -
(3.8) w(P) = w(Py) 4 w(Py) — w(Ps) + 5/ J(&,7)déar,
PP Py

\which is true for any characteristic (for equation (3.1)) rectangle PPy P3Py C T,

where I” and P3, as well as, P, and /% are the opposite vertices of that and
the ordinate of the point I is greater than the ordinates of the other points.

Now let (x.t) € Ay. Then setting
(3.9) i i=wlr,,
and applying the equality (3.8) for characteristic rectangle with vertices at the points
P(z,t), Pi(0,t—z), Pa(t, =) and Py(t—=z,0), the formula (3.7) for point Px(t,z) € Ay,

and using (3.9), we can write

) = w(P) + w(Py) — w(B) + 3 /P o run, TE I = Tt =) — (e =)

= Y, .
ylotayrotraleg [ wearsg [ Femagareg [ Femsar =
(3.10) Al }

R+ gleera) oo+ [ “orwr+ [ Femdsr, @0 €t

Here Q2 , denotes the quadrangle PP, Py Py, where Py = Py(t + ,0).
‘Taking into account that for (z,t) € Az

-~ t—z THt—T _ t THt—T _
/; , Flemasar = /u dr /_ o femas ./.-,'" /; ™ Fe e
in view of (3.10) we obtain
we(z,t) =~ (t —z) + % [t + ) + ¢/ (t — @) + (¢ + z) + (t — 7))
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. J
+5/ [Fa+t—7,7) + F—z +t—7,7)]dr
o

1 [t 7 =
(3.11) +§/ [Fa+t—7,7) = Fl - t+7,7)]dr.
Sz
Similarly, for (z,t) € A2 we get.
wy(@,t) = iyt —z) + ;—[xp’(l. +a) — @'t — ) + P(t +z) — p(t — z)]

1t =i
+§/(: [f@+t—7,7) = f(—o+t—7,7)]dr

11t = =
(3.12) +§/ [Fa+t—7,7) + e - t+r,7))dr.
[

Setting # = 0 in the equality (3.11), and taking into account the first boundary
condition in (3.3), for unknown function fi: we obtain the equality:

L

@+ O+v0+ [ Fe-nnar=aw, osi<

o
Integrating the last equality and taking into account the initial condition i, (0) =
#(0), we get

' '
() = A2(£,&7)(E) + Ba(p, ¥)(¢) := (t) —/n H(T)rif+/n (r)dr

e
(3.13) +/ m/ Fn—myr)dr, 0<t<l.

0 0
Now, iui view of (3.10) and (3.13), the solution of the problem (3.1)-(3.3) in the domain

Az can be represented in the form:

)= [ aeir+ [ wmar

- o
+[) dny A fln —mr)dr + %[tp(t +x) + ot —z)] +

1 =
(314) +—f J(§ 7)dedr, (x,t) € As.

2 Jaz,
Next, to obtain representaiions for the solution of the problem (3.1)-(3.3) in the
domains Az and Ay, we set
(3.15) iz v= w|r,
and use the above arguments, applied to obtain the equality (3.10), to conclude that

w(x,t) = fia(z+t—1)+ %[tp(z—t)—lp(zl—x—t)]
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e S
(3.16) +-/ w(r)d1+,-/ Fle.r)dedr, (zt) € As,
2zt 2Jas,
and
WD =h ) e %[‘pu — o)n eIt )]
1 pu-t—= 1 L
@a7) w3 [ v+l [ fendan @oea
b s,

Tlere O3, denotes the quadrangle with vertices P3(x.t), Pi(l,z+t—1), Pi(z—t,0),
Pi(20 — x — t,0), and Q% , denotes the pentagon with vertices P(x,t), P}0,¢ —
z), P}(t—=,0), P{(2l —z —t,0) and P}(l, x4+t —1).

Taking into account that for (z,t) € Ag

B ttr

= il Hr L abt—r
/;Lf(ﬁ.r)dfch-:/u dr/;m f(s,-r)dg+/;“_ldr/H“ J(e, m)de,

and differentiating the equality (3.16) by x, we obtain

-1)]

we(z,t) = fh(z +t—1) + % [¢@-t)+' (2

Wi ; 1 el o
-glv'(ll—r—t)ﬂf(r—t)]—§/n [fel-a—t+77) + Jl@—t+r7)]ar

(3.18) +%/‘ Fe+t-nm) —Fa—t+nn)]dr, (o)A
x+t—l

Substituting the expression (3.18) with = = [ into the second boundary condition in

(3.3), for unknown function fiz we obtain
(319)  EE)-vl-t)+(—t)— /D' fl—t+rrdr=5@), 0<t<l
And, in view of (3.2) and (3.15), we have

(3.20) 712(0) = (1)-

Finally, from (3.19) and (3.20) we obtain

_ L 2
ia(t) = Aa(f, &) (t) + Ba(e, ¥)(t) = (I — 1) +/n F(r)dr + /1_: w(r)dr

t o
(3.21) +/ dr,/ fl-n+rn7dr, 0<t<l
o o
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Remark 3.1. If w is a solution of the problem (3.1)-(3.3), then in view of equalities
i=wlr,,i = 1,2) the following

21), for the triple of functions (w, ji

(3.6), (3.13) and (:
integral representation holds:

(3.22) (w7, iz) = A(F,&3) + Blp, %),

where the actions of operators A := (A1, Az, As), B := (B, Ba, B) are specified by
formnulas (3.6), (3.7), (3.14), (3.16), (3.17), (3.13) and (3.21).

Remark 3.2. It is easy to check that in the case f € C(Dy), » € CY([0,1)), 7
C({0,1)), & 7 € C([0,1]), if the first order consistency conditions '(0) = &(0), w'(l) =
%(0) are satisfied, then in view of formulas (3.11) and (3.12) for every w,. w; in the
domain Az, and also in the other domains A;, Az and Ay, the triple of functions
(w, fir, fiz), defined by equality (3.22), belongs to the class C1 (D) x C([0,1])
([0, 1]). Moreover, the linear operator

(3.23) A:C(Dy) x C([0,]) x C([0,1])) — CH(Dy) x CH([0,1]) x C([0,1])

in (3.22) is continuous. A similar remark holds also for operator B in the corresponding
spaces of functions.

Remark 3.3. Similar to Remark 3.2, it can be shown that if the smoothness condition
(3.4) and the second order consistency condition (3.5) are satisfied, then according to
(3.6), the function w, constructed by means of equalities (3.7), (3.14), (3.16), (3.17),
(3.13), (3.21), belongs to the class C*(D;), and is the classical solution of the problem
(3.1)-(3.3).

Remark 3.4. Notice that in the case where the problem (3.1)-(3.3) is considered in
the domain Dy for T' < I, then for the triple of functions (w, fi; := wjr,,i = 1,2), the

integral representation (3.22) remains valid.

Now e proceed to reduce the problem (1.1)-(1.3) to a system of Volterra type
nonlinear integral equations. Let u be a strong generalized solution of this problem of
the class C in the domain Dr, T’ < I, that is, w € C(Dz) and there exists a sequence
of functions u,, € C?(Dy), such that the equalities (1.7)-(1.10) are satisfied. Consider
the function u,, as a classical solution of the problem (3.1)-(3.3) for

F=—=0(un) + fa, 0= o, 0 = P, &= F(izn) + @, 7= Brizn +vos
where

n = Litn, @n i= Unlug, Pn = Unt|wg,
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Hin = Unlr,, 0n = Unzlr, — F(t1n), Yo = Unalr, — Buzn.
Then, by equality (3.22), for function u, and its truncations ftin = unlr,,i = 1,2,
the following cqualities hold:

up = A1 (= 9(un) + fn, F(i1n) + @ns Bltzn +Yn) + B1(@n, ¥n),
(3.24) tin = Avv1 (= 9(un) + Jns F(p1n) + an, Buza +1n) + Bit1(9n. 1),

i=1,2.

Taking into account Remark 3.2, the equalities (1.7)-(1.10) and (3.22), and passing
to the limit in equations (3.24) as n — oo, we conclude that the triple of functions

(u, pti := u|r,,7 = 1,2) satisfies the nonlinear operator equation:

(3.25) (@, 1, p2) = Ao(u, 1, 42),
where
(3.26) Ao(u, pr, p2) = A(=9(w) + £, F(m1) + e, Buz +7) + B, ).

Remark 3.5. In view of Remark 3.2, the operator Ay defined in (3.26) acts continuously
from the space C(Dr) x C([0,T]) x C([0,T}) to the space C1(Dr) x C([0,T)) x
C([0, 7)), T < 1. Hence, taking into account that the space C*(Dr) x C([0, T]) x
CX([0,T)) is compactly embedded into the space C(Dr) x C([0,T]) x C([0,T]) (see
[11], p. 135)], we conclude that the operator

(327) Aoz C(Dr) x C([0,T]) x C([0,T]) — C(Dr) x C([0, T}) x C([0.T))

is compact.
Remark 3.6. It is easy to see that if (§,7) € Qi,, 1 < i < 4, then 7 < ¢, which in
view of formulas (3.7), (3.14), (3.16), (3.17), (3.13), (3.21), permits to consider (3.25)
as a system of Volterra type nonlincar integral equations with respect to variable ¢.
Notice that in the linear case, for this system can be applied a converging method of
Picard’s i i i in the ding spaces of
Remark 3.7. Similar to Remark 3.3, in view of (3.25) we can conclude that if u is
a strong generalized solution of the problem (1.1)-(1.3) of the class C in the domain
Dr,T <1, and the following diti

feC'(Dr), g, FeC'R),
peC*(0.0), ¢eCH0,U), a B, 7eC0,T])
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and the second order consistency condition (1.4) ave satisfied, then w will be the
classical solution of this problem from the space C2(Dr).

Remark 3.8. From the above presented arguments it follows that if the smoothness
condition (1.5) and the first order i lition (1.6) are satisfied, and if a
e)

function u is a strong generalized solution of the problem (1.1)-(1.3) of the cl

in the domain Dy in the sense of Definition 1.1, then the triple of functions (u, sz :

) is a continuous solution of the system of Volterra type nonlinear integral

equations (3.25). Using argiments similar to those applied in [9], it can casily be
shown that the converse assertion also holds.
4. LOCAL SOLVABILITY IN ¢ OF THE PROBLEM (1.1)-(1.3)

Theorem 4.1. Let the functions f € C(D1), g.F € C(R), o € C'([0,1}), v, o, 4,
+ € C([0.1]) satisfy the consistency condition (1.6). Then a positive number Ti, =

d
To(f2 9, F, 0., 8,7) < L can be found such that for T < Ty the problem (1.1)-(1.3)
in the domain Dr will have at least one strong gencralized solution u of the class C'.
Proof. In Section 3, the problem (1.1)-(1.3) in the space C(Dir) x C([0, T]) x C([0, T)),
T < 1, was reduced to the equivalent equation (3.25), where by Remark 3.5 the
operator Ap is continuous and compact, acting in the space C'(Dr) x C([0.T]) x
C([0,T)). Hence, ing to Schauder theorem, for ility of equation (3.25) it
is enough to show that the operator A transfers some ball B, (u?, 11, 48) with center
at point (u®, 4, 13) and of radius Ry > 0 of the Banach space C(Dyr) x C([0.T]) x
C({0,T)) to itself. We show that this is the case for small enough 7" < /. Indeed, in
view of Remark 3.1 and equality (3.22), the operator equation (3.25) can be written

in the form:
(4.1) (u, prr, p2) = Ao(t, pa, p2) = (6 13, 18) + A — g(u), £ (u1), Buz).

where

= M(f,07) + Bile.¥), ) = Aisa(f,0,7) + Bira (o, 9), 1,2

It is easy to see that if (%, fir, fiz) belongs to the ball Br, (u®, u, 19) and, according
to Remark 3.6, the linear operator A from (3.23) is a Volterra type integral aperator
by the variable ¢ < T, then

(4.2) 1A= 9(w), (1), B12) Nl oDy ecoirp oy < TM,
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where

0 < M := M(lglleq-rr) IFlc-—rm: 1BlcqpnR) < o,

0 ,,0 Oy
1= ||, 13 i) ey = o xeoy T+ Ho:
and Ry is an arbitrary fixed positive number, and the function Af = M (s, sz, 53) is
continuous and nondecreasing by cach of the argument s; = 0. i =1,2,3.

iking T < Th, where T := 22, from (4.1) and (4.2) for (i, fi1. iz) € Br,(u, 1. 42),

we obtain
140 (@, fir, fi2) — (u° 1y BNl Bry o anxc oy < Ros

implying that Ag : Br, (u®, p, #3) — Br,(u®, 4, 1), and the result follows. Theorem

4.1 is proved.

5. UNIQUENESS OF A SOLUTION OF PROBLEM (1.1) — (1.3)

Theorem 5.1. Problem (1.1) — (1.8) cannot have more than one strong generalized
solution of the class C in the domain Dp,T <1 in the sense of Definition 1.1, if in
(1.5) it is assumed additionally that g, F € C'(R).

Proof. Assume that problem (1.1) - (1.3) has two distinct strong generalized solutions
u! and 42 of the class C in the domain Dz, T < I. Then, according to Remark 3.8, the

wlr,, pF = u’lr,)

triples of functions (v}, u} = wllr,,ud = ul|r,) and (u?, pf :
are continuous solutions of the system of nonlinear integral equations (3.25). Setting
w0 = u? —ul, 4@ := p2 — p}, i = 1,2, and taking-into account (3.13), (3.14) and

Remark 3.4, we can write

20 == [ 1P~ Fubiwir

- [Fan [0~ atun < mrjan 0 <2<,
0 0
i

1) W)= [ IFGD - Fublrar

e

1. / dn / l9(u?) — guM)(n ~ 7, )T
0 0

-3 [ 1o — suhi(e mider, (@) € Ao (¢ <T).
G

45



S. 8. KHARIBEGASHVILI, N. N. SHAVLAKADZE, O. M. JOKHADZE
Next, since
:
) = P = [ [P+ 6 s
5
.
D= [/ ol +(utu')sws]u",
5
then assuming ', z¢},i = 1.2 to be fixed functions and setting
2 = 0
a(l).= onx [u®(z,t)l. 0<SL<T,
by (5.1) and (5.2), we obtain
:
G0 < Mo [ (189} + ()]
0
.
< Mo [ (0] + 1) +an)]dr, (s.6) € Ban{z < T,
(5:3) . :
181 < Mo [ 1)1+ wr))

< [ (8] + ) + ] dr, 0t
0

where My is a positive constant depending on g, F and on fixed functions u', jj, 4,5 =
1, 2. Similar arguments, carried out in the other domains A; N {¢ < 7'}, and possibly,
by enlarging Mo, allow to obtain the following inequalities:

t
2, < Mo [ (1) + () + ),
(5.4) (x,t) € A;N{t<T}, j=1,3,4,
.
801 < Mo [ ()] + 1§l +a(r)]dr, 0<t<T.
It follows from (5.3) and (5.4) that
.
01+ O + ) < 238 [ (8} + 18+ ar, 0 <2<

Therefore, in view of Gronwall’s lemma, we conclude that %(t) = 0, 0 < ¢ < 7', that
is, u! = u?. The obtained contradiction completes the proof of the theorem. Theorem

5.1 is proved.
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6. THE SOLVABILITY OF PROBLEM (1.1) — (1.3) IN DOMAIN Dr FOR ANY T <1 IN
THE CASEa =7 =0
Let 7 € [0.1], and let u = u- be a strong generalized solution of the class C in the

domain Dy, T < [ of the following problem

Wy — Upr = T[—g(u) + f(x,t)], (x,t) € D,
(6.1) u(z,0) = ro(x), welw,0)=r(x), 0<z<L,

uz(0,1) = TF[u(0,8)], wux(l.t)=73H)u(l,t), 0<t<T,
provided that the smoothness condition (1.5) and the following consistency condition
(an analog of condition (1.6)):
#'(0) = Fre(0)), ¢'(1) = 78(0)¢(1)

are satisfied. It is easy to see that these conditions will be satisfied for any 7 € [0, 1]
if, for instance,
(6.2) #(0) =0, ¢'(0) = F(0), ¢(1) =0, &'(1) =0.
Similar arguments show that if u = u, is a classical solution of the problem (6.1)
for any 7 € [0,1], then according to Remark 3.7, it is natural to require that the
smoothness condition (3.28) and the following equalities (instead of (1.4)) be fulfilled:

#'(0) = Flre(0)], #'(0) = 7F'[7(0)]1#(0),

') =7B0)p(1), ¥'(1) = 78'(0)e(l) + TBO)(Q).

It is easy to see that these conditions will be satisfied for any 7 € [0, 1], if, for instance,
along with (G6.2) will be satisfied the following conditions:
(6.3) $(0) =0, ¥'(0) =0, ¥(1) =0, ') =0,
Remark 6.1. Note that for 7 = 1, the problems (6.1) and (1.1)-(1.3) coincide, and
similar to Definition 1.1, it can be defined the notion of strong gencralized solution of
problem (6.1) of the class C in domain D7, provided that the consistency condition
(6.2) is satisfied.
Remark 6.2. In view of Remark 3.8, prohlem (6. 1) in the class of continuous

functions can be reduced the ing

(6.4) (uy 1, p2) = TAg(u, pa, pt2),

where the operator Ag is as in (3.27) and, by Remark 3.5, is compact.
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S.

As a conscquence of Remarks 6.1, 6.2 and Leray-Schauder theorem (sce [12], p.
375), we can state the following result.

Lemma 6.1. Let conditions (1.5) and (6.2) be fulfilled. If for any strong generalized

solution u = ur of problem (6.1) of the class C in the domain Dy for any T € [0.1]

the following a priori estimate holds:

lullem,) < M-

where M, = M.(g, [, 0.9, F.a,3,7) 15 a gati tant 1 of T, then
problem (1.1)-(1.3) has at least one strong generalized solution of the class C in the
domain Dr.

Proof. Observe first that in view of Remarks 6.1 and 6.2, a function u & C'

7} is
a strong generalized solution of problem (1.1)-(1.3) of the class C in the domain D7
if and only if it is a continuous solution of the nonlinear operator equation (6.4) for
7 = 1. On the other hand, according to conditions of the lemma, for any solution
u € C(Dr) of equation (6.4) with compact operator Ag, for any 7 € [0,1] the a priori
estimate (6.5) holds, and hence, according to Leray-Schauder theorem, equation (6.4)
for 7 = 1 has at least one solution u € C(Dr), which is also a strong generalized
solution of problem (1.1)-(1.3) of the class C' in the domain Dr.

Lemma 6.1 is proved.

As a consequence of Lemmas 2.1 and 6.1 and Theorem 5.1, we have the following
result.
Theorem 6.1. Let T < I, and let (1.5), (6.2) and the conditions of Lemma 2.1 be
fulfilled. Then problem (1.1)-(1.8) has at least one strong generalized solution of the
class C in the domain Dr, which in the case g, F € C'(R) is unique. Moreover, if
the h dition (3.28) and equalities (6.2), (6.3) are also salisfied, then this
solution will also be classical.
P._of. Observe first that if the given functions g, f,¢,%, F of problem (1.1)-(1.3)
we replace by the functions 7g,7f,7¢,7%,7F, T € [0,1], then by (2.3) and (2.18),

for any strong generalized solition # = u, of the class C in the domain Dy of the

obtained problem the following a priori estimate holds:
3
e,y < erlflemy) + carlivllerws + catlvlicws + callGlgl Im2DIE )

+estl| Flle-ie@ieon +
18
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< allfllem, + cllellcws + esllélicws + callGllgl; Iw%)llérm)
+esl| Plleq-1e0)1.ie0) + Co-
Hence, the first assertion of the theorem follows from Lemma 6.1 and Theorem 5.1.
The assertion that under conditions (3.28) and (6.3) the solution is classical, follows

from Remark 3.7. Theorem 6.1 is proved.
Remark 6.3. Notice that the existence of the unique classical solution in the domain
Dy = {(x,t) eR2:0 <z <, (k—1)l <t <kl}, k €N, k > 2, of the mixed
problem
Lu= f(z,t), (z,t) € Dy,
Uleme—1yt = @5 Utli=e—1y = ¥,
ur(0,1) = Flu(0,8)] + alt), ux(lt) = 8@)u(l,t) +(t), (k-1 <t<kl,
can be proved exactly in the same way as in the case k = 1, that is, in the domain
Dy,1 = Dy. Therefore, all the constructions of structural nature, given in the previous
sections in the domain Dy with 7' < I (such us the representations (3.7), (3.10),
(3.16), (3.17) of a solution of the linear problem (3.1)-(3.3) and the nonlinear operator
equations of type (3.23) as a system of Volterra type nonlinear integral equations with
respect to variable t) analogously can be transferred to the case of domain Dr for
any T > [. Hence, if the conditions of Lemma 2.1, the smoothness condition (3.28) for
T = oo, and the consistency conditions (6.2), (6.3) are satisfied, then for any T > 0
(in particular, for 7' = co) in the domain Dr there exists a unique classical solution
u € C2(Dr) of the problem (1.1)-(1.3). Thus, we have the following result.
Theorem 6.2. Let the conditions of Lemma 2.1, the smoothness condition (8.28) for
T = oo, and the consistency conditions (6.2), (6.3) be satisfied. Then for T =
problem (1.1)-(1.8) has a unique global classical solution u € C?(Dxo)-

7. THE EXISTENCE OF BLOW-UP SOLUTION OF PROBLEM (1.1)-(1.3)

In this section, in a special case, we show that if the conditions in (2.1), imposed
on the nonlinear functions g and F are violated, then the solution u of the problem
(1.1)-(1.3) can turn out to be blow-up. That is, a number T* € (0, ] can be found
such that for T < 7* problem (1.1)-(1.3) has a unique classical solution u, and

(1) ellown =
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This, in particular, implies that the considered problem has no a classical solution in
the domain Dr for 1" > 1"*.
Indeed, consider the following special case of problem (1.1)-(1.3)
U — ez =0, (.)€ Dr,

(7:2) u(z,0) = p(x), w(x,0)=19(), 0zl

u,(0,2) = Fu(0,8)), uz(l,t)=0, 0<t<T,
where ¢ € C2([0,1]), ©(0) > 0, % € C([0,1)) and F(s) = —5|s|*s, & := const >
di i diti similar to

0, A := const > 0, s € R, and the
(1.4), are satisfied. It is easy to check that in the case 1 = —’, the classical solution
u of this problem in the domain Dy for T = T™* is given by formula:
oz —t), (z,t)eAin{t<T*},
mt—=z), (x,t)€b2n{t<T},
73)  w@mt)={ @ —x—t)—pl) +olz—1t), (=.t)eAzn{t<T},
wmt—z)+o@l—z—t)—plz+t-1),
(z,t) € Mg {t <T*},

where
= #(0) . 1
(7.4) ui(t) = TGO 0SE<T = oy <

1t follows from (7.3) and (7.4) that the solution of problem (7.2) is blow-up, that is,
equality (7.1) is satisfied. Therefore, in the considered case, in the statement of this
problem it should be required that 7' < T"*.

Remark 7.1. In fact, formula (7.3) allows to continue the solution of the considered
problem from the domain Dp. to domain D;N {t < z+T*}, and this soltion u(xz,t)
will unboundedly increase when the point (z,t) from the domain D; M {t < x + 7"}
approaches to the characteristic ¢ — z = T, to which border on this domain by the
part of ts boundary.
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