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Abstract. In this paper we study the maximal operator for a class of subsequences of
strong Norlund logarithmic means of Walsh-Fourier series. For such a class we prove the
almost everywhere strong summability for every integrable function f.
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1. INTRODUCTION

We denote the set of all non-negative integers by N, the set of all integers by Z,
and the set of dyadic rational numbers in the unit interval I := [0,1) by Q. Tn
particular, each element of Q has the form 2 for some p,n € N, 0 < p < 2". Denote
:=1[0,27%) and Iy (2) := Iy + .

Let 1o (z) be the function defined by

ne={ 5% 201
The Rademacher system is defined by

ro(z+1) =10 (x).

(@) =ro(2"z), n>1

Let wo,wn,... denote the Walsh functions, that is, wo (z) = 1 and if k = 2" +
-+ 2" is a nonnegative integer with ny > ny > --- > n,, then

W () =Tn, (2) - Tm, (2).

Given z € I, the expansion

5
1.1) . zuaz 0y
=0
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where each . = 0 or 1, will be called a dyadic expansion of z. If 2 € I\, then (1.1)
is uniquely determined. For the dyadic expansion & € @ we choose the one for which
lim g = 0.
fis - : ;
The dyadic addition of &,y & I in terms of the dyadic expansion of = and y is
defined by
play)=xty=> |z —yul 27 *F.
k=0
If f € L (T), then by

Fo= [ 1@ wnterte
1

we denote the n-th Fourier coefficient of f.
‘The partial sums of Fourier series with respect to the Walsh system are defined by

M—1 "
Su (@i f) =3 fm)w().

m=0

For n € N let us introduce the projections

Ey (3 f) i= San (@ f) = 2" / fle)ds  (feLli(D),zel),
In(x)

and

B (3 f) = sup Ey (3| f1])-

nen

The question of almost everywhere convergence is one of the important questions in
the theory of Fourier series. It is well known that for Walsh and trigonometric Fourier
series the logarithmic means defined by
1 S Sk(f) 1
EOSLITR, o
b = E =1
have a nice vehavior, in the sense that, for cach integrable on the unit interval function
£, these meaus couverge to f almost everywhere. Thus, to examine the logarithmic
results. For

meaus is a good idea, because for the partial sums there are divergen
instance, for Walsh system it is known that for cach measurable function ¢ satisfying
é(u) = o(u\/Togu) there exists an integrable function f such that

J#r@ias <,

and the Walsh-Fourier series of f diverges everywhere (see [1]).
12



ALMOST EVERYWHERE CONVERG

NCE OF STRONG ...

The notion of Nérlund logarithmic means is similar to that of logarithmic means,

; the denominators are taken in the reversed order. More preciscly,

the difference is tha

the Nérlund logarithmic means are defined by

1 22 Su(h)
San,

AGE

L,,L

In [3, 6] it is proved that these means are much more closer to the partial smns
than the logaritluuic means. More precisely, we proved that in the function class

above (see the result of Bochkarey [1]), there exist a function and a set with positive

measure, such that the Walsh-Nérlund logarithmic means of the fanction diverge on
that set. This also says that, in this point of view, not all classical summation methods
improve the convergence properties of the partial sums. On the other hand, in [9],
the author studied the maximal operator for a class of Nérhmd logarithmic means of
Walsh-Fouricr series, where only the logarithmic means of order 2" was considercd.
cry
integrable function f. In [22], Menii¢ enlarged the convergence class of subsequences

For such subsequence we have proved the almost everywhere convergence for e

given in [9].
The stroug summability problem, that is, the convergence of the strong means

1.2) TP (as f) == ﬁz 18F @5 —f@|". =zeT, p>0,
k=0

was first considered by Hardy and Littlewood in [18], where by S7 (x, f) we denote
the partial sumns of Fourier series with respect to trigonometric system. They showed
that for any f € L(T) (1 <7 < oc) the strong means tend to 0 a.e., as n — oo,
The Fourier series of f € L:1(T) is said to be (T, p)-summable at 2 € T, if the strong
means (1.2) converge to 0 as n — oo. The (H. p)-summability problem in L;(T) has
been investigated by Marcinkiewicz [21] for p = 2, and later by Zygmund [31] for the

general case 1 < p < co.

In [25], Schipp investigated the strong (H,p)- and BMO-summability of Walsh-
Fourier scrics. Among others, he gave a characterization of points at which the Walsh-
Fourier series of an integrable function is (7, p)- and BMO-summable. This result
is an analogue of Gabisonia’s result, obtained in [4], that characterizes the points of

strong summability with respect to the trigonometric system.

The results on strong ion and of ic Fourier series

have been extended for several other orthogonal systems, see Schipp [31, 34], Fridli
and Schipp [2, 3], Leindler [20], Totik [29], Rodin [24], Weisz [40], Goginava, Gogoladze
13
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[13, 12], Gogoladze [15, 16], Glukhov [17], Goginava [10, 11], Goginava, G
Karagulyan [14] Gét, Goginava, Ki 7, 8], K [19], Oskolkov [23].
quences of stroug

In this paper we study the maximal opearator for a class of subs
Nérlund logarithmic means of Walsh-Fouricr series. For such a class we prove the
almost everywhere strong ility for every i function f .

2. MAIN RESULTS

The strong logarithmic means are defined by

LY (2 f) =

Let
(21) () g geatn) 4 ... g gann)
where
ai(n)>az()>-->ar(n) 20, r=r(n).
and
(22) md 1= geui(m 4 gana) ... p oo, 5=0,1,.,r—1.

The following arc the main results of this paper.

‘Theorem 2.1. Let p > 0 and

@3
Then
Moz 0> o} e, senm.
~, making use the well-k density due to inkiewicz and 1

we can show that Corollary 2.1 follows from Theorem 2.1.

Corollary 2.1. Let the condition (2.3) be satisfied and f € Ly (X). Then
ot
S, »
e 5 I51(5.) 1 (=) e
Jor a. ¢. x €1 and for any p > 0.
14
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10im)

=2" 4y, Y S 2 and p > 0. Then

Corollary 2.2. Let f € L, (I), m,

=@
-3

Jora. e zel.

Corollary 2.3. Let f € Iy (T) and p > 0. Then
2"—1

1 S
lu_-vz:ll

0

) = 1 (@) -0, n— oo

fora. e xel.

3. AUXILIARY PROPOSITIONS

In [25], Schipp introduced the following operator (p > 1)

ano (1277, N
V& (@)= | 3 D2y, () f (e H t+ej)dt
1=0 12-n Jj=0

Eot 1,e5:=279"%
» q
Set;
VAP (a3 £) = sup |ViP) (@i £)

The proof of the next lemma can be found in [25) (for p = 2) and in [7] (for p > 2).
Lemma 3.1. Let p > 2. Then
sup|{z € 1: VI (a1 > A} £ e @)Ul -

Set.

et yp
HP (23 f) == (; > 18 (J:;f)l") :
" m=0
Lemma 3.2. Let p > 2. The following inequality holds:
HE (23 f) < VP (z:151) -

Proof of Lemma 3.2. Observe first that for p = 2 the lemma was proved in [25]. Let
e =L Hg=001,0
Sl if j=i.
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In [25), Schipp proved that

= «
(3.1) D) = 3 Fnase D ex2 twm (tei)
=

—%«I,.. () + (m+1/2)0, (t), m <

We can write

21 yp 21 |
(32 2PHE (@i f) = {Z 18 (ur;l)l”} = sup | 3 o (2) S (@5 1)}
m=0 nt | m=0

by taking the supremum over all {ax} for which

iy 1/a
(ZI&...(:)I") <1 1p+1l/q=1

Let us assume that p > 2. From (3.1) we have

3 i (@) S (5.)
o

n—1 k
> am(2) / FEHDY Ui, (1)) a2 wm (t+ u,)rni
=0 3 k=0 =0

an—1

+ e oy o) gy
> T)I/f(u ) L

2" —1
+| > am (w)/f(xﬁrr) (m +1/2) 1y, (1) dt
=) ]
=N +J+ I3
Since
ot
DI TAVANO| B3 FAON
for Ji ve get
n—=1 )
©.3) aos [t 2o
1 3=0

x| 37 con (@) wn (£ 4 ¢5)| dt.
=0

Set,
oy
Py (2it) == ) o () wa (8).-
m=0
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It is easy to see that Iy, (t) = Iy, (¢ + e;). Then from (3.3) we have

ol
(3.4) i s/ZzJ‘*'n,, (O1f @+t + )] 1o (s 0)]
=
(D277
=%, Zzl Ay, (8) |f (e 4t 4 )] [P (a3 )] dt
=0 .

a1

P (o) / "‘221 U ()1 (ot + el e

L (zix - (I; 0 ) r) e

21
=5
=0

=0
— 1a
gr_y [(HD27", . 2
<[> D27y, () If (@t ej)dt
1=0 12 3=0
First use Holder’s i ity and - Young i ity to obtain

P=21/p+1/g=1)

o NN gny (127" e
(Z P. (12_)” 2| [ in@orae
=0 =0 2"

1/p
— o ( / 1P (x;:)p'd(.) =20 sup / Pa (s ) h (1) dt
lall, <
1

= 2P sup Za.,. (@) h(m)

1<

RN
on/y e, (Z [am(z)|") (Z;u [fm)| )

c2"/? sup |lhl, = c2"/P!
Inl,<1

IA

A

Consequently, from (3.4) we obtain the estimate
(3.3) 5 S 2VPVP 51f]), p22.
For J, we can write

H
(6) o7 Sc/]f(z—i—t«i—eu)l dt
1

=
> o (@) wen (€0) win (£)
m=0
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/Zz’ 0y, (O 1f @@+t o)l 1P (@s )l dt < e2PVa (5510]), p> 2,
r =0

‘where .
an_1

Pr(@it) == D 0 (%) Win (€0) Win (2) -

Analogously, we can write

3.9 J3 < caltHi/mm / If @+ )l dt < 2PV, (a1 fD), p =2
I.
Combining (3.2) and (3.5)-(3.7) we complete the proof of the lemma.

4. PROOF OF THEOREM 2.1

Observe first that in view of (2.1) and (2.2) we can write
() _q

A 1 15 G )P
O (@ f) < (— ; 2.1,(..,_])

I,

1p
+( Z’} nn,(n)(:j)"’) )
=0

Since for j = 0,1,...,2%() _ |

Sipam (@3 ) = Saarom (@5 F) + Waarom () Sj (22 fwgerom)

we obtain

B 1/p U\
@ < (f X ";LWT)'J) +(7-) [Sgercn (1 )]
.2

1/3 miD 1/r
LA L‘ls,(x Fuges)l”
I, [ =

Iterating the last inequality we obtain

1/1 2 atr(n)_
I @) < Z(‘"“"”) ”( 1S IS e S ;
i (= i,

N
)i
I P> P

=2 N
Fo(FE= ) [Speenaen (@ funesn -+ wae)|
=0 M

Next, since

Dok —wpe_; Dj,j=1,2,..,25— 1,
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we can write

o\ P
L® (3 ]) < 5 (’mu.)"” ( 1 28 S0 (500 00 00 ) )
CEe o) 7
&= =

1/
+E (B ) [ sso i 1D] <28 (S22 Ipenacn sl
1/ repatn e e oy v\ 1P
Gy e E (::,) P(;(E—,-Q Ex |85 (=38 gy st mwtagmiy)| ) r

Let p > 2. Then using Lemma 3.2, we can write

7=1

P
() :
aseriBo1 S (z,fwzu.rnx-<-w?-.:-->w,».“<»:_,)|

(4.2) 7

""‘"("’_"'i:" |Sj (1': fwgaron e+ Wau.(n»"l,-..;lv-)_|) |,,

1=0 g=2! ¢
aam)-1 21y =
< 230> |S] (zr;fw;.,,‘nn “-wzn.(--)w,n.“m,,)|
=0 =2
ﬂ~+l(") -1 5
< 2 (Héf‘l. ("‘ SFihgerm) * - Waeam) Woasatm) |))
1_0
Qupa(m)-1

<2 Y (MR@IN) < 200 @) (W2 @10)"
Combining (4.1) and‘ (2.2), and taking into account the condition (2.3) of the theorem,
we obtain
@3) LY @) < B @I+ VP @ilf)}, p22
Now let 0 < p < 2. Since

B, (=)< BY. (=1))
we can write
@ L9 @ ) < c{EB @l + VP @D}, o<p<2.
Finally, taking into account the inequality
Az eL: E* (@) > Al <cllfly, feL (@,

from estimates (4.3), (4.4) and Lemma 3.1, we conclude the proof of the theorem.

Theorem 2.1 is proved.
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