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1. INTRODUCTION

The paper investigates the asymptotic behavior of local probabilities of crossing
the linear boundaries by a perturbed random walk. This problem was studied by
M. Woodroofe in [1]. The goal is to extend some results from [1]

Let {en n = 1,2,...} be a of i
ra.ndom variables defined on some probability space (2, F, P) with Ele;] < co and

= Vare; < oo. Let A(z) be a strictly convex and ouncmuously d)ﬁeren:mble in
Rinnctmn and let V = Ee; < co. In [1], M. the
distribution of the first passage time in the case where the functign A(z) satisfies
the condition A’(v) > 0. In this paper, we examine the case A’(v) < 0. Denote

n

Sy=> &,

k=1
Also, define the stopping times:

%s,., T =nA(S,), n=1,2...

Ta=inf{n>21:Tp,>a}, Ra=T; —a, a>0.

Note that the family of the first passage times was investigated in the papers [2]-[5].

2. ASSUMPTIONS AND FORMULATION OF THE MAIN RESULTS

We assume that A(z) is a strictly convex and continuously differentiable function
in R with V = Eex,pu = A(v) and 6 = A'(v). For sequence {en, n = 1,2,...} we
assume that [ [¥(£)|™d < oo for some m, where ¥ is the characteristic function
of e With this assumption, for n big enough, by a local limit theorem, the sum
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S, has a continuous probability density function ps, (s), such that

@1 Pa ) = (e [2] 4000w oo
Hr’re, and in what follows, ¢ denotes the density function of standard normal
A ding to the ition of 7%, it can always be represented as

Ty = nA(S,) = Zn + en, where

Zn= Z"jxk, X = A(v) + A'(w)(ex — v),

=
en =n7(8n), 7(x) = Az) — A@) — A/(v)(z — v)-
The following two lemmas from [1] will be used in the proofs of the main results

of this paper.
Lemma A (sce [1]). The following relations hold:

1) P(ra < o0) =1 for all a > ao,

2) 72 “¥ o0 as a— oo,

3) =% L asa— oo,
Lemma B (see [1]). Under the above stated conditions, the random variable R, has
a limit distribution with density function given by

h(r):,-le(Sk >nk>1), r>0.

The main results of this paper are the following theorems.

Theorem 2.1. Let {en, n=1,2,...} be a of ind dent and i icall,
distributed random variables satisfying the condition (2.1), and let the function A
be strictly convez and continuous differentiable in @ vicinity of the point v = Ee;.
If there is

@
n=na=%+Z¢ /#

then the following asymptotic relation holds:

where Z, +z€R as a—oo,

2)h(r) as a—>oo,

ol Al

aalr) ~ e
where 6 = A'(v) # 0 and ga(n,) = %P(r, —n,Ra<1).
Theorem 2.2. Let B[A(e1)*] < oo, then under the conditions of Theorem 2.1 the
following asymptotic relation holds:

S ) s e

Plra=m) ~ i = (msz) as a—»oo.
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Corollary 2.1. Let {yn, n = 1,2,...} be a s of independ
distributed and positive random variables. Then the conditions of Theorem 2.2 are
satisfied for the sequence en = Y 6nd pn = 1172 Ty ta = inf{n: pp > e},
and =fore, the ic relation holda
)il =Y
Plta=m)~ g (B2) w a-roo,

where p11 = Eln(ya)and o = Var(inya).

Proof of Theorem 2.1. For the case 8 = A’(v) > 0, the theorem is proved in [1].
So, we prove the theorem in the case § = A’(») < 0. Defining M,, = M(a, =
{y: a <nA(®y) < a+r}, and observing that the function A in a vicinity of the
point = v has a decreasing inverse A~!, we can write
P(ra=1m,Ra <7) = P(ta =n,0 <Tr, —a < 1) = P(ra =m,a < nA(S,,) <a+r)
= P(ta = 1,87, € Mp) = P(1a > n,5,, € M,)
= /M P(7a 2,5y, € Ma|3, = y)pg, (y)dy

A-i(a)
= -/;l . P(7a 2 n|Sr, = y)nps, (ny)dy = / s La(n, y)nps, (ny)dy,

where la(n,y) = P(7a > 1|5, = ). Next, we have

galn,r) = iP(n —nR.<7)

2
T / igags) la(m, y)nps., (ny)dy = ml«x(ﬂ, Y)ps. (ny).

vinA(y)=a+r
If nA(y) = a +r is the root of equation, given that A is a strictly convex function
and A’(») < 0, then there is a unique root yo with the condition yo = v as a — oo,
such that

L
(2.2) a(n,30) = — @) 1a(n,%0)ps.. (nyo)-
According to Taylor formula for function A in a vicinity of point = = v, we have
nA(yo) = nA(v) +nA’(v)(yo — v) + (yo — v)O(n),

atr =i (24 2oy [2) + (o~ ) +mo(2),

impiying thatir = “Z°\/§ + (o — v)n(A"(w) + o(1)). Thus, we have

- pz 1 1
(2.3) va_m'ﬁ'“’(ﬁ) as a—o0.
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According to the Theorem 2.7 and Corollary 5.1 from [1], we have
(2.4) la(n,yo) — ph(r) as a— oco.
“Therefore, from (2.2) - (2.4) we obtain
9a(n,y0) ~ _A’;('u) - uh(r) (#) @ [%
%a(m, yo) ~ ~A'1(v) ph(r) (ﬂ\/-) [ a\/_"

S A) Aw) A@)

a4 (57m) » (~oavy iy \earw ) M-

Thus, we have proved that for § = A’(u) # 0 the following asymptotic relation
holds:

A() A() )
2a(n,y) TR (a‘A’(u)z h(r)-
Theorem 2.1 is proved.
Proof of Theorem 2.2. We have
e
Plra=m ~ mte (&yz) as a—» +oo.
For each ¢ > 0, we can write
o o
VAP(ra =) =i [~ aatmr)ds = v [ (7))
o
+ ﬁ/ 9a(n,7)dr = ga,1(n, ¢) + a,2(n, ¢).
From Theorem 2.1, we have

Gon(mie) =/ /o Gl =/ : e (L) njar

by T L
= w5 (52 /,, w)d = e (52) 2,
where H(c) — 1 as ¢ — oco. If ¢ — 00 and @ — oo, then we have ga1(n,¢) =

#w (%z). Thus, to complete the proof, it is enough to show that ga,2(n,c) = Q
as c — oo

Since A is a convex function, we can write

Tn=nA(§3) =nA(h+s—"
o0

<n[22AG0) + 2AEn)] = To + A,
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and

doa(nn0)= ,/5/” qa(n,r)dr = ﬁ/ dirp(r.. —n, Ry<r)dr

& ﬁ/w %[P(T, — 1) — P(ra =7, Ra>1)dr = ViiP(ra =7, Ra>c)
=‘/_1APC(T¢ —n, Ta—a>c)=VAP(ra=n, Tn>a+c)

< VAP(Tp1 < a,6+¢ < Tp < Tn-1+ Alen)) = VaP(a+c— Alen) < Tn1 < a)
o \/E/mP[a+c—A(En) < T 1 < o] Alen) = 5] 4Q(s)

= \/;./m Pa+c—s<Tai <a)dQ(s),
where d(a) = P(A(en) < 9)-

Based on the definition of en and WLLN: % 2, 0, we obtain

_ To—ms _ ] _ y Pen+=n—n#<]
hmP[——saﬁ =a|=lm Pf==emt oy

s Sov/n

o Zn —7np 2 Sn —nv %!
@9 - i P [S s o] = g P[5 <] = bt
where & is the standard normal distribution function. According to (2.5), we have
(26) Pla+c—s<Ta<a)—Pla+c—35<5.<a)—0 as n— oo

According to the local limit theorem and (2.1), there is K > 0 such that

(2.7) Pla+c—8<Sn<a)< K(s—¢).

From (2.6) and (2.7), we conclude that there is a constant M > 0 such that
oo o0
doaln,e) < vAM [ (s - 9dQ(e) < VAN [ sQ().
i3 o
Since by assumption E[A(e1)*] < oo, the last term of the above relation tends to
0 as ¢ — oo, and the result follows. Theorem 2.2 is proved.
Proof of Corollary 2.1. Given that the sequence {e, = In-y,} satisfies the condition
of Theorem 2.2, with S, =Inp, =Inm + --- +Inv, and A(z) = z, we have
to=inf{n:S, >a} =inf{n:Inm +--- +1lny, >a}
=inf{n:Iny - 90 > a} =inf{n: 9 ---9n > e} = inf{n : pn > €},
and the result easily follows from Theorem 2.2.
Corollary 2.1 is proved.
Example. Let {en, n=1,2,...} bea ol d
ial distribution with A = 1. In this

random vari having
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a
case, the sum S, = 3 e has a Gamma distribution with parameters (n, 1). Then
=
for A(z) = £, = > 0, we have
Ta = inf{n: S Sa},  p=AwE)=1,
=Vare; =1, §=A"v)=—1.

Een

So, by Theorem 2.2, we obtain

i
P(ra=n) ~ —=0(z a— oo.
( ) ﬁw( ) as
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