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Abstract. The present paper is devoted to the estimation of parameters of the so-called
Discrete Analog of the Generalized Ezp tial Distribution (DGED, in short), introduced
by Nekoukhou et al. (Commun. Statist. Th. Meth., 2012). We derive conditions under which a
solution for the system of likelihood equations exists and coincides with the maximum likelihood
(ML) estimators of the DGED. An approach for approximate computation of the ML estimations
of the unknown parameters, based on Fisher’s accumulation method, is presented. A simulation
study is also illustrated. Some statistical properties for two special cases of the DGED are provided.
We also propose a linear regression-type model for estimation of the parameters. Finally, we fit the
DGED to a recal data set and the results we compare with those of two other discrete distributions.
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1. INTRODUCTION

In this paper we consider the problem of estimation of parameters of the so-called
Discrete Analog of the Generalized Ezponential Distribution (DGED, in short),
introduced by Nekoukhou et al. [10]. The DGED, which is a two-parameter discrete
probability distribution, has some interesting statistical properties and is more
flexible for modeling data compared with some well-known discrete distributions.
It is of interest to study statistical inferences for this model. However, it should be
noted that, the lack of the closed formulas for probability mass function (pmf) and
cumulative distribution function (cdf) is a drawback to the use of DGED.

Nekoukhou et al. [10] considered some distributional properties of DGED, obtained
ML estimators for the parameters with the help of Newton-Raphson algorithm, and
established some properties for two special cases of DGED. In addition, they applied
DGED for modeling rank frequencies of graphemes in the Slavic language (Slovene).

This work was supported by Quchan University of Technology under the Grant # 9463.
84



ON THE PARAMLETERS ESTIMATORS FOR A DISCRETE ANALOG ..

The main purpose of this paper is to consider statistical inferences for DGED,
including estimation of the unknown parameters by using ML method, investigation
of statistical properties for some special cases, as well as, an application of the
DGED io fit a real data set in biology and comparison with two other discrete
distributions.

Model DGED. The probability mass function of DGED is given by the following
formula (see [10]):

PU-PI" i

(1.1) folz) = = 5
where
(1.2) co=3 p(1—p)!

v=1

is the normalization factor, 8 = (p, &) is an unknown parareter, and
0e0:={0=(pa): 0<p<1 a>0}

Throughout the paper, we will use the following notation. By X" = (X, ..., X,,)
we will denote a random sample (independent and identically distributed random
variables) from the distribution of a random variable X with the distribution given
by (1.1), the corresponding observed sample (a realization) will be denoted by
z" = (%1, .., Zn). Also, we will use the following notation:

k(2:0) = lo— (@ — 1), h(z;0) = In(1 - p¥),
1 2 s=1

@0 = (), 80 =,

¥(z:6) = dz + (o - 1) Xzl

The rest of the paper is organized as follows. In Section 2, we derive conditions under
which a solution for the system of likelihood equations exists and coincides with the
maximum likelihood (ML) estimators of model (1.1). In Section 3, we describe an
approach for approximate computation of the ML estimators of unknown parameters
for model (1.1), based on Fisher's accumulation method, supported with a simulation
study. Section 4 contains some statistical properties for two important special cases
of DGED. In Section 5, for a special case of DGED when p is known, we establish
some properties of the estimator for a parametric function and employ a linear
regression-type model to obtain an estimator for the parameter . In Appendix,

some applications of DGED are provided.
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2. ML ESTIMATORS

In this section, we derive conditions under which a solution for the system
of likelihood equations exists and coincides with the maximum likelihood (ML)
estimators of the model (1.1).

Theorem 2.1. The ML estimator of the parameler 8 = (p, ) of the model (1.1)
based on a sample X™ is determined from the following system of moment equations:
{ Eo [k(e; ﬂ)% =5 -

Eq [h(&;6)) = h"(6)
where k"(6) = % 31, k(=;0) and h"(0) = 3 i, h(z:: 0).

Proof. By (1.1) for the logarithm of likelihood function we have
(2.2)

((x™;6) = L(X™:6) = n ]| fo(Xe) = (3 X:) mp+(a—1) 3" In (1-p%) ~nlne.
=1 =1 i=l

(2.1)

So, the ML estimator of the parameter 4 is a solution of the estimation equation:
ol(X";0) _

06;
Differentiating (2.2) with respect to parameter p, we obtain

R P ILBICE )y et

where

(2.3) 0, i= l, 2, 9] =D, 32 = Q.

(2.3) é%’ = By [k(¢;0)].

From (2.3) - (2.5) we obtain the first equality in (2.1).
Next, differentiating (2.2) with respect to parameter a, we get

(25) ai(x 9) Z]n(l pX.‘) 1"1——
where
1 ey
(2.7) e Ey[h(£;0)].
From (2.3), (2.6) and (2.7) we obtain the second equality in (2.1). Theorem 2.1 is
proved.

Now we proceed to prove that the solution 8 = 8, = (ﬁ}‘),-:;,g of the system
(2.2) (if it exists) is the ML estimator of the unknown parameter 8. To this end,
we introduce the matrix of the second derivatives:

2
Y RPN . T
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and show that the matrix §" = I'Q"J}‘ 'j=1 15 negative definite. We first prove two

lemmas,
Lemma 2.1. Suppose that the solution § of the system (2.2) (if it exists) satisfies

the following conditions:

Ey [1(£:6)] = %"(6)
By [6(£;6)] = 67(0)

{ Ey[n(&:0)] = n~(6)
(2.8)

where 7 (0) = E,_l y(x::8), v"(0) = )...;:-1 U(z;;8) and 5“(6‘) =15"  6(xi;6).
Then the elements of the matriz Q,, are given by
@y = —n Varo (k(&:0)
(29) @t = Q1 = —n Couo(k(&:6), h(&;0))
0z, = —n Vare(h(.f;&} :
Proof. From (2.4) and (2.6) we obtain
02 n, - & 2 e AT
Qi = P = (L8 - (152)) - n T(0) — n (@ - 1) 700,
2 » 2 n e
= ul_a;(:;pa) o:(x a)_ "S ﬂc 1m )( # )-nau(a),
2

0’! x"
Q% = “(c, c. )

After some algebra and simplification we get

Qfy = ~n Varo(k(&:6)) +n(a - 1)(Es [n(€:0)
Qts = @ = —n Coug ((€:6),h(£:0)) +n(Eo
Q3 = -n Vare (h(¢;0)).

- 7)) +n(Eo[0(&:0)] - 57®)),
8(6:6)| - 70)),

Since by assumption the solution (7, &) of the system (2.1) satisfies the conditions
(2.8), the result follows. Lemma 2.1 is proved.
Lemma 2.2. Assume that the conditions in (2.8) are satisfied. Then, the matriz
Q" with elements given by (2.9) is negative definite.
Proof. It is enough to show that @'l‘l < 0 and det(Q") > 0. In view of the first
equality in (2.9), it is obvious that é’fl < 0. To establish that det(Q™) > 0, we
write det(Q") = §11Q22 — (Q12)2 Now the inequality det(Q™) > 0 follows from
(2.9) and Cauchy-Schwarz’s inequality. Lemma 2.2 is proved.

As an immediate consequence of Lemmas 2.1 and 2.2 we have the following
result.
Theorem 2.2. If the solulion of the system (2.1) satisfies the condition (2.8), then
it coincides with the ML estimator of the parameter 0.
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3. APPROXIMATE COMPUTATION OF ML ESTIMATORS

In Section 2, we have shown that the ML estimators of the unknown parameters
of the model (1.1) coincide with the solution of the system (2.1). However, it is
not easy to obtain a closed form for the solution (2.1). In this section, we propose
an approach for approximate computation of the ML estimators by using Fisher’s
accumulation method. We refer the readers to [7] (p. 88) for details concerning
Fisher's accumulation method.

Let 8(0) = (p(0), «(0)) be an initial value of the parameter 8 = (p, a). Following
[3], for z =0,1,2, ... we can use a recurrent formula to obtain (z+1)'" approximation

as follows:

T,
61 63+ 1) =0+~ TENs, j=1,2 6:(0) = p(O), 62(0) = a(0),

_( Iu(6) 1)
0= ( 20 I«Ew})

is the Fisher’s information matrix for one observation X; (put X), = z and n = 1),
and also

where

Ui(6) I.2(6) In(6) UL(0)
U2(0) Ixn(0)|’ In(0) Ua(0))

where U, (0) = a—l%"—l and Us(#) = -—(-5‘,—1 are contribution functions, given by
U1(6) = ~n[Es[k(&:0)] - B0, Ua(6) = —n[Eo[n(&:0)] - 7"(0)].

Using formula (3.1), we introduce the following iterative algorithm (cf. [3]).
Algorithm. '

1. Generate data based on Markov Chain Monte Carlo (MCMC) method.

2. Use (3.1) to calculate 8;(2) for j =1,2; 2=0,1,2,....

3.1f|6;(2+1)—6;(2)| < € (where ¢ is a small positive number), then 0;(2+1) = §
is the desired ML estxmat.or, otherwise go to the step 2.
Simulation. In order to support the above stated thcoretical results, we propose

T:(0) = T2(6) =

a simulation study. We apply the MCMC method to generate random samples
from the model (1) (for details about MCMC, see [6]). To simplify the numerical
calculations, we consider a truncated version of the random variable X, by restricting
the possible values to 100 (cf. [3]).

Let 6p = (p = 0.6, = 3) be the true value of the parameter 8. We do
simulation for 1000 times to illustrate the behavior of the ML estimators. Namely,
for simulation study, we consider M = 1000 (M is the number of iteration),
N = 50,100,200 (N is the sample size), and £ = 0.0005.
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By the above described Algorithm and with the help of the stalistical software
R, the point estiinates (means) and the mean square errors (MSE) are calculated

and tabulated in Tables 1-3.

Table 1. For N =50

f Mean MSE

=00 0.9668736  0.1345077

[ a=3 3.24448654 17.6600100
Iteration 131 -

Table 2. FFor N = 100

Mecan MSE
p=0.6 0.8080627 0.04329008
a=3 1.1838108 3.29854332

Iteration 54

Table 3. For N = 200

Mean MSE

p=0.6 0.7667197 0.02779546
a=3 1.0895628 2.77626936

Iteration 18 —

From Tables 1-3, it is easily seen that with increasing sample size the MSE decreases.

4. SpECIAL cask T

Nekoukhou et al. [10] showed that in the special cases where @ = 2 or a = 3,
the model (1.1) possesses some important statistical properties. Specifically, they
proved that under some regularity conditions the ML estimators of the parameters
of the model (1.1) are consistent and asymptotically normal.

In this section, we obtain more interesting properties of the estimators for these
special cases, For simplicity, we consider the case o« = 3 (the case & = 2 can be
treated similarly), and denote 8 = p = (p,3). To state the main result of this
section (Theorem 4.1), we first list the regularity conditions (cf. [2]).

C1. There exists a compact subset IT of the parametric set ©, which contains an
open neighborhood of the true value pg of the parameter p;

C2. The distributions IP, are identifiable,, that is, f,, (z) # fp, () for all py # p2
(p1,p2 € H) and for all x € Supp P, = {z: fy(x) > 0}

C3. The function f,(z) is continuous in p € ©, and has continuous first and
second order derivatives in p € H;

C4. The distributions P, have common support, namely the set Supp P, does

not depend on p;
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Cs. Put V(z:p) = 3_'%;";&1. Then for p € H and z € Supp P, there exists a
function G(z) (independent of p) such that |V (z: p]| < G(=z), and E,[G(X;)] < oc;

2
C6. The Fisher information f(p) = E, [W] is continuous in p and satisfics

the condition 0 < I(p) < ce.
Proposition 4.1. The regularity conditions C1-C6 are satisfied for the model (1.1)

with a = 3.
Proof.The conditions C1 — C4 and C6 can easily be verified. So, we have to verify
only C5.

Since H is a compact set and V(w;p) is continuous in p € H, for a fixed z and
p € H it can be concluded that [V (z; p)| is bonnded by a function G(x), which itself
is bounded for any fixed point £ . We examine the behavior of G(z) for sufficiently
large . We have

(4.1) V(z;p) = -{}% = (%)2

where

(;fg) dfp(x) _ =™ (1 -p7)? 23?'?’_1(1"173) h 2 4 _ O
() = op e o P (c,,)3 P A-pT)" o= B’
and

(4.3)

2 o F=T7q w32 2 _2x-2 - ! o
(x) = Lt ¢;= = &= l)pc’ﬂ P7)" _ 2z°p c,.(l 8 F‘;-F Tt 1(1_;,:)..
‘2.'— 2 . Fe—1 =1
2Il2£—1) PP (1—p%) i 2x"p = p iy p: gzpﬁx—l(l p:r:) g zp:r—l(l - pz):z

cp
ks - (227" (1 - p7)) + “ S (- - (2 ) PP,
Sincel<p<landz>1 wehave 0 <p* <1 a.nd = > 1. Now, substituting

(4.2) and (4.3) into (4.1) and using some calcula.tlons, a polynomm.l (based on x)
is received for the V'(z;p). This polynomial may be considered of degree at most
_j'f Therefore, for sufficiently large z, we obtain G(z) = O( T':JFF) Also, it is

casy to sce that E [ﬂkﬁ'] < co. Thus, the condition C5 is satisfied. Proposition
4.1 is proved.
Theorem 4.1. Under the regularity conditions C1-C6, the likelihood equation
(X" p)
op

has a unique solution pp = Pn(X™) in H (H is a subset of © whose closure H

=0

is also contained in ©). Moreover, P, is a ML estimator for p and possesses the
Jfollowing properties:
(1). Pn is consistent and asymptotically normal;
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(11). i is asymplotically cfficient, that is, we have

ity = /n(pn—p) Ay Ee N(0,I7(p)), (-2 means convergence in distribution).
(111). For the mnoments of B, we have

(4.4) E,[@%] — E,[€"], forany k2>1

According to (4.4), for k = 1 the property of asymptolic unbiasedness is also

satisfied, namely we have

SN
(IV). If 6(p) is a differentiable function on B such that ¢'(p) # 0, then
- - (o @)
(4.3) V(o) - o) < € € ¥(0, 500 ),

where ¢'(p) = %.

Proof. The assertions of the theorem follow from Proposition 4.1 and a general
theorem of mathematical statistics (see [2], [5]).
Remark 4.1. For k = 2 from (4.4) we obtain
= 1+0(1)
E, —-p) = —F.
P(p“ p) n!(p}

Also, the relation (4.5) can be stated in the following form:

E,(4(5) - #())? —”}Eﬂ (1+0(1)).

In the examples that follow we consider two special parametric functions of p,
and usc Theorem 4.1 to cstablish some statistical propertics for the corresponding

estimators.
Example 4.1. Let $(n) = fy(z) = ZLPL, where z € N is fixed. In view of

Theorem 4.1, we have _
S5 () 43 fp(z), (l) means convergence in probability).

From property (IV) of Theorem 4.1, we have

V(5. (@) - ful2)) = N (0, [%E:;F).

Now we evaluate [;,(x). To this end, observe that

@s) 2 5, [v65 -],

where

1 A -p7)?Y

p*(1-p*)? o
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is the so-called contribution function of x. Hence, from (.6) we get
@ = L@ [Up¥ -] - BUEY -],

Next. in view of property (III), for £ = 1 we have E, [j';,;ﬂ(u,,] = fp(x)+ o(-‘“), and
for k= 2, we get

2
@ Byl ) = @] = 20 o2,

Finally, using the following formula
Ey (5. (@) = £o@)* = Var, (5. @) + (Bplfza )] = fy(a))
from (4.7) we obtain
1 { ;{;r}]g
Var, [ fea {:r}j ~ T

Example 4.2. Let ¢¢(p) = Fp(t) = 1 = Fy(t) = 1, fo(z) for all t € (0,).
Applying Theorem 4.1. we get

F,.(t) = F,(1), for all t € (0, 0).

From property (IV) of Theorem 4.1, we have

( ‘[7(?)]’)

VA(T5,@) - Tp(t) < N(0, =75

where
Fyt) = £ (@) = Ea[UE™ (1 -0 )] -1tz - B[U (1 - p%))] o0
= (120~ Fol®) - B[U (¥ (1 - 2],
and 14 is the indicator function of a set A.

Next, using property (III) of Theorem 4.1, for the cases k = 1 and k = 2, we

obtain

E,[F5, ()] = Fy(t) + a(%).

B0 - Fyof = T 1)

Therefore, we have

[F,(t))

V“"P(Fﬁn ("')) = I(p)

Remark 4.2. The results obtained in Proposition 4.1, Theorem 4.1 and Examples

4.1 and 4.2 can also be stated for & = 2 (generally for any a).
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5. SPECIAL cAsE 11

In this seclion, for a special case of DGED when p is known, we establish
some properties of the estimators of a parametric function of uuknown o, and
employ a linear regression-type model to obtain an estimator for the parameter
a. Specifically, we find ML estimator and uniformly minimum variance unbiased
estimator (UMVUE) for a parametric function of a.. Also, we fit a linear regression-
type model and then propose the least square (LS) estimator for the parameter
X,

Iistimation of a parametric function. Consider DGED model (1.1) with known
p and unknown . Here we are interested in the estimation of the following parametric

function:

'

(5.1) T(e) = fa

Coy

r i - - .
where ¢, = ”)'; , and e, is as in (1.2). As an estimator of function 7(a), based on

a sample X" = (X3, ..., X,,) from (1.1), we consider the statistic:
4 4 ny _. 1 "_“ = xl
(5.2) M(X") =~ %mu pXe).

Theorem 5.1. Under the regularily conditions C3%, C4 and CG, the slalistic M(X™)
defined by (5.2) is UMVUE and also an efficient estimator for the paramelric
function 7(a) defined by (5.1).

Proof. The density f,(x) we write in exponential form (see (1.1)):

(5.3) f,.(a:)=exp{(lnp]:r+(rx—1)ln(1 —p‘)—lnc..,}.

It follows from (5.3) that the statistic Y 1, In(1 — p™) is a complete sufficient
statistic for the model (1.1) when p is known. Hence applying the well-known
theorems of statistics (see [7] and [2], Ch. II, Sec. 26), we conclude that the statistic
M(X™) defined by (5.2), is the UMVUE and also an efficient estimator for the
parametric function 7(«) defined by (5.1). Theorem 5.1 is proved.

Rermark 5.1. Tt follows from Theorem 5.1 and Theorem 26.2 of [2] that the statistic
M(X™) is ML estimator for parametric function 7(ex). Therefore we can conclude
that M(X™) is consistent and asymptotically normal estimator for 7(c).

A regression-type model. In this subsection, we explore a linear regression-type
method for the model (1.1), and then provide a LS estimator for the unknown
parameter . To this end, we first take logarithm from both sides of (1.1) to obtain

(5.4) In fo(z) = Inp* + (e — 1) In(1 - p*) — Inca.
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Obviously, we have (with z = ;)
(5.3) falzi) = Fu(@i) = Fa(ziz1), i=1,2,...,n
Substituting (5.5) into (5.4), we get
(5.6) ln (Fa(z:) — Fa(zi-1)) =Inp™ + (@ = 1) In(1 - p™) — Inc,.

Observe that the rclation (5.6) cannot be used to fit a regression-type model,
because its left-hand side depends on the unknown parameter a. To solve the
problem, we use the empirical distribution function (edf):

1 n
Falz) = D 1xiga)s
i=1

and consider the variables (cf. [4]):

1-p*
p!i

= In (Fa(zi) — Ful(zi1)) +1n( ) = (n(1 - 7))+,

where 3 = —Incq.
Now, we can suggest the estimation of a by regressing ¢; = (In(1 — p*))a + 3
on In(1 — p*i) as follows:

(5.7) G=(In(1=p™))a+8+e,

where e; ~ N(0,0%),i=1,2,...,n and z = (1, ..., Zn) is an observed (non-random)
sample. Thus, we can use (5.7), to estimate the parameter a by regressing ¢; on
In(1 = p™).

Note that in [8] was used a different method, based on empirical characteristic
function. It is of interest to consider the LS estimator for the model (5.7). As an
unbiased LS estimator & of the parameter o we consider the statistic:

iy (In(1 —p*) — In(1 - p)) - (ce—E)
> (In(l - p=) — (T - p7))*

As an example, consider the data set 1,9,23,17,13,12,10,9,9,3,6 (see [?]).
Taking p = 0.7, and using (5.8), for this data set we obtain the point estimate
a = 4.995138.

For the considered model, we have the following result.

(5.8) &=

Theorem 5.2. The LS estimator & of the unknown parameter o is consisient,
asymptotically normal and is the best unbiased linear estimator.
Proof. The proof is similar to that of Theorem 1 of [4], and so is omitted.
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scdffx)

10

()

04 06 08

Puc. 1. Fitting of the truncated DGED to the data of Table 4. The
dashed line is the ecdf of data and the solid line is the fitted cdf.

6. APPENDIX

As it was pointed out in Introduction, Nekoukhou et al. [10], fitted the DGED
for modeling rank frequencies of graphemes in a Slavic language (Slovene). Here, we
fit the DGED with a real data set in biology. In addition, we compare the DGED
with two other discrete distributions. To this end, we first consider the following
example.

Numerical Example. The data in the following table represent the systolic blood
pressures (mm HG) for 27 women at age group 45-74 years old (see [11]).

For this data set, the ML estimates for the parameters p and ¢, the maximized

log-likelihood (In L), the Akaike information criterion (AIC) and the p-value can be

calculated to obtain the following numbers:
p=0.9666823, & = 121.4182461, InL = —119.550,

AIC = 243.100, p — value = 0.9543.

Moreover, we can run an informal goodness of fit test (see the plots of the edf and
fitted cdf of the systolic blood pressure data in Figure 1).

Now, we compare the DGED with Discrete Distribution Generated by Levy’s
Density (DLD) (see [4], Eq. (2)) and Power-Law Distribution (PLD) (see [12], Eq.
(1)). Notice that the DLD and PLD are unimodal discrete distributions (supported
on the set of natural numbers N), which can be used for modeling phenomena
arising, for example, in biology.

Table 4
110 116 121 126 131 136 142 151 165
116 124 131 137 142 151 158 168 183
123 130 140 147 153 160 167 177 190

95




D. FARBOD

For data given in Table 4, can be calculated InL, AIC' and the p-values when
fitting the data using DIL.D and PLD (see also [1], Scc. 6). The corresponding results,
together with the above obtained results for DGED, are tabulated in the following
table.

Table 5
Meodel | DGED DLD PLD

InL | -119.550 | -124.921 | -127.391
AIC | 243.100 | 251.842 | 256.783
p-value | 0.9543 | 0.1964 | 0.1006

The results presented in Table 5 show that, based on InL, AIC and the p-values,
the DGED provides a better fit than DLD and PLD. Figure 1 shows a good fit [or
the DGED as well.

Acknowledgment. The author is thankful to the anonymous referee for valuable

comments and suggestions, whicl led to considerable improvement in the original

manuscript.

CIICOK JUTEPATYPhI

[1] H. Bidram, M. H. Alamatsaz, V. Nckoukhou, “On an extension of Lhe exponentiated Weibull
distribution”, Communications in Stalistics - Simnulation and Computation, 44, 1389 - 1104
(2015).

[2] A. A. Borovkov, Mathemalical Statistics, Gordon and Science Breach Publishing, translated
from original Russian edition, (1993).

[3] D. Farbod, K. Gasparian, *On the maximum likelihood estimators for some generalized
Pareto-like frequency distribution™, Jourual of the Iranian Statistical Society (JIRSS), 12,
no. 2, 211 - 233 (2013).

[1] D. Farbod, “Some statistical inferences for two frequency distributions arising in
bioinformatics”. Applied Mathematics E-Notes, 14, 151 — 160 (2014).

[5] D. Farbod, “Asymplotic properties of maximumn likelihood estimators lor a generalized Parelo-
type distribution”, Journal of Contemporary Mathematical Analysis, 50, no. 1, 44 - 51 (2015).

[6] G. H. Givens, J. A. Hoeling, Compulational Statistics, Wiley and Sons (2005).

[7] G. L Ivchenko, Yu. Medvedev, Mathematical Statistics, Mir Press, Moscow (1990).

[8] I. A. Koutrouvelis, “Regression type cstimation of the parameters of stable laws”, Journal of
American Statistical Association (JASA), 75, 918 928 (1980).

9] K. Mohammad, H. Malekafzali, V. Nahapetian, Statistical Methods and Health Indices, (in
Persian}) (1994).

[10] V. Nekoukhou, M. H. Alamatsaz, and H. Bidram, “A discrete analog of the generalized
exponential distribution”, Communications in Statistics - Theory and Methods, 431, 2000
- 2013 (2012).

[11] S. Port, L. Demer, R. Jennrich, D. Walter, A. Garfinkel, “Systolic blood pressure and
mortality”, The Lancet, 355, no. 9199, 175 — 180 (2000).

(12] A.Rzhetsky, Sh. M. Gomez, “Birth of scale-free molecular networks and the number of distinct
DNA and protein domains per genome”, Bioinformatics, 17, no. 10, 988 - 996 (2001).

IMocrymura 10 susapsa 2017

‘96



	86.jpg
	87.jpg
	88.jpg
	89.jpg
	90.jpg
	91.jpg
	92.jpg
	93.jpg
	94.jpg
	95.jpg
	96.jpg
	97.jpg
	98.jpg

