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Abstract. Let S be the space of functions of regular variation and let w = (wi, ..., wn),
w; € 5. The weighted Besov space of holomorphic functions on polydisks, denoted by
By(w) (0 < p < +0oc), is defined to be the class of all holomorphic functions f defined

o . y1{s, D
on the polydisk U™ such that 1115, ) = fym DS [To; 225N < 4o,

where dmgn (2) is the 2n-dimensional Lebesgue measure on U™ and D stands for a special
fractional derivative of f. We prove some theorems concerning fractional boundedness of
the generalized little Hankel and Berezin type operators on the spaces By(w) and Ly (w)
(the weighted Lj-space).
MSC2010 numbers: 32A36, 45P05, 47B35.
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1. INTRODUCTION AND AUXILIARY CONSTRUCTIONS

Numerous authors have contributed to the theory of holomorphic Besov spaces
in the unit disk in C and in the unit ball in C" (see, e.g., J. Arazy et al. [1], K.
Stroethoff [17], O. Blasco [3], A. Karapetyants and F. Kodzoeva [10], K. Zhu [19],
and references therein). The study of holomorphic Besov spaces on the polydisk is
of special interest. Since the polydisk is a product of n disks, one would expect that
the natural extensions of results from one-dimensional case would be valid here,
but it turns out that, in general, this is not true. Thus, the results for polydisk
generally are different from that of for di ional disk and for n-di ional
ball. For example, let us recall the classical theorem by Privalov stating that if f €
Lip a, then K f € Lip a, where K f is a Cauchy type integral. It is known that the
analogue of this theorem for multidimensional Lipschitz classes is not true (see [9]),

even though its analogue for a sphere is valid (see [14]). In many cases, especially
when the classes are defined by means of derivatives, the generalization of functional
spaces to the polydisk is different from those on a unit ball. For generalization of
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holomorphic Besov spaces to the polydisk we refer to [8]. Let.
U ={z=(21,...,21) €C", |3i| <1, 1< j <n}
be the unit polydisk in the n-dimensional complex plane C", and let
T =dz=(21,...y2n) € CL x| =1, 1 <a<n)
be its torus. We denote by H(U™) the set of holomorphic functions on U™, by
L>(U™) the set of bounded measurable functions on U", and by H*(U™) the
L of L®(U™) isting of holomorphic fi
Let S be the class of all non-negative measurable functions w on (0, 1), for which

there exist positive numbers Mo, u, Muw, (7w, 4w € (0,1)), such that

my < wlr) <M,

= w(r)
for all € (0,1) and A € [qu, 1). Some properties of functions from S can be found
in [15]. We set

—ay =
and assume that 0 < , < 1. For example, weSifw(t ) =t* with -1 < a < .
In what follows, for convenience of notation, for ¢ = (¢, ..., (u) and z = (21, ..., z),

we set
»

w(l=le) = Hw,<1—|z,| Do L= = T bl == T =)
=1

i=1
Further, for m = (my, ..., mn), we set
(m+1) = (my +1)...(mp +1), (m+1)! = (my +1)L..(mp + 1)),

-l =Ja-lzhm™.
=1

Throughout the paper, we assume that w; € S, 1 < j < n. Using the results of [15]

wi(t) = “xp{flj(t) + / : 5’(“)@},

one can prove that

where 1)(u), €(u) are bounded measurable functions and —au,; < &;(u) < Bu, 1
Jj < n). Without loss of generality, we can assume that 7(u) = 0. Then %% <
wj(t) < t7P«s is always true. Now define the notion of fractional differential.

Definition 1.1. For a holomorphic function f(z) = E(k) —(0) ax2*, z € U™, and
for B=(B1, .., Bn), Bj > —1, (1 £ j < n), we define the fractional differential D? f
as follows:
T(B; +1+kj)
T(Bj + 1)T(kj +1)
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5 . (
uhere I() is the Gamma function and T = T ... T .

fa=(1...., 1), then we put D?f(z) = Df(z), and hence

Df(an...., )=Lﬂllaz‘+w

If n =1 then D is the usual derivative of function zf(z).
Next, we define the weighted L, (w) spaces of holomorphic functions.

Definition 1.2. Let 0 < p < +00 and f,, < -1 (1 < j < n). We denote by Ly(w)
the set of all measurable functions on U™, /ar which
2|
W= [, e o o) < 40
Note that Ly(w) is the L, —space with respect to measure w(1—|z|)(1—|z[2)~2ding, (z).
Using the conditions imposed on w (w; € ), we conclude that this measure is
bounded. Now we define the weighted holomorphic Besov spaces on the polydisk.

Definition 1.3. Let 0 < p < +oc and f € H(U™). A function f is said to be in
Besov space By(w) if

Wil = [ DS

From the definition of differential Df it follows that || - ||, () is indeed a norm.
Notice that it is not necessary to add |f(0)|). This follows from the fact that here
DJ =0 implies f = 0 for holomorphic f. As in the one-dimensional case, By(w)
is a Banach space with respect to the norm || - ||, (). For properties of weighted

dmg,(2) < +00.

holomorphic Besov spaces we refer to [8].

Toeplitz operators on various spaces have been studied in a number of papers
(see [5, 6, 18, 11], and references therein). Notice that some problems concerning
Toeplitz operators can be solved by means of Hankel operators and vice versa. In
the classical Hardy theory of holomorphic functions on the unit disk there is only
one type of Hankel operator. In the B,,(:;;) theory we have two: the little and big
Hankel operators. The analogue of Hankel operators of the Hardy theory here are
the little Hankel operators, which were studied by many authors (see [13, 2, 8)).

Now we define the little Hankel operators. Denote by B,(w) the space of conjugate
holomorphic functions on By (w). For an integrable function f on U™, we define the
generalized little Hankel operator with symbol g € L®(U™) by

1O =Pulsne) = || S rramanc
a=(a1,...,0n), @5 > 1,1 <j<n
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Observe that in the special case n = 1, @ = 0 we have the classical little Hankel
operator (see [20]). In Section 2 we study the boundedness of little Hankel operator
on By(w). For the cases 0 < p < 1 and p = 1 we have the following results.

Theorem 1.1. Let 0 <p < 1, [ € By(w) (or [ € By(w)) and g € L=(U"). Then
hy(f) € By(w) if and only if j > o, /p—2,1 < j <.

Theorem 1.2. Let f € Bi(w) and g € L°(U"). Then h3(f) € Bi(w) if and only
ifaj>au,-21<j<n

The result in the case p > 1 is different from those for the cases 0 < p < 1 and

p = 1. Specifically, in this case we have the following assertion.

Theorem 1.3. Let 1 < p < +00, f € Bp(w) (or [ € By(w)) and g € L=(U"™). If
aj > au,, 15 < n, then h5(f) € Byp(w).

The Berezin transform, which is an analogue of Poisson transform in the spaces
AP(a) (respectively, in By(w)), plays an important role especially in the study of
Hankel and Toeplitz operators. In particular, some properties of these operators (for
example, compactness, boundedness, etc.) can be proved by means of the Berezin
transform (see [17, 12, 20]). On the other hand, the Berezin-type operators are of
independent interest.

In Section 3, it will be shown that some properties of Berezin-type operators of
the one-dimensional classical case remain valid in more general situations.

For an integrable function f on U™ and for g € L®(U™) we define the Berezin-
type operator as follows:

2)a
531 = S pepyee || KR r@utcman o
In the special case & =0, g = 1, the operator By will be called Berezin transform.
‘We have the following statcments.

Theorem 1.4. Let 0 < p < 1, f € By(w) (or f € By(w)) and g € L=(U™"), and
let aj > aw,/p— 2,1 < j < n. Then BS(f) € LP(w).

Theorem 1.5. Let 1 < p < +00, f € B,(w) (or f € By(w)) and g € L¥(U™),
and let & > aw,/p—2,1 < j < n. Then B3(f) € Ly(w).

Theorem 1.6. Let f € By(w) (or f € By(w)) and g € L®(U"). Then Bi(f) e

Li(w) if and only if &; > @y, 1< j <o

Note that, in general, the operators h;' and B‘; are not bounded.
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To prove the main results, we need more notation and some auxiliary results.
Observe first that the partition of the polydisk into dyadic quadrangles plays an
important role (see [4, 16]). Define

Al Largz <

1
AAJ,,J={2,€U:1—QT’5|21[<1 zhﬂ' e

AL,y =438y,

w(li+1
1,

where k = (ki,..., ku) (kj 2 0), ; are some integers such that 2% < I; < 2%+1-1
(12 <n)and 2% = (2M,...,2%). Then Ay = Ay, 1, X... X Ay, 1, and Ay, can
be defined similarly. The system {Ay,} is called the system of dyadic quadrangles.

Proposition 1.1. Let i, be the center of Ay, 1< j < n. Then
1= 1[Gk | = 1= 1G] G € Ay, and (=[G )* < Akl 1S5 <.

Note that the partition of the polydisk into dyadic quadrangles is important for
obtaining some integral estimates particularly in the case 0 < p < 1 (see [16]).
Besides, the system {Ay}, as well as the system {A},}, are coverings of U™, and
one can observe that the interiors of Ay, for distinct indices are disjoint, which is
no longer true for Aj;. On the other hand, {Af,;} is a finite covering in the sense
that any quadrangle {A};} has i jon only with a finite number of
quadrangles from {Ay,}, and this number is independent of k and I. Also, note that
such partitions for the spaces AR were used for the first time by F. A. Shamoyan
[16] in the study of weighted classes of functions in the polydisk and unit ball in C".
The following two lemmas will be used in the proofs of main results of the paper.

Lemma 1.1. Let m = (my,...,mna) and B = (By,...,B), B; 20,1 < j < n. If
f € By(w), then

) varsc | & = L= dmant),

G

where mj > &y, —1 (1< < n).
The proof follows from [8, Lemma 2.5].

Lemma 1.2. Letn=1. Assume thata+1-6,>0,b> 1 andb—a—2> a,.
Then

QKR wfi- )
(2 i hoap S e

The proof can be found in [6, Lemma 2].
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2. LITTLE HANKEL OPERATORS ON Bp(w)

In this section we study the little Hankel operators hg on By(w) (0 < p < +0).
We denote the restriction of ||| »(u) to By(w) by ||- |13
case0<p<1.

() @nd first consider the

Theorem 2.1. Let 0 < p < 1, f € By(w) (or f € B"(w)) and g € L=(U™). Then
R3(f) € Bp(w) if and only if o > e, /p—2,1< j <.

Proof. Let 0 < p < 1, f € B*(w) (or f € B'(w)), g € L®(w) and a; > o, /p —
2,1 < j < n. We show that h{(f) € B"(w). Denote I := ||h,‘f’f||ﬂ,(”). Using the
partition of the polydisk, Lemma 3 of [16] and Proposition 1.1, we can write

v —112)e »
7 M( [ S o dman (o) dman(z) <

n T=ToPP27 \ g IT= 5053

-~ P
00 [, s D (L, a0 ) <

1— = op
o [ 2ok Zl‘gxgl|f<o|v|A..,:|"|,‘__%dmzn<z> -

(g |o+ap

w(l= |21~ |27~

A con dman(z),

0T g VOFIORP - ) |

where (. is the center of Ay, and C(g) := C(a, p,w)||glec-
Recalling that the system {A{} forms a finite covering of U™, by (1.2) and
Lemma 4 of [16], we obtain

I< C(y)z e LA = Geal) w1 = [Gr) <

COLT [ 1P G GmRnao) <
) / e s ,,;;1 e
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Next, using (1.1) and Lemma 1.2, we get

x — lt2ym g
1<cl) / = 11 5 ( i ;(11_ ,':1’"3,,|Df( )l'fmzn(t)) dman(() <

b — |ty P
o [ 2L ,z}f;l 3 ( /A e t'g’mﬂ Dse )l'l"lzn(f)) dman(¢) <

w(l— 1— |t o4
o [ 2D b DO

dman(() <

3 ,,W(l = Itk = )™ _
C(ﬂ);é’%”ﬁ(m 1Akl T = [ty 2) =242

" -, 2\p-2+2
O3 max IDIOPQ = a7

An application of Lemma 4 of [16] yields

ISCOTY ] Db ) dman() <

(1 - [z[2)2-»

2
/. ﬁwmnmh(x) Gl gl £ 0y
showing that h(f) € By(w).

Conversely, let hg(f) € By(w)forallg e L=(U™). Forr = (*1,0s7n), 15 € (0,1),
and k = (ky,..., kn) we take the function
@1 F&)=Cl=r)™, k> (@u, +2)/p, 1< 5 <,
where Cy = (1 — r)*w=/P(1 —r), and observe that 1 £+l B, w) ~ const.

Consider the following domains

={2j € U|arg2j| < (1-1;)/2; (4rj ~ 1)/3 < |3] < (1 + 215)/3}

and U™ = U x ... x U, Taking the function g,(¢) as 9r(¢) = exp~¥8/-() ang
a polydisk V" centered at (r1,...,s) with radius of (1 — r1)...(1 — ) such that
V" c U™ (here 7" is the closure of V™), we get

1- (1-
Vet [, ot () kst Oiman ) e
Let
max |1 %¢| = 1 - 2{],
CeV
then we have

N A=r) [ W=l ([ i) Y’
15 1,00 2 Cuop G [ ol ([ (Y o, )

e | ol bt
w(l=1) Jya - zc|(a+3)r —|z))2-»

2 Ci(a,p,w)
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Assuming the opposite that (a; +2)p < aw, for some 7, for the corresponding
integral with w;(t) =/, we get

/ o —laDdman(®) oy i oy 2p <o,
on [T 2+ 0(1 — 2l

and

/ w(1 — |z])dman(2) )< log
v

|, if (o +2)p=o00,+2.

» T3 [ -0
Consequently,
(1 = rj) st (1 —rj)leat2r 1
A - o
=) — 00, i) lugl_”—ma a 1;—1-0,
and the result follows. a

Corollary 2.1. Let 0 < p < 1, a; > ey, /p—2,1 < j<nandg€ L=(U™).
Then the operator hy is bounded on By(w), (and on B,(w)). Moreover, we have
kg (A1l < CIFN- Ngll-

In the case p = 1 we have the following result.

Theorem 2.2. Let f € By(w) and g € L=(U™). Then hi(f) € B (w) if and only
ifoj>au,-2,1<j<n

Proof. Let f € By(w), g € L®(U™) and G := C(a,w)|gleo- Then by (1.1) and (1.2)
we have

1450, < Dok | 0= IPUCQN [ i <

w1 i), wi=d) [ (="
[ ot <& [ F0 [ D s«

i Onn() = [ 0= PYIDIO | ”(fl—'_'fg'rir(%

Using (1.1) again, we get

=~ w(l — ¢
WDl <€ | D Oldmant) = Gl
showing hg f € By (w).
The proof of necessity of the condition a; > au,, 1 < j < n is similar to that of
in Theorem 2.1, and so, we omit the details. [m]

Corollary 2.2. Let a; > aw,, 1 < j <n and g € L®(U"). Then the operator hy
is bounded on B, (w) and [[h5(H)Il < CIIf - llgll-

For the case 1 < p < 400 we have the following result.
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Theorem 2.3. Let 1 < p <+, f € By(w) (or f € By(w)) and g € L*(U™). If
@5 > ey, 1 j < n, then h3(f) € By(w).

Proof. By Hélder inequality and (1.2), we get

e < [, SR @1 @ranao <
(= )17

[lgllee S dman(€) < |lgllso x
a-leReuEr 2 (1= J€)° dman () \
(), e amnte) ™ (|, Saeet) s
Clogllgllee ([ (L= lEB)UrE 4
o (S anat0)
Setting C' = C(a, q)||gll and using (1.1), we can write

_w(l-|a)

1Dy = / T DI ()P dman(e) <
W=l [ - kRelEP

on [T P97 Jyn ™ T o3
o [ (= lel)dman(e)dman(€)
c [ 1rora-pr [ LohnnCion@. o

= — |e[2yp—2-7/:
& [ a-prisep LR oy ) -

[} @ itps-oietata - (P dman(e).
On the other hand, by (1.1) we get
1—le2)m ?
wor < ([ S=E 1o dman) <
— [¢12ym=6(1 — |#/2)6 P
(/) O T o dmant) <

c dman (§)dman(2) <

Iz
_ |2 ym—é ,
[, e = s dmaut) S,

for some & > 1. Therefore, we have
2)m—8+8 (=l
I OIB@ <6 [ora-wrr-sppop [ G

(1 = |¢ldmaa(€) / 1- li2y™5+5| D s(e)p <
= = ( 8)p/g~!
C/ Mdﬂhn E)dEn(t)<

=T
- s DOty

mz)m—l-n-(l ele

/r:,,_(l ~ Ity ”'lef(t)I”W(l = [t]) dman(t) = £, (w).
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Thus, [|h5(Fl5,w) < CallfllB,w)l9llco, Where Cs = Cy - CP(m, 6,q), and the
result follows. o

Corollary 2.3. Let aj > aw,, 1 < j < n and g € L™*(U™). Then the operator hy
is bounded on By(w) and [Ihg(/)l,w) < Csll /1|3, (w) - l9lleo-

3. BEREZIN-TYPE OPERATORS ON Bj(w)
In this section we establish the boundedness of Berezin-type operators By on

weighted Besov spaces Bp(w). We first consider the case 0 < p < 1.

Theorem 8.1. Let 0 < p < 1, f € By(w) (or f € By(w)) and g € L*(U™), and
let aj > aw,/p—2, 1< j < n. Then Bg(f) € LP(w).

Proof. Let f € By(w) or f € By(w). We show that B, f € Ly(w). To this end, we
estimate the corresponding integral:

= 2
(a-ess [ QKOO ) i)

|1 - z[t+2a
Using the partition of the polydisk, we can write

I< gl [ (0= BP0 )

2 a P
53((1 A Qldman(0) dmane) < Ol

Cz|4+2a

A1) *Pdman(2)
2|2

x [ (1= lapyesrs - 3 e 1Ol ¢
= Claw,llee Y mex 1£(OPIALP
1 $€Bk

o)1, (A= [Geal)*Pdman(2)
x [ -l =gy L
Taking into account that p(4 + 25) > (aj + 2)p+ oy, (1£j <n), we can use
(1.1) and Lemma 4 of [16], to obtain
1< C(@p,w)lglleo Y, max [FQPIL = [Gral)* (1 - [Ges)
o CE€BLy

sOwalol [ 7P

Now we estimate the last integral. Using Lemma 1.1 we obtain

— |#]2ym
I < Clw,0,p)lgllos / e Cllil) ( /u - %Wf(tﬂdfmn(t)) dman(0).
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Then, in view of the following inequality

— #|2ym &
( %ll’f ‘“'””""('))
T P
< Z(/ (11—t|2]|'")+1 D5 )Idmg"(t))

(1= Jtral?)™

< max |Df(t)[P| AP —————
‘,‘Z,::le‘&,,l Al |1 = Egag](m+0p

and Lemma 4 of [16], we conclude that

1< 0w ap)lglly max [DE)PIAI( - )™ x
K1 t€BRL

(L= 21 = ¢)-2
| ) <
(1 — Jtkal)

Clos sl 3 max DS - W™ G ey =
Clw, a,p)llglloc ;;rgx IDFE)Pw(1 = Itra) (1 = ltial?)P <
[, s a0,
Thus, we have
1< C(w,ap)lgllollfll5,)»

and the result follows.

Remark 3.1. The condition aj +2 > ay,/p,(1 < j < n) in Theorem 3.1 is
also necessary. Moreover, if the operator B is bounded on L”(w), then a; +2 >

(0w, +2)/p, (1< j < ).

The proof is similar to the corresponding part of Theorem 2.1, and we omit it.

Corollary 3.1. Let 0<p<1, a; >, /p—2,1<j<nandge L®{U"). Then -

the operator B is bounded on By(w) (and on Bp(w)).

Theorem 3.2. Let 1 < p < +00, f € By(w) (or f € By(w)) and g € L=(U™),

and let &; > o, /p—2, 1 < j < n. Then Bg(f) € Lp(w).
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Proof. Let f € By(w) or f € Bp(w). Our aim is to show that B, f € LP(w). We
have

C(e,m,p)
(1 — |z[2)(e+Dpla

< [ W MDPUQPUOP 4, () < o, - s

|1 = zE[2e+d

IBE(@IP < (1= [z e+

[ G MEPOF 4 6) < o, 1~ a7 o

LGP [ (= 0 - D
st A i)

= Olem )t~ P lal | 0= MY 54D 1P
(1< [gpye=-Dele ‘
x-/U" W'hﬂen@)dmlu(‘)
Therefore
" 5 (1= gfy—-ela
185 ey = | @ Py-s+orppeop [ S=KOE
2\
) D s imantrtmntt) < [ 1~ iyvn

— |zi[2)x—(6=1)p/ =
IDf)P /u . %mp_—mﬁdmh(ﬂd’"zn“)

= [rra-py-ssompsep [ LA

s 1—[t)|Df ()P
'/un(l =1t 6+6’(1i(m,)!nl_+m_ll)w, dman(t)

=/ w(1 - [H)|DfE)P

n (-t

and the result follows. ]
For the case p = 1 we have the following result.

(1= [ail?)=2=C=10/4 gy ()

dman(t) = || £l B,(w)ll9lleC(a, 7, p),

Theorem 3.3. Let f € By(w) (or f € By(w)) and g € L®(U™). Then By(f) €
Ly(w) if and only if o; > au;,1<j<n.

Proof. Let f € By(w) or f € By(w). Our aim is to show that Bgf € Ly(w). We
have
a o (= eiP)*1£©)] - l9(€)] dman(€)
i<ty [ DOl nn©

o (A-[eP) [ (- H)mIDF)
<ottt —1afy# [ 2RO [ SOt e
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Then, using (1.2), we get
—1£]2)e — 2ym (T — ]
1By < / / (1—[¢%) / QBRI )y oy e ()

|1 - €22 Jya [1—#[™H1(1 - [22)2-=-2

e AL WP [ wll = Jel) dman(=)amn(€ldman(t
= [.a-wemere [ g [ L= Gfa(i= |z

2a,
< [ a-teryopo Gl s
=/’ |Df(t)lw(1 — |t]) dman(t)
: =1
showing that B‘;f € Ly(w).

To prove the necessity of the condition @;j > aw,, 1 < j < n, we proceed as in
the proof of Theorem 2.1. We again use the described technique of selection of f,.
by (2.1) for p=1 and V", and take f.(¢) = |f-(¢)|, to obtain
ot > [ wta= a1 [ s Ot it

(- / w(l = |21 = |77+ , 2
wd=1)(1-r)? |1 = rzPatd G

As in the case of little Hankel operators, assuming the opposite that ¢j < au, for

= 11151  lglleo

2 Ci(ew)

sowme j, we get a contradiction. a

Corollary 3.2. Let aj > aw;, 1 < j < n and g € L®(U™). Then the operator By
is bounded on L'(w).
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