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1. INTRODUCTION AND MAIN RESULT
In this short note, wa study the eigenvalue distribution for the following differential

equation.
—1"(z) +plz)y(z) =wip(z), O<z<m

(1.1) ¥w) =0, y(fw) = 1;
ylmw) =0,
where
M
(1.2) @) =3 pm(z) +raelz)
=t

with ras(z) € CM| .|u. «]; Most importantly,
(1.3) Pmlz) =3 cnklfa 1 0) (ENE — T p)™/ml, m 2 1;
&

(1.4) Polz) = Y calis, (@),
]

where {Tmk}ms € (0,F) and {empulma € R. We are dealing with a plecewise
€MD, x] potential function p(z). For each m, T,k are distinct and p(z) has a jump
at m-th derivative at zm s We assume nontrivially the {Zms}m,s € (0, §) has J
dmmhmdmmﬁnﬁmﬂthMummwmm:my to tha
middle paint located in (0, ), then our method doesn’t apply in this case,
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It is asked by Carlson, Threadgill and Shubiu [1]: How are the singularities of p
manifested in the distribution of cigenvalues? Being considered as a function of w,
y(miw) is an entire function of w. Moreover, the zeros of y{w;w) are the Dirichlet
eigenvalues of the system (1.1). To study the asymptotics of Dirichlet eigenvalues,
we examine the zeros of entire function y(mw). We try to answer the question
from the point of view of complex analysis in this particular setting. In [1], &
distribution of the eigenvalues with coefficients in terms of spectral invariants is
described in [1, Theorem 4.4] applying the Newton's method. In this paper, we
try to charactorize the distribution of tho cigenvalucs cxplicitly in torms of the
singularities themselves and find the composites of the Dirichlet eigenvalues. Can
one really hear the singularities of the p ial pf The next statement is the main
result of this paper.

‘Theorem 1.1. Let {w;.]jr.; be the rearrangement of the singular points {Z, & b,k
such that 0 = wy <y <oy < ... < wy <wyyy i= F. There erist exactly 27 + 2
subsequences of the zeros of y(m;w), denoted as {z,,}, where [ = 1,2,...,27+2,
such that

L5 ~
(1.5) o AT
3T42

(1.8) U {2} = {2}

L=l
in which {z.} are the zeros of y(mw).

In particular, we recover the point set {ws};_, from the subsequences of Dirichlet
eigenvalues corresponding to each of these points. We may refine the asymptotics (1.1)
to next order by the methed in [8, p.37]:

ngw
(1.7) o LT
This is the cnly eigenvalue asymptotics containing the information on the position
of the singularities of a given potential function known to the author. We may
compare the result in [6, 7, 9]. However, in [6], they considered a much general class
of potential functions. One may sum up all of the subsequences to obtain the classic
eigenvalue density as in [7, 9].

‘We start with the asymptotic expansion of the solution of (1.1) which we refer
to [1, 2]. The following asymptotics holds:

(1.8) ylmiw) = @ - ;# f; plt)dt+

g
= -1

+0(1), asmy =+ 2oo in Z;

+ﬂ($].u'm-iiminz.

g ap
+2 3 (~1)™[2]) "™ cos{wm} Pua(m)+2 3 (—1)™ (2] 72 sinfwr} Q-1 (x)
LT m=]
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Mol

#2 3 (U™ x{ 3D camasin{ulr = 22amu]})
=l

Fim, b ST

h!,_i
+2 z ™l 3 camiincos{ufr—2zam s al O,

Fawm 41,8
if w € C and
Pyo(z) == j:p{h)dh: Pra(x) = @am-1(pi ) — @1 0), m EN;
Q) := Gam(p; =) + G2m(p; 0), m € No;
M

am(pix) = [ 3 pulz] + rae(2)] ™), rae(z) € CH[0, %),
k=m 7

This is essentially the (3.e) in [1, p. 84]. However, we deal with w € C in this paper.
The only difference is in the bﬂs O-term in the end ut'(l.s}. We refer the proof to
[1, p-84], and also [9], which comes from the repeated integration by parts. We will
apply the Wilder's theorem to (1.8) which is & sum of asymptotically hyperbolic
geries to obtain the asymptoics of the Dirichlet eigenvalues.

2. THe WILDER'S THEOREM

There is an asymptotic periodic structure [4, 5, 8] within the zero set of the
asymptotically hyperbolic sum, say, the asymptotic expansion (1.8). We refer to
[5, 8] for a comprehensive study on the zero distribution theory of this kind. To be
more convincing, we start with the following theorem. One can bypass this part if
familiar with the entire function theory, The indexing in this section is independent
of the others.

Theorem 2.1 (Dickson [4]). Let
(2.1) R(oya,h) :={z=z+iyeCllz| £ h y € [a,a+4}

(@2)  Ny(R{a,s,R)) = { the number of zeros of g(z) in R{a, 5,1)},
in which i
9(z) =3 Ay,
uﬁerul'=3+iy,d.,%D,ul{ug€<*’>-;u,,, Then, there exists K > 0 such that
(1) each zero of g is in |z] < K;
(2) for each pair of reals (a, 8) with 8 >0,

(2.3) [N (R(ex, 8, K)) — 8(wn — un)/(2m)| < n—1.
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Let us acquire a more sophisticated theorem of this type. Let
"
(2.4) J(=) =3 A;™ (1 + e(z)]es,
=1

where n > 1 mdA;mdw;mmpLummbmmchthatA,#umthe
w; are distinct; the m; are non-negative integers; the functions e are analytic for
2] 2 1o 2 0 with lim,_oc €(2) = 0. When we are talking about the zeros of f(z),
mm%hshiﬂmmﬁdﬂawﬂhmhﬂwmam.

‘We set up the following quantities to the f(z) in (2.4): Let Q be the broken line
given by the &y given in (2.4) with &y, - ,&, as its vertices. The indices are labeled
counterclockwise. Let Ly be the line segment Wg,ﬂgﬂl and ¢y = arg{@, —Wﬂ.l}
in [-5, 3). Let
(2.5) &y = i,

Certain @, on Ly are assigned doubly indexed subscripts as follows: Let the convex
hull of @, Fx+1 and 7, = By + imyes in which T, on Ly; assign subscripts j =
1,:=0 o) b0 wyj 80 that wyy = Wi, Wiey = Wit and Ty are vertices of this convex
Mnndprmingmamt&dﬂmdimﬁmﬁmﬁh+imbﬂhx+
imggree. For j=1,-+- o0 -1,

o . e, il 2o O
(2.0) LH‘ I’H-Mﬁ- Fheg (“’H_whjl-lkh
which is real; nyy is the number of 7, on Luy. In particular, if Ly; in an interval
with exactly two end points, then we have ngy; = 2.

Moreover, for j = 1,-+ ,0% — | and h > 0, we define

(2.7) Vig(h) == {2| ¥(z/ex) 2 0, [R(z/ex) + pay log|2]| < h}.

Tiu(8) is defined to be a closed sector with vertex at zero of opening 28 about the
outward normal to Ly through the origin. For the same k and j and cach triple of
reals (e, 8, h), & > 0 and h > 0, the set

(28)

Rug(er, ,h) = {2] 9(2/ex) + g gz € [or, @+, [R(3/ex) + pag Jog o] < B,
where arg 2 € (g, da+) and Ry;(o, 8, h) isin Viy(h)rti5(8). They are asymptotically
logarithmic tubular neighborhoods. We refer to [4] for a comprehensive study. Now
we state the following theorem.

Theorem 2.2 (Dickson [4]). Let f(z) be given as in (2.4). Then, there exists h > 0
such that
(1) all but a finite number of zeros of f of modulus greater than rp are in
UkJVur‘
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(2) for each pair of positive reals ¢ and sq, there exists nnao = e, #0) such
that whenever a = ag and 8 2 8,
(2.9) | W ( Ry (2, 5, 1)) — slgr = wig|/(2m)] < iy =1 +e.
This is exactly stated as in [4]. The proof is in [5, Theorem 2, p.21}. We refer to
[3] for another application of this theorem.
3. Proor oF THEOREM 1.1
To apply Theorem 2.2 to the hyperbolic sum (1.8), we rewrite (1.8): It is well-known
(0] that there is a C depending on the distance to the zeros of sinwr such that
(3.1) exp [Qwn| < Cpsinfwr).
Hence, (1.8) becomes
y(mw) = [m] e M S, ,)} Imi“] f wlt)dt

42 E (1) (2] cosfurm} Pms (142 3 (=1)™ (2]~ s} Qo1 )

i
Mgl
+2 E (~1)"[2] >3 x { 3 campsin{wz — 2ram]}}

EJma ST

+2 ): (-1)"“{2»1"“" x{ 3 cmmsincos{wlz—ansaal}hs
me=) Fawmi 1w ST
w ¢ Z. Now we rearrange according to their expc 1y by the th
assumption to the following form:

y(mw) = {—!1 +0(Ger y_] JI+Z( 1)™{2] 2™ P ()
Mot
+H 3 (=)™ ] Qs () e
m=l

I 1
+ Z Cylm, w)e— =20 E Dj(m, w)et{x—3)
=1 j-J

@2) g, w2

=]
in which the Cj(m,w) and Dj(m,w) can be obtained by comparing (3.2) with (1.8).
Besides (3.2), the entire function y(x; w) is bounded near Z. Without loss of generality,
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we consider the zeros of ¥ (w) ;= wy(m;w/i) by epplying Theorem 2.2 in a suitable
strip containing the real axis. We observe the zeros of ¥(w) spread themselves
vertically along the imaginary axis, that is, the zeros of y(x;w) spread themselves
along the real axis. In particular, given the singularity sequence {Zm i}ms which
areall distinct by assumption with J elements, we let {w;}].; be the rearrangement
of {Zm,k}m.e such that
D=wp <w) <wg <... <wy < Gyp = ;
We construct following 2J + 2 successive intervals in [—x, 7]:
Ly = [—m, =7 + 2, La 1= [—or 4 2oy, =7 + 2wa), ..., Dygy 2= [—w + 2wy, 0],
Lysa = [0,7 = 2y],..., Laggr i= 7 = 2w, 7 — 2un), Lagya o= fr — 2y, ).

These intervals are applied as the polygons described previously. However, we note
that L j4q UL j4q combines to generate a séquence of zeros as described by (2.8) and
then (2.9) after observing the exponential exponents in (3.2). There are actually
2.J + 1 asymptatically rectangular ares nn duty. Without loss of generality, we take
each {L;}{7#* to generate an asymptotically rectangular area {}37}2 as described
by (2.7) and (2.8). Finally, we note that one can not identify the quantities {5}
in (2.6), because not being able to locate the coeflicients {m, } in (2.4) again in (3.2).
For our case, the quantities {e:} in (2.5) are equal to 1.

Let zeros in Ry be denoted 8 2o, [ =1,2,...,2J +2 and oy € N. Hence, (2.9)
implies that
(3.3) [Ny (Ri(er, 8, 1)) = s(an —en_r)/a] <P —14gl=1,...,27 +2,
in which 7i; = 2 by the construction of intervals {Z;)2? for all I. Here, we define
w, JH1<l<2J+2 hythewmmd{l.;}ﬁf’. Finally, it is well-known that
the zeros of y(ir;w) are simple and real [9], so (3.3) implies

nw
~ o1),l=1,...,20+2; N.
ot et A S I €
Because the zeros of y(m;w) are symmetric to the imaginary axis, we can rewrite

the equation above to be

nw
3.4 ~ +0(1),1=1,....204+2 Z.
(3.4) e b e i e i
Once again, we note that {zn,,,} U {zn,,,} is the of zexos g d by
the interval Lj4q U Liga. (m]

We may observe from (3.3) that the total number of the zeros of y(r;w) is equal

to
43 ar43

Ne( | Rifays, b)) = 3 Ny(Ri(o,8,h)) ~
=) =1
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~ Z s{un — wi-s)fm+o(1) = 2 + o(1),

whid:impllsthsmofy[wd]dmohdu{!n}ng:hﬂnlheﬁllvﬂnauymphﬁu:
2 ~ 0+ O(1),n € Z, which matches with the Counting Lemma in [9, p.36].
The bounded error term in (3.4) avoids the possible contradiction to the classic

asymptotics [9].
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