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Abstract. The Schur-Ssegd composition of two polynomials f(z) = 5%, As=# and
.
glz) = 7.5 Bj=, both of degree n, is defined by f.j{x}-’gﬂ (7 A8 1n
this paper, we estimate the minimum wnd the maxiram of the modulus of [ g{z)
611 |=| = 1 and thereby obtain results analogues to Bernstein type inequalities far
polynomials.
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1. INTRODUCTION AND STATEMENTS OF RESULTS

Let P(z) be a polynomial of degree n and P'(z) be its derivative, then concerning
the estimate of |P/(z)| on the unit disk || < 1, we have
(11) max [P/(2)] < nmax |P(3)]
The inequality (1.1) is an immediate consequence of S. Bernstein's theorem on the
derivative of a trigonometric polynomial (see, e.g., [7, 8]), and by applying the
maximnm modulus principle (see [6, 7]) to the polynomial Q(z) = z*P(1/3) one
concludes that '
(12) max | P(Rs)| < Rmax|P(a)]-
Both the inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to
the class of polynomials having no zeros in |z] < 1. In fact, if P(z) is a polynomial
of degree n having no zeros in |z| < 1, then the inequalities (1.1) and (1.2) can be
respectively replaced by

n
(1.3) max |P/(a)] < Gmax |P(2)
and
R"+1
(14) mex |P(Rs)| < T2 max | P(a)].
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8. OULZAR AND N. A. RATHER

The inequality (1.3) was conjectured by Erdds and later it was verified by Lax [,
whereas the inequality (1.4) was proved by Ankeny and Rivlin [1]. -

Given two polynomials f(z) = Fj_q 4527 and g(2) = T3, B;#’, both of degree
n, their Schur-Szegd composition is defined by

"
feot)= 3 4te.
=0 \J.
For any nth degree polynomial P(z), one can essily see that if g(s) = £7_, (i,
9(0) = Tog () d /(2) = R, then
Paglz)=2P(z) and (Po f)sg(z) = P(Rz).

In view of these observations, it is natural to look for results analogous to the above
inequalities for the Schur-Szegd composition of polynomials. Qur first result in this
direction s the following theorem.
Theorem 1.1. Let P{z) be a polymomial of degree n and let h(z) = Tieoli=? be
o polynomial of degree n haviny oll its zeros in the disk |2| < 1. Then for every
R>»1,

(1.5) B [(Pof)=h(z)| < B™|lu] max |P(2)]

where f(z) = Rz. The resull is sharp, as is shoun by the extremal polynomial
P(z)=az" a #0.

Anﬁmynfmmwngmujumbemib-dedumd&mnﬂml.luw
cases. Here we mention few of them.

The following Corollary is obtained by letting R — 1 in inequality (1.5).
Corollary 1.1. Let P(z) be a polymomial of degree n mdielh(:j=z;‘_n.'jtf be
polynomial of degree n having all its zeros in the disk |z| < 1, then
(L.6) max [P+ Ax)| < ti..lrr:}gii"(ﬂl-

The result is beat possible and equality in (1.6) holds for P(z) = az®, a #0.

Remark 1.1. For h(z) =37, ('J.')j:’, Corollary 1.1 reduces to inequality (1.1).
Whereas if we take h(z) = ©]_, (}‘);J in Theorem 1.1, we get inequality (1.2).

If in Corollary 1.1 we choose h(z) = 2™ + =*, where k =0,1,--- ,n =1, then we
obtain the following extension of Visser's inequality (see [on.

Corollary 1.2. If P(z) = £}_; a;2? is a polynomial of degree n, then

ol + 8] < mosPGY, K=0,1,2,m 1.
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The result is sharp.

By a different method, Corollary 1.2 was recently proved by 8. Gulzar [3].

Next, we state an analog of Theorem 1.1 for the minimum modulus of A polynomial
P(z) on || = 1, when there is & restriction on Lhe zaros of P(z). More precisely, we
have the following result.

Theorem 1.2. Let P(z) and h(z) = T7_o1;2¥ be polynomials of degree n having
all their zeros in the disk |2] < 1. Then for R > 1 the following inequality holds:
1) min |(P o /) h(2)| 2 Bl uin |P(2)],

where f(z) = Rz. The result is best possible and equality in (1.7) holds for P(z) =
az™ a#0.

Remark 1.2. A result due to Arin and Dawood |2, Theorem 1] can be obtained
from Theorem 1.2 for a suitable choice of h(z).

Next, letting R — 1 in (1.7), we get the following result.

Corollary 1.8. Let P(z) and h(z) = 13 {;27 be polynomials of degree n having
all their zeros in the disk |z| < 1, then
(1.8) l?‘lli_ﬂ:W*h{Z}IZ |"—m|]|:’I'E|P(']|~
The result is sharp and the extremal polynomial is P(z) = az", a # 0.

The next result is obtained by taking i(z) = 2™ + z*, where k = 0,1,--. ,n—1,
in Corollary 1.3.

Corollary 1.4. If P(z) = i _ga;2' is a polynomial of degree n hoving oll its
zeros in |z| < 1, then

@9) tunI—Jf(,,i]lzﬁinllP(le. 0sksn—1.
k. e

The result is sharp.
Theorem 1.1 can be sharpened, if we restrict ourselves to the class of polynomials

having no zero in |2| < 1. In fact, we have the following result.
Theorem 1.3. Let P(z) be a polynomial of degree n having no zero in |z] <1 and
let h(z) = ¥ l527 be a polynomial of degres n having all its zevos in |3| < 1, then
Jor every R> 1,

Rin| + o]
(1.10) max|(Po f) «h{z) < )
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where f(z) = Rz mwhﬁwMWﬂyhtllD}M)‘WwM
Plz) =0z" +b, |al = b #£ 0.

The followiug corollary immnediately follows by letting & — 1 in Theorem 1.3,

Corollary 1.5. Let P(z) be a polymomial of degree n hawing ne zero in |z < 1 and
let h(s) = T}y j=7 be a polynomial of degree n having ol its zeros in |2 < 1, then
max P o i(e)] < Lol ol ).

The result is best possible and the quaﬁtv.ﬁalbprﬂmmmdpfz} = az"+b, |a| =
|6l # 0.
Remark 1.3. It is easy to see that for suitable choices of i(z), the Inequalities
(1.3) and (1.4) become special cases of Theorem 1.3.

The next corollary is obtained by taking h(z) = z" +2* 0 €k <n-1in
Corollary 1.5.

Corollary 1.8. If P(z) = }_; 072" is a polynomial of degree n which does not
vanish in |z| < 1, then

[a.,|+l{—nf max|P(z)|, 0Sk<n-1,
where
A=d b ¥ 1sksn-
2, If k=0
The result is sharp.

Applying Corollary 1.6 to polynomial z"P(1/z), we obtain the next result.

Corollary 1.7. If P(z) = 3 5_qa;27 is o polymominl of degres n having ofl its
zeros in |z] < 1, then

jol+ 8l < Smmcipll, 15k

i l, f 1skg€n-1
2 # k=n

A polynomial P € P, is said to be self-inversive if P(z) = uQ(z), where |u| =1
and Q(z) is the conjugate polynomial of P(z), that is, Q(z) = ="P(1/3).

Finaﬂ;qwmwthnﬁnﬂuwingmulthndf-invuaiwpﬂynmm
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Theorem 1.4. Let P(z) be o self-inversive polynomial of degree n and let h(z) =
}:;'_ni_;:-'hnmhmmla{dqmnhnﬁngnﬂiumin]z[gl‘ﬂ;gnfprm
R>1;

pax|P(z)].

max|(Po £) « bz} < Tapt il
where f(z) = Rz. The result is sharp, as is shoun by the exiremal polynomial
P(z) =az" +b, o] = [b] #£0.

Remark 1.4. A variety of interesting results can easily be deduced from Theorem
1.4 in the same way as we have deduced from Theorems 1.1 and 1.3.

2. LEMMAS

For the proofs of the above stated theorems we need & number of lemmas. The
first lemma is a consequence of the Schur-Szegd composition theorem [5].

Lemma 2.1. Let f and g be polynomials of degree n. If all the zeros of f are of
modulus at most v and all the zeros of g are of modulus at most s, then all the zeres
of [+ are of modulus af most rs.

Lemma 2.2, Let F(z) and h(z) be polynomials of degree n having all their zeros in
|z| £ 1, and let P(z) be a polynomial of degree n such that |P(z)| < |F(z)| for |2 =
1. Then

(2.1) I(Pef)shiz)l <|(Fof)ehiz)] for |s|=1,
where f(z) = Rz with R> 1.

Proof. If P(x) = " F(z), then (2.1) is trivial. Therefore, we suppose that P(z) #
€*F(z) for all @ € R. Let P(z) = ¥7 0527, h(z) = Ti gL’ and F(z) =
Z;_u bjz?. Furthermore, let P*(z) := £"P(1/3) and F*(z) := 2"F(1/3). Since
all the zeros of F*(z) lie in || = 1, P*(2)/F*() is analytic in |z| < 1 and
|P*(2)/F*(z)] < 1 for |z| = 1. By the maximum modulus principle, |P*(z)| <
|F*(2)] for |2] < 1, or equivalently |P(z)] < |P(2)] for |¢| > 1. Taking z = Re®,
R> 1,0 £0 <2, we obtain [P(Rs)| < |[F(Rs) for 2| = 1. By Rouche's theorem,
all the zeros of polynomial

(Pof)(z) = MF o f)(z) = P(Rs) = \F(Rz) = 3 Ri(a; — Abj;)#
J=0

lie in |2] < 1 for every A € C with [A| > 1 and f(z) = Rz.
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5. QULZAR AND N. A. RATHETR.
Applying Lemma 2.1 to the polynomial P o f(z) — J\Fo.rfx),itruumuﬂmuu
the zeros of polynomial
{Pnf—ﬂn{]th[s)-irm( =) o
=0 )
. [;Ma LR
= PR Lt Y
X0 R0
=(Pof)sh(z)—A(Fof)»hiz)
lie in 3| < 1. This implies
(2.2) [(Pa f)sh{z)] < [(F o f) + hiz)|

for |z| = 1 and R > 1. If the inequality (2.2) is not true, then there exits a poinl
2 = zy with |20 2 1 such that

I(P o f) * h(zo)] > |(F o ) » h{z)].
But all the zeros of F(Rs) lie in |#| < 1/R < 1. Therefore, by Lemma 2.1, we have
(Fo [)#h(z) #0.

We take z
A= (Pof)*hiz)

(Fo f)»hiz)"
80 that A is a well defined real or complex number with [A| > 1, and with this
choice of A, we obtain (P o f) » h{z) — A(F & f) « h(zg) = 0, where |z = 1, which
contradicts the fact that all the zeros of (P o f — AF o f) « h(z) liein |2| < 1, and
the result follows. a

The next Lemma immediately follows from Lemma 2.2 by taking F(z) = #*P(1/3).

Lemma 2.3. If P(z) is a polynomial of degree n which does not vanish in |z| < 1
and Q(z) = 2"F(1/%), then

(23) I(Pof) e b SIQo ) eh(a)] for |si=1,

where f(z) = Rz with R > 1.

Lemma 2.4. Let P(z) be a polynomial of degree n ond let h(z) = Yo lys? be

a polymomial of degree n having all its zeros in |z| < 1, then for every R > 1 and
|z] = 1, we have

(2.4) [(Pe )= h(z)l +1(Qe f) # h(z)] < {Ia| R" + |ia]} M,

where f() = Rz ond Q(z) = z"F(1/3).
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Proof. Let M — maxj,j-|P(z)|. Since P(z) i= a polynomial of degree n and
|P(s)| < M for |z| = 1. By Rouche's theorem P(z) — AM does not vanish in
|2] < 1 for every complex number A with |A] 2 1. Applying Lemma 2.3 to the
polynomial P(z) — AM, we obtain

(23)  [(Pof)=hlz) - MoM| < [(Qo f) # h(z) ~ MpR"M3"| for |s|=1.
Since:[Q(z)| = |P(z)| £ M for |z] = 1, by Theorem 1.1, we have for |z] =1
(2.6) [(@o f) » h(z)| < |Iu|R™M.
In view of inequality (2.6), we can choose arg A such that
[(@o f) # i(z) = M "M 2"| = [MnR*Mz"| ~ |(Qo f) h(z)| for |s|=1.
Thus, in view of (2.5) we can conclude that
[(Pof)«h(z)|+|(Qof)+hiz)] < A {IL|R" + ]} M for |z|=1,

which is equivalent to (2.4). o

3. Proors oF THEOREMS
Proof of Theorem 1.1. The proof follows from Lemma 2.2 by taking F(z) = Ma",
where M = max, - |[P(z)]. o
Proof of Theorem 1.2. Lot m = minjy|uy|P(z)|. If P(z) has a zero on |3] = 1, then
the inequality (1.7) is trivial. Therefore, we assume that P(z) has all its zeros in
|z] < 1, so that m > 0. Also, we have

fms"| < |P(a)] for |z =1.

Applying Lemma 2.2 to the polynomials mz" and P(z), we get the inequality (1.7).
This completes the proof of Theorem 1.2. . a
Proof of Corollary 1.4. Taking h(z) = 2" + 2%, where k = 0,1,---,n—1, In
Corollary 1.3, we get

(3.1) mi.u > mm [P(z)], 0<k<n-1

(%% +—z“

()
If 21,23, , #, are the roots of P(z), then |zj] < 1, j = 1,2,--- ,n, and we have
by Vikte's formula

(—unhk E ) B4y Big e o By
O
1611 € Chami S

This implies

s | (a20)= ()
< B2y e S| < =.)s
n 1511<i|§f.-n$n i n—k k
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8. OULZAR AND N. A. RATIIER

or equivalently ]
i
(3.2) laal = o
which gives
. Ay Ok Lo _ 1okl _ 23 Jenge|
(3.3) min | +Er"| - Ilunl %}l laal o
Combing (3.1) aad (3.3), we obtain (1.9). o

Proof of Theorem 1.8. The inequality (2.3) in conjunction with Lemma 2.4 gives
for every R> 1 and |z| =1

21(Po 1) A < (P o )+ he)| + @0 1) Me)) < (Il + o) sl P2}
This is equivalent to inequality (1.10) and completes the proof of Theorem 1.3. OO

Proof of Theorem 1.4. Since P(z) is a self-inversive polynomial of degree n, then
for some u € C with [u] = 1, we have P(z) = uQ(z) for all z € C, where Q(z) is
the conjugate polynomial of P(z). This gives

[(Pof)eh{z)| =|(@of)shiz)] for |s]=1.
Using this in place of (2.3), and proceeding similarly as in the proof of Theorem
1.3, we get the desired result. [m]
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