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Abstract. Let 5(H) be the algebra of all bounded linear operators on & complex Hilbert
space H and A(H) C B(H) be a standard operator algebra which is closed under the adjoint
operation. Let F : A(H) = B(H) be a linear mapping sathfying FAAA) = F{A)A" A+
Ad(A")A + AA*d(A) for all A € A(H), where the ‘sssociated linear mapping d : A(H) = B(H)
satisfies the relation d{AA*A) = d{A) A" A + Ad(A*)A + AAd(A) for all A € A(H). Thea F Is
of the form F(A) = SA — AT for all A € A(H) and some 5, T € B(H), that is, F s a generalized
derivation. mmnmmmﬂhmmﬂmmﬂm and semisimple H*-algebras.
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1. INTRODUCTION

ImJ:R-ereanad&ﬁvamapmaﬁngERmaﬂﬁmtﬁlsca]bda
generalized Jordan derivation if there exists a Jordan derivation d : R — R such
that the equality

(11) 5(a%) = 6(a)a + ad(a)

ho]dnfm-a.tlnEﬁ,mﬁku&dmhamemmdﬁmﬁnnﬁthmisadeﬁmm

d on R satisfying

(1.2) (ab) = §(a)b + ad(b)

foralla,beR.
h{?],itmmvedthumygewﬂaeddemd&iuﬁmmaz—tmﬁnn

ﬁmpﬂmeﬁngha;mmﬂmdduﬂaﬁmﬁamﬂtm;ﬂmdﬂe&in[ﬂ]to

generalized Jordan derivations on 2-torsion free semiprime rings.

In particular, if d = § in (1.1) and (1.2), then & is called a Jordan derivation and
derivation, respectively. The first result on Jordan derivation is due to Herstein [6]
whopmwdthatuydenndeﬁuﬁﬂnma}mmlon&enpﬁmeringisaJordm
dezhnaon.Cuad[l]mdBmM:[z}uhuwsdthatthishahotmeﬁa:dem
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derivations on 2-torsion free semiprime rings. If ¢ € R is a fixed clement and
d{a) = [c,a] = ca — ac for all a € R, then it is easy to see that § is & derivation
which is called an inner derivation determined by c. It is also well known that every
linear derivation on standard operator algebra is inner (cf. [3]). Some related results
on operator algebras can be found in [5], [8], [12], and relerences therein.

In [13], Vukman proved that if a linear mapping d on a standard operator ulgebra,
which is closed under the adjoint operation, or & semisimple H*-algebra, satisfying
d(AA®A) = d(A)A* A+ Ad(A")A + AA"d(A),

then d is a derivation.

Motivated by the above result and the concept of generalized Jordan derivations, '
in this paper, we aim to show that if F' is a linear mapping on a standard operator
algebra which is closed under the adjoint operation satisfying

F(AA"A) = FA)A* A+ Ad(A*)A + AA"d(A),
where the associated linear mapping d satisfics the relation

d{AA®A) = d{A)A®A + Ad(A*)A + AA*d(A),
then F is a generalived derivation. A similar result is also obtained for the case
of linear mappings on semisimple H*-algebras. It should be noted that in order to
prove the result on semisimple H*-algebras, we need to have some results about
left centralizers. Recall that a linear map ¢ : A —+ A on-an algebra A is called a left
centralizer if ¢(zy) = $(x)y for all 2,y € A. The definition of a right centralizer
should be self explanatory.

‘We now list some basic notation, definitions, and results. Throughout the paper,
L(H) and B(H) will stand for the algebra of all linear operators and the algebra
of all bounded linear operators on & complex Hilbert space H, respectively, By
F(H) C B(H) we denote the subalgebra of all bounded finite rank operators. We
call a subalgebra A(H) of B(H) standard if it contains F(H). Notice that every
standard operator algebra is prime. An operatar P € B(H) is said to be a projection
fP*=Pand P2< P, Mrmkmupmmbawmeduzsy,whm
z®y(u)= (u,y)r forall ue H.

Let A be an algebra over the filed C of complex numbers. An involution in A is
amap a — a* of A into itself such that

(1) (o) =a

(2) (o+b)* =a*+ b
@) (Aa)* = Ja*

(4) (ab)" =bra*
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" for any a,b € A and A € C. An algebra over C endowed with an involution is
called an involution algebra or a s-algebra. Recall that a semisimple H*-algebra
is a complex semisimple Banach +-algebra whose norm is a Hilbert space norm
such that (z, yz*) = (zz,y) = (z,2"y) is fulfilled for all elements z,y,z. Let A be
a semisimple H*-algebra and {4, : @ € T’} be the collection of minimal closed
ideals of A such that A = @aerAa. Then any element z € A can be expressed as
z = JoerTa and Tozg = 0 for £, € A, and 7 € Ag with o # . For every =
and yin Awithz = 3, o and y = T, ya, we have 7y = ¥ Zaya. A self-adjoint
idempotent element ¢ € A is called a projection. A nonzero projection is said to
be minimal if it can't be represented as & sum of two lly arthogonal
projections in .4. For more information about H*-algebras, we refer the reader to
[1] and [11].

2. MAIN RESULTS
Our first theorem is & generalization of Theorem 1 of [13].
Theorem 2.1, Let H be o compler Hilbert space, and let A(H) C B(H) be o

standard operator algebra, which is closed under the adjoint operation. Suppose
there exists o linear mapping F : A(H) — B(H) satisfying the relation

(2.1) F(AA®A) = F(A)A* A+ Ad(A*)A + AA®d(A)

for oll A € A(H), where the associoted linear mapping d : A(H) — B(H) satisfies
the relation ;

(2.2) d(AA"A) = d(A)A" A + Ad(A")A + AA"d(A)

for all A € A(H). Then F(A) ="SA— AT for oll A € A(H) and some 5,T € B(H),
which means that F is o linear generalized derivation.

It should be mentioned that in the proof below, we borrow some ideas from [10]
and [13].
Proof. First we consider the restriction of F to F(H). Suppose A € F(H). Then
A* € F(H). Pick a projection P € F(H) such that AP = PA = A and A*P =
PA® = A", Hence, in view of relation (2.1), we obtain

(2.3) F(P) = F(P)P + Pd(P)P + Pd(P).
Right multiplication by P to (2.3) yields that 2Pd(P)P = 0, This implies that

(2.4) Pd(P)P =0.
5
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In view of above relation, we find that

(2.5) Pd(P)A =0, Ad(P)P =0, and Ad(P)A = 0,
Using (2.4) in (2.3), we get
(2.6) F(P) = F(P)P + Pd(P).

Replacing A by A + P in (2.1) and using the fact that A* = (A + P)* = A* + P,
we obtain
(2.7) F((A+ P)(A® + P)(A+ P)) = F(A)A*A+ Ad(A")A
+AA"d(A) + F(AA* + A"A + A%) + 2F(4) + F(A") + F(P)P + Pd(P).
On the other hand, we find that
(2.8) F((A+ P)(A® + P)(A+ P)) = F(A)A*A + F(A)A + F(A)A"
+F(A)P + F(P)A*A+ F(P)A" + F(P)A+ F(P)P + Ad(A®)A + Pd(A")A
+Ad(P)A + Pd(P)A + Ad(A")P + Pd(A®)P + Ad(P)P + Pd(P)P + AA*d(A)
+A%d(A) + Ad(A) + Pd(A) + AA*d(P) + A*d(P) + Ad(P) + Pd(P).
Combining (2.7) and (2.8), we obtain
F(AA® + A"A+ A%) + 2F(A) + F(A%)
= F(A)A+ F(A)A" + F(A)P + F(P)A* A+ F(P)A* + F(P)A + Pd(A*)A
+Ad(P)A + Pd(P)A + Ad(A*)P + Pd(A*)P + Ad(P)P + Pd(P)P
+A%d(A) + Ad(A) + Pd(A) + AA"d(P) + A*d(P) + Ad(F).

An application of (2.5) and (2.6) yields
(2.9) F(AA" + A*A+ A%) + 2F(A) + F(A*) = F(A)A + F(4)A"
+F(A)P + F(P)A"A + F(P)A" + F(P)A + Pd(A*)A
+Ad(A")P + Pd(A")P + A"d(A) + Ad(A)
+Pd{A) + AA*d(P) + A*d(P) + Ad(P).
Replacing A by —A4 in (2.9), we get
(210) F(AA" + A"A+ A) — 2P(A) — F(A") = F(A)A® + F(A)A
+F(P)A*A— F(P)A® — F(P)A— F(A)P + Pd(A")A + Ad(A")P
~Pd(A*)P + Ad(A) + Ad(A) — Pd(A) + AA®d(P) — A*d(P) — Ad(P).
Adding (2.9) and (2.10), we arrive at

(211) ~ F(AA® + A"A+ A%) = F(A)A" + F(A)A + F(P)A"A
6
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+Pd(A*)A + Ad(P)P + A"d(A) + Ad(A) + AA*d(P).

Subtracting (2.10) from (2.9), we obtain

(212) 2F(A)+ F(A") = F(P)A" + F(P)A+ F(A)P + Pd(A")P

+Pd(A) + A"d(P) + Ad(F).

Next, substituting i for A inte (2.10) and (2.11), we find that

(2.13) F(A® — AA® — A" A) = F{A)A - F(A)A" - F(P)A*A
—Pd(A")A + Ad(P)A + Ad(A) — A"d(A) — AA*d(P)

(2.14) ZF(A) - iF(A*) = iF(P)A — iF(P)A" + iF(A)P

—iPd(A)P + iPd(A) — iA"d(P) +iAd(P).
This implies that :
(2.15) 2F(A) — F(A®) = F(P)A — F(P)A" + F(A)P
—Pd(A")P + Pd(A) — A®d[P) + Ad(P).

Adding (2.12) and (2.15), we arrive at

(2.16) 2F(A) = F(A)P + Ad(P) + F(P)A + Pd(A).

Now adding (2.11) and (2.13), we get

(2.17) F(A?) = F(A)A + Ad(A)

for all A € A(H).

By Theorem 1 of [13], we see that d is an inner derivation on A(H). So, there
exists an operator N € B(H) such that
(2.18) d(A) = NA— AN

for all A € F(H). In view of relations (2.16) and (2.17), we conclude that F
maps F(H) into itself. Also, from (2.17), it is clear that F is a generalized Jordan
derivation on F(H).

Note that F(H) is prime and hence F is a generalized derivation on F(H) by
Theorem 2.5 of [7]. Furthermore, Theorem 4.2 of [7] asserts that F is a generalized
inner derivation on F(H), that is, there exist 5, T € B(H) such that

(2.19) F(A)=SA- AT
for all A € F(H).
To complete the proof, it remains to show that the relation (2.19) holds for all

A€ AH).
7
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We first claim that the operators NV in (2.18) and T in (2.19) differ by a scalar
multiple of the identity operator J. Indeed, for any 4, B € F(H), F(AB) = SAB—
ABT. On the other hand, we have

F(A)B + Ad(B) = SAB — ATB + ANB — ABN.
Comparing the above two relations, wo see that
(2.20) AB(N -T) = A(N -T)B
holds true for all A, B € F(H).

Pick y,u € H such that (u,y) = 1. Now for arbitrary z,v € H, the relation
(2.20) becomes s @y u@v-(N-T) =2@y-(N - T) - u® v. This leads to
(¥ —T)v = {(N — T)uy y)o for any v € H. Hence, (N = T)* = (N — Tyu, ), or
equivalently, N—T = (y, (N —T)u) . Taking A = (y, (N—T)u), we get N=T = AL

We now define a linear map & : A(H) —+ B(H) as follows: G(A) = SA — AT for
all A € A(H). Wa set Fy = F — G, and observe that Fy(A4) = 0 for any A € F(H).
Thus, it remains to show that Fy(A) = 0 for all A € A(H).

For any A € A(H), we can write
Fo(AA® A) = P(AA* A) — G(AA*A) =
F(A)A" A + Ad(A®)A + AAA(A) — SAA*A + AAAT
= FAJA"A+ ANAA - AA'NA + AA'NA — AA®AN — SAAA + AA"AT
= FA)A"A+ AT+ M)A"A— AA°(T + M)A+ AA*(T + A)A

—AA*A(T + AI) = SAA®A + AAAT = F(A)A"A — SAA"A+ ATAA.

]

and

Fo(A)A*A = F(A)A*A — G(A)A"A = F(A)A* A — SAAA + ATA*A.
Therefore, we have Fy(AA®A) = Fy(A)A®A for any A € A(H).

Let A € A(H) and P be a rank one projection. We write I = A — AP —
PA + PAP. One can easily check that KP = PK = K*P = PK* = 0 and
FQ(K) = F'o(.l). We have

Fo(A)K* K = Fy(K)K*K = Ry(KK*K) = Fy(KK*K +P)=
= Fo((K + P)(K + P)"(K + P)) = Fo(K + P)(K + P)*(K + P) =
= Fy(A)(K* + P)(K + P) = Fy(A)K*K + Fy(A)P,
implying that Fy(A)P = 0. Since P is arbitrary, it follows that Ey(A4) = 0 for all
A € A(H). This completes the proof of the theorem. o

Asmimmediahmequmnf'rhmm.wehnwmmmmﬂny.
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Corollary 2.1 ([13], Theorem 1). Let H be a complez Hilbert space, and let A(H) ©

B(H) be a standard operator algebra, which is closed under the adjoint aperation.

Suppose there exists a linear mapping d : A(H) — B(H) satisfying the relation
d(AA" A) = d(A)A* A+ Ad(A*)A + AA“d(A)

for all A € A(H). Then d(A) = TA— AT for all A € A(H) and some T € B(H),

which means that d is an inner derivation.

The proof of the following theorem is similar to that of Lemma of [10]. For the
sake of completeness, we include it here.

Theorem 2.2. Let H be o comples Hilbert space, and let A(H) € B(H) be o
standard operator algebra, which is closed under the adjoint operation. Further, let
¢ : A(H) — B(H) be a linear mapping satisfying
(2.21) BAA"A) = S(A)A* A
Jor all A € A(H). Then ¢ is o left centrolizer and there exists o linear operator
C € L(H) such that for all A € A(H) $(4) = CA.
Proof. Let A € F(H) and P be a finite rank projection such that AP = PA = A.
Substituting A + P for A in relation (2.21), we obtain
PAT+ AA+ AA" +24+ A)
= ¢(A)A+ @{P)A"A+ $(A)A° + ¢(A)P + $(P)A+ $(P) A"

Replacing A by A+ P and A~ P respectively in the above relation, we can get
(2.22) $(24 + A%) = ${A)P + $(P)A + $(P)A".
Replacing A by i4 in (2.22), we get

B(2A —id*) = ig(A)P +1ip(P)A — ig(P)A".
It follows that
(2.23) 24+ A*) = —¢(A)P = $(P)A + $(P)A.
Equalities (2.22) and (2.23) yield that ¢(A*) = ¢(P)A*. Replacing A* by A resulis
in
(2.24) $(4) = ¢(P)A.
We now show that ¢ is a left centralizer on F(H), that is, #(AB) = $(A)B for
all A, B € F(H). If H is finite dimensional, the choosing P = I, we get ¢{AB) =
$(IAB = $(A)B. If H is of infinite dimension, then we fix an element z € H, and

9
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¢laim that for any i € H, there exists an element z, € H such that ¢(zx®y) = z,@y.
Let y1,15 € H. If 11 and 3 are linearly independent, then

#lz @ (11 +12)) = Ty @ (11 +18) = Tyt B 11 + Ty, B2
On the other hand, we have
plz@n) +e¢z@m) ==, QU+, S
It follows that z,, = Zy,44 = Ty, In the case where y; and yy arc linearly
dependent, we may find a y3 € H such that 3, y3 a8 well a5 yu, yy are linearly
independent. Therefore, Ty, = Zy, = Zy.
Pick an element u € H such that (u,y) # 0. Lot v € H be arbitrary. We have
-
dz@y-udv) =¢({u, )@ v) =26 00 B (u )y
= (YT @v=(h)5Bv=2,8y - uBu=9$z@yudv.

If {u,y) = 0, we have $(z ®y - u @ v) =0 and, by (2.24),
Hz@y-u@v)=¢(Flz@y - uduv=0

for some finite rank projection P. Now, we can conclude that for any A, B € F(H)
#(AB) = ¢(A)B. This implies that ¢ is a left centralizer on F({H).

Next, we pick y,u € H with (y,u) = 1, and define Gz = ¢(x @ u)y for any
z € H. Obviously, C is linear. Now for any A € F(H) and z € H,

CAz = §(Az @ u)y = (A)z @ uly) = (A) (v, w)z) = $(A)s.

Thus, ${A) = CA for all A € F(H). ]
To complete the proof, it remains to show that $(A) = CA for all A € A(H).
Define ¢ by #(4) = CA for all A € A{H) and let ¢ = ¢ — . It is cbvious

that gig(A) = 0 for all A € F(H). One can check that do(AA*A) = g(A)A* A for

all A € A(H). Let A € A(H). Suppose that P is a finite rank projection and let

K=A—-AP - PA 4 PAP. We have

w(K)K°K = ¢o(KK*K) = go(KK K +p) = do((K + P)(K + P)*(K + P))
= ¢u(K +P)(K + P)*(K +P).

This leads to ¢u(K)P = 0. Observing that ¢o(K) = go(A4), we get dy(A)P = 0 for

any finite rank projection P. Hence, ¢y(4) = 0 for all A € A(H). m]

The proof of the next result is just a modification of that of Theorem of [10]. We
present the proof for the reader’s convenience.

10
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Theorem 2.3. Let ¢: A — A be a linear mapping on a isimple H*-algebra A
satisfyring
(2.25) $(zz"z) = @(z)z"z

for all z € A. Then & is a lzft centralizer.

Proof. Let ¢ € A be a projection. Replacing = by = + e and z — & In (2.25),
respectively, and comparing the resulting equalities, we arrive at
(2.26) dlee"s + ze"e + ex’e) = dle)e’ s + d(x)e’e + Ple)z’e.
Let {A, : @ € T'} be a collection of minimal closed ideals of .4 such that their
orthogonal direct sum is A. For @ € T and = € Aq, let e be a minimal projection
with ¢ € Ay (a # f). It follows from (2.26) that ¢{x)e = 0. Thus, ¢(z) € Ao,
which implies that A, is invariant under ¢. By Theorem 2.2, we conclude that ¢ is
& left centralizer on A, for each a € I'. Furthermore, it follows from Theorem 2.2
and Remark 1 of [9] that ¢ is continuous on A, for every a € T
Let {zn} C A and y € A be such that
_H_?:nt..—pu and J};‘;ﬁ(*n)—!:i-
If e € A is & minimal projection, from (2.26) we see that
0= lim [¢(e)ezn + d(zn)e + ¢le)zre] = ye,
implying that y = 0. By Closed Graph Th , @ is i I8
For any 7,y € A, we write = 35 1.7, and y = 37, . t/a, Where Zo. 3 € Ao
(a € T). We have
#a) = ¢(3 203 ta) =8( L atn) = 3 blzatie) = 3 $(za)ve
atl  aEl el agl

el
= (S (S = A TN T s
aEl aEl o€l a€l’
Thus, ¢(zy) = ¢(z)y for all z,y € A. This completes the proof. O,
‘We conclude our paper by proving an analog of Theorem 1 on semisimple H*-
algebras.
Theorem 2.4. Let A be a semisimple H*-algebro. Suppose there exists o linear
mapping F : A = A sotisfying the relation
F(zz*z) = F(z)z*z + zd(z" )z + z2"d(z)
Jor all z € A, where the associated linear mapping d : A = A satisfies the relation
d(zz"z) = d(z)z"z + zd(z" )z + zx"d(z)

for all z € A. Then F is o generalized derivation.
11
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Proof. By Theorem 2 of [13], d is a linear derivation. Now, for any = € A, we have
(P —d)(zz"z) = Flzz"z) = d(zz"z) =
= (Flz)a'z + zd(z*)z + z2*d(z)) — (d(x)z"x + zd(z")z + 22"d(z))
= P(z)z"z —d(z)z'z = (F - d)(z)="z.
In view of Theorem 2.3, we conclude that F — d is a left centralizer. Therefore, for
any z,y € A, using the fact that d is a derivation, we obtain

Flay) = (F — (o) + d(ay) = (F - d){a)y + d(z)y + zd(y) = Fle)y + zd).
Hence, F is a generalized derivation. o

Corollary 2.2 ([13], Theorem 2). Let A be a semisimple H* -algebro. Suppose there
exists o linear mapping d : A — A sabisfying the relation

d{zz"z) = d(z)x"z + zd(z")z + " d(z)
Jor all z € A. Then d is a derivation.
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