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Abstract. "This work focuses on the variance propertics of isotropic Boolean random sets
containing randomly-oriented cylinders with circular cross-section. Emphasis is put on
cylinders with large aspect ratios, of the oblate and prolate types. A link is established

between the power law decay of the covariance function and the variance of the estimates

of the volume fraction of cylinders. The covariance and integral range of the Boolean
mixtures are expressed in terms of the orientation-averaged covariogram of cylinders,
for which exact analytical formulas and G ions are provided.
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1. INTRODUCTION

The covariogram, originally i duced by G. Math [13], gives the volume
of the intersection of a (convex) body with a translation of itself. This function is
closely related to the distribution of the length of the chords of a body, and also is
a key ingredient in the theory of Boolean stochastic models based on Poisson point
processes (see [14, 16, 17, 22, 2], and references therein). A key theorem relates
the i function of ionary Boolean sets in the Euclidean space to the
Poisson intensity of the point process and to the covariogram of the primary grain.
In turn, the covariance function itself governs basic features of the model, such as
the specific surface area and the integral range. The integral range is linked to the
estimates on finite-size volumes of the random set volume fraction.

Another property of interest concerns the probability that a segment is entirely
contained in the complementary set of a Boolean model. This probability takes
a simple form for convex primary grains, which depends on the derivative of the
covariogram at 0 (sce [22]). Lincar crosion allows onc to computc this probability
numerically which is especially useful for model identification (see [18, 11]).

An important subclass of Boolean ‘models, commonly used in material science
for modeling heterogeneous materials, concern isotropic random sets. In dimension
3, this model requires one to average the covariogram over all directions uniformly
on the sphere. In the rest of this article, the orientation-averaged covariogram, also
denoted ‘| ized covari ” in the li will be referred to as “mean
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covariogram”. The mean covariogram is a special case of the so-called “kincmatic”
integrals (see [21], Chapter 5) of the form (in dimension d):

@ AT Co

where a convex body A is moved into gA and the volume of the intersection
of gA with a convex set M is averaged with respect to the measure s over all
transformations g in the motion group G*. The measure p is invariant in G%. The
mean covariogram, required for describing isotropic Boolean models, is obtained
by taking translations at a fixed distance uniformly distributed on the sphere for
G? and ppand M = A. Unfor ely, such a ki ic covariogram is usually
not known licit] in di jion 3 (3D). Some notable exceptions
include the sphere, parallelepxped cylinder (see [6, 8]) and the Poisson polyhedra
([15])- The mean covariogram for cylinders is useful for identifying stochastic fibrous
modcls from experimental 2D (e.g., SEM) or 3D (e.g., tomography) images of fibrous
materials (see [18 20]) More generally, heterogeneous microstructures, studied for
various industri i can be d by random models of cylinders.
Examples include flakes in optics [4] or platelets in mesoporous materials [24].
This work focuses on the mean covariogram of 3D cylinders with a circular
cross-section and its applications to Boolean models, and is organized as follows.

The covariogram of a cylinder is recalled in Section 2. The mean covariogram is
derived in Section 3. Boolean models of cylinders are considered in Section 4. The
integral range is given in Section 4.1. Variance properties are discussed in Sections
4.2 and 4.3. Section 5 concludes the paper.

2. COVARIOGRAM OF A CYLINDER

Consider a cylinder C of height h and circular cross-section of radius 7, and a
Cartesian coordinate system with origin O and axes e;, e, and e,. We assume that
O is at the center of one of the bases of C and that e; is parallel to the cylinder
main axis. Consider now the translation C’ of the cylinder C by a vector v. We
pummeterue v by its norm ¢ = |v| and two angles ¢ € [0;2n] and 6 € [-7/2;7/2]
in spheri The azi hal angle ¢ is the angle between e, and the
projection of v onto the plane (0 €;,€,). The variable f denotes the angle between
v and the plane (0; e, e,) so that 6 = /2 when v is parallel to e and 8 = 0 when
v is contained in the plane (0;ez,e,). Note that, using this convention, 6 is the
complementary of the polar angle.

The (oriented) covariogram of a cylinder K(0,1) is defined as the volume of the
intersection of C with C':

@ K(6,t)=Ls(CNC"),
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where L3 denotes the Lebesgue measure in R3. The covariogram K depends on , h,
t and 6, but not on ¢. For conciseness, the dependance on r and L is omitted in the
notation for K and in the notation for other variables hereafter. Let us introduce

the ratios:
t h

(2:2) e (e
The two variables = and y, not to be confounded with Cartesian coordinates, will
be used preferentially to ¢, h and r. Furthermore, the variable ¢ as argument of a
function will be replaced indifferently by @ or y. For instance, K (6,1) is also denoted
K(6,x).

The expression for the covariogram X is derived from the formula of covariogram
of a disk in the plane and reads as follows (see [9]):
(2.32) K(6,t) = K(6,2)H(6,t),
(2.3b) K(8,7) = 4r® (£ — z5in6) [cos™ (z cos ) — z cos 0v/I — 22 cos? 0] ,
where H(6,t) = 1 when 6 and ¢ are such that the two cylinders C and C” interscct,
and 0 otherwise. More precisely:

et 255 if 6 € [0;tan!

@4 HEYH= { 0 ocherwiﬂ;:’ fae { %ﬁ ifoe {tan_l &7
The term cos™ in Eq. (2.3a) refers to the inverse cosine function, also denoted
arccos, and tan~! in (2.4) denotes the inverse tangent function. Likewise, sin~!
hereafter is used to denote the inverse sine function.

The next section is with the lized mean co

2 /2

@3) k(t) = kat) = 4lﬂ AT ’2 Sfrv:)
where the mean is taken over all directions on the sphere, assuming the distribution
of orientations is uniform on the latter. Here, the covariogram K is normalized by
the cylinder volume and surface arca of the unit sphere so that the k(t) = 1 when
t = 0 and k() = 0 when ¢ = co. Similar to K, the function k depends.on r > 0 and
h>0.

/2
cos(l:/ dﬂ&":)ms{!,
o har

3. MEAN COVARIOGRAM OF A CYLINDER

In this section, the isotropized covariogram of a cylinder with circular cross-
section is given. We refer to [6 — 8, 23], where this problem has been studied in
details.

3.1 Prolate cylinders. In this subsection, we the limit koo(£) of kn(t)

as h — oo with r and ¢ being fixed. The condition ¢ < tmax (see Eq. (2.4)) reduces

to @cos < 1, which is satisfied for all 6 when z < 1, and for 6 > cos~!(1/z)

when z > 1. Therefore in (2.5), the term K can be replaced by X provided the
64




MEAN COVARIOGRAM OF CYLINDERS AND ...

integration is carried out over the intervals [0;7/2] (z < 1) and [cos™1(1/z); /2]
(« > 1). Thus, we have

ey { 1impyo0 Wf*”dax(a z) cosl fz<l,

LMy yo0 oz f —1(1/2) dBKK (8, z) cos B, ifz> 1
Observe however that, when z > 1, & (6,t) is pu.rely imaginary in the domain
0 < 6 < cos™*(1/z). Accordingly, it is to i over the interval
[0;7/2] instead of [cos=*(1/z);n/2], provided the imaginary part of the integral is
discarded:

(32) Koof2) = Jlim ’m, { / A9 K (6, ::)cosﬂ}

where Re{z} stands for the real part of a complex number z. Replacing K by its
expression given in (2.3a) and expanding the integrand at first order in 1/h, we
get

x
(3.3) km(z)=%m=.{/“. d’ﬂcosﬂ[coa"(mcosﬂ)—zcose\/l—z’cos*ﬂ]}.

As it was seen above, ko depends on ¢ and r only through z = t/(2r). The integral
in (3.3) is readily computed in the complex domain using a symbolic calculator
(sce [26]). The cxpression depends on the complete clliptic integrals of the first
and second kind, denoted by F and E, respectively, and defined by the following
formulas:
/a i /3 :

(34) F(z) = /o m, E(z) = /0- du V1 — zsin®u.
The above functions F and E are real-valued when z < 1, and are complex-valued
with non-zero real and imaginary parts when z > 1. We refer to the online resources
(125, ?] and references therein) for an overview of their properties. Note that the
elliptic functions are usually defined by z — F(v/z), z = E(y/z). In this work we
follow the notation used in [26].

The elliptic functions F and E appear in the integration of both the square root
and inverse cosinc terms in (3.3). For instance, when = < 1, the cos™ term is
integrated by parts as follows:

/2 /2 2
/0‘ df cos™! (zcosf)cosf = ; %1\/_1%= (:v )F( z)+E(I )

TEfa()
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where Im{z} denotes the imaginary part of a complex number 2. The final formula
for koo (), after simplification in the regions z < 1 and z > 1, reads as follows:
)

ku(z)={ 1—%{[}({ ()] + 2528 (= 'i,)+‘F( Tilﬂ‘ ifo<

1- 2 ) +Im (2 () +4F (2]}, e>

The function koo is represented in Fig. 1(a) (top curve).

=

3.2. Cylinders of arbitrary aspect ratio. This subsection is devoted to the
general case, that is, for finite h and r. The intervals of integration for 6 are required
for computing (2.5). Take first & < 2r and examine the condition ¢ < tiax in (2.4).
The quantity K in (2.3a) is non-zero in the following intervals for 8 (recall that

y=h/t):

[0;7/2] ift<h,
3.7) 9 [0,sin~" ()] ifh<t<2r,
[cos(1/z),sin™(y)] ifor <t
Whereas, when h > 2r, K is non-zero if:
[0;/2] if t < 2r,
(3.8) [cos™1(1/), 7/2] if2r <t<h,
[eos™"(1/z),sin~*(y)] ifh<t
Asin ion 3.1, K is purely-imaginary when 0 € [0; cos%(1/z)], so one may

carry out the integration in (2.5) along the intervals [0;a] with @ = 7/2 or @ =
sin~" (), depending on conditions specified in (3.7) and (3.8), respectively. We are
left with the cvaluation of the following integral:

(39) Hesi = { /ﬁo%} ;

Now, according to (3.7) and (3.8), a = 7/2 when y > 1 (t < /) aud a = sin~'y
when y < 1 (¢ > h). We first examine the case @ = m/2, that is, y > 1. In this case,
equation (3.9) takes the form:

(3.10) k(z,y) = ky>1(2,9) = koo(z)
—”—’vRe{f;/aagcos(ﬂ) sin(6) [cos™" (2 cosf) — z cosfv/T — 22 cos? 0 } 2
where we have identified koo (), the covaris for h = oo given in (3.6). The

integral in (3.10) is computed using a software for symbolic computations, and,
after rearranging the terms, we get

(3.11) Fy>1(2, y) = ko) — Bzy
) )]
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where I’ is a step function given by:

@12) - H'(2) = Lg;ho0) = { i £ Gt

As expected, the quantity between square brackets in (3.11) is real when z < 1 and
s0 is k(z,y) for all z.

We now consider the case y < 1 (£ > h) and the integral in (3.9) with a = sin™' .
The symbolic calculator (see [26]) provides a lengthy formula for the solution. After
simplification, the expression takes different forms for z < 1 and = > 1. Forz > 1
and y < 1, the cuvariogmm k reads:

4v2? — T 2 e
kﬁﬂ(z' e vl [F (sm 1y|?—1) —(1+2)E (sm 1 y|
ey L

+( 4‘”12)00.@ (m,h_.y)
1 (zy z
@ (e D VAAT,

The functions of two variables F(¢|z) and E(¢|z) are the incomplete elliptic
integrals of the first and second kind, respectively, defined by the following formulas
(see [25]):

(3.14) E (¢|2] / 1 - zsin’ uduy, F(¢|z /
(@l2) = |V (¢l2) = *_ —=
Notice that the complete elliptic integrals in (3.4) are special cases of F(¢|z) and
E(¢|2): §
™ ™
(3.15) E(z)=E (5!1) , F(@)=F (—2-|z) 2
The i lete elliptic integrals are real-valued if zsin?¢ < 1. Note that this is

never the case for the arguments of E and F in (3.13), so that the two functions
have complex values. Note also that, owing to ¢ < vVAhZ +4r2:

(3.16) a/1-32<1, 1-z*(1-y?)<1,
and so0 ky<1(,y) in (3.13) is real. Now, when z, y < 1, one finds for k(z,y):
z>1

41 =22 Seiy ) 2 e
k—:g(@v) T [F (sm T 1) — (14 2%)E (sin’
UL A o 2-82
+( =+ g cos’ (.’c 1 y)+ pre cosT T
L (ay 1 = = +2:1:2 T
ow ( sz ) V1-92/1-223(1 = @
i
(3.17) +4w1 cos™! (z’\/l P+ VI-22/i-2 (01— )

Note the similarities with the formula for z > 1 in (3.13). Also, all three expressions
inside cos™! in the above are comprised between 0 and 1 and so k(z,y) is real.
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®

Puc. 1. Normalized mean covariogram k(t) as a function of ¢: (a)
with r = 1/2 fixed and increasing height h = 0.01, 0.05, 0.2, 0.5,
1, 2, +oo (bottom to top, solid lines); (b) with h = 1 fixed and
increasing radius r = 0.0, 0.1, 0.3, 0.5, 1, 2, +oc (bottom to top,
solid lines). Dashed lines: covariogram of a sphere of diameter 1.

To summarize, the exact expression for k(z,y) is given by (3.11) and (3.6) when
y > 1, by (3.13) when y < 1 < z, and by (3.17) when 2 < 1 and y < 1. The
covariogram is plotted as a function of ¢ in Fig. 1(a) and 2(b) for various valucs of
r and h (solid lines), and compared with that of a sphere (dotted lines).

An asymptotic expansion of k(t) when ¢ — 0 is now carried out. Use the
expansion (as m — 0):

(3.18) i ;

F (¢|m) = ¢+M-_—2—w‘m+0(m’), E (¢|m) = Mw"vﬁo(m’),
we find

(3.19)

kel)=1- £ +0(), K=1-; (; o %) t+ 2R 40@), t-0.

As expected, the derivative of k() at ¢ = 0 is equal (up to the sign) to the
surface/volume ratio of the cylinder. i

The second-order derivative of k(t) becomes infinite at the point £= & (see [6]).
Ci ions between the d-order derivative of the covariogram of a compact
set and its singular points have been previously noticed in the plane [5].

3.3. Oblate cylinders. Consider now the limit 7 — co with h fixed so that z — 0
and y remains finite. We take the limit in the formula (3.17) when y < 1 and (3.11)
when y > 1. The covariogram k depends of y only and reads:

1 :
(320 Rgen b B SE

Note that, in the limit r — oo the cylinders amount to infinite layers enclosed
between two planes. The same ic limit would lingly be d
when ideri linders with other ircular ction. This is in contrast

68



MEAN COVARIOGRAM OF CYLINDERS AND ...

to the prolate case (Section 3.1), where the covariogram depends on the shape of
the cylinders cross-section.

3.4. Approxi las. We now give i ions of the exact
solutions which do not involve elliptic functions. Such simpler expressions are useful
for material applications, in particular, for identifying random models, when a high
accuracy is not required.

We first consider the domain r > h. The exact solution is given by (3.20) when
7 =00 and by (3.11) and (3.17) when r < co. We first let » — co and ¢ — oo with
h and the ratio t/r fixed, and expand (3.17) to order O(r~3). In the region t < h,
that is, y > 1, we let ¢ = 0 and compute an expansion to O(t3) with r, h fixed. In
the region ¢ > 2r, we set k ~ 0. One obtains:

(321)
il 2t2 i A
1 §(x+;)’+m+m' Re
k) mkesn®)=4 b (¢ h? i ey
T Emﬂl =)+ @_1 e 1_m, ifh<t<2r,
0 i£4> 2r,

Note that the above expansion is continuous except at point ¢ = h, and is exact
in the limit r = oo only. It turns out, however, that formula (3.21) is a very good
approximation of the exact covariogram for 7 > h. The maximal error sup,|k(t) —
kr»n(t)| between (3.21) and the exact result is attained when ¢ S h whenever
r > h. As expected, this error decreases and tends to 0 when 7/h — oo. It is about,
0.5% for r = h and 0.1% for r = 4h (Fig. 2). The error is much smaller at points
t % h: for instance, the mean error (|k(t) — krpn(t)|): is 0.1% and 0.004% when
r = h and r = 4h, respectively. The approximation (3.21) is good in the region
h/2 < r < h. The errors are about sup,|k — krs.n| = 2.6% and (|k — krsi|)e = 0.6%
when 7 = h/2.

We now consider the domain h >> r and compute an approximation of k(t) valid
in the region h 3> r. This task is more difficult than in the oblate case i < r because
the exact result for h = oo involves elliptic functions. In the domain 2r <t < h, we
let h — oo and t — co with 7 and the ratio h/t fixed and expand (3.11) to O(h~4).
We use the same expression in the domain ¢ > h, as long as the latter is positive
and 0 otherwise. In the domain ¢ < 2r, we expand (3.13) when h, ¢t — oo with r
and the ratio h/t fixed, to O(h~*). One finds:

(3.22) k() ~ kren(t) =
t LAeNe e e i
g 3@ @) gl e
o-i 1_£+i t>2r
mxVa\'Trte) ) :
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k(i), kesn(t), kren(t)
ST :
08 k,»,,gt; ]
<h(t,
e r=1,h=29 1
04F 4
==l

0.2f 7 1

Onemot T Sepie e
Puc. 2. Mean normalized covariogram k of a cylinder: comparison
between the exact result (solid line) and approximations (3.21)
and (3.22) (dotted lines) when r = h=1and r = 1, h = 2.9,
respectively.

We emphasize that, contrary to (3.21), the expressions above are not asymptotically
correct in the limit b — oo. Also, imation K (t) is di i att=2r.
The maximal error sup, |k(t) — kr«n(t)| is attained at ¢ 2 2r, is constant and equal
to about 1.1% for A > 2r. In the domain 1.6r < h < 2r, the maximal error is less
than 1.4% (Fig. 2).

To ize, a good imation of the covariogram is given by (3.21) when
h < 1.6r and by (3.22) when h > 1.6r with a maximal absolute error of 1.8%.

4. BOOLEAN MODEL OF CYLINDERS

In this section, we consider a Boolean model of cylinders with radius r and height
h (see [17]). The Boolean model is defined by an homogeneous Poisson point process
of intensity % (the average number of points per unit area). A cylinder C oriented
in a random direction, uniformly distributed on the sphere, is implanted on each
Poisson point. The cylinder volume fraction, denoted by p, is linked to the Poisson
intensity through the following formula (see [16]):
(4.1) log(p) = —ymhr?.
Hereafter, we examine the integral range of Boolean random sets made of cylinders.
The Boolean model, denoted by B is the union of all cylinders C, implanted at
Poisson points so that the cylinders may i . Its cl istic function
is denoted by xs.

4.1. Integral range. The covariance C(t) of the Boolean model of cylinders B
reads
(42) C(t)={z€B,z+t€B,|t| =t} =2p— 1+ (1 — p)>*O,
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04,3
=101
h=10"2, 102

(VN I S . T -

Puc. 3. Normalized integral range A3 (p) in a Boolean model of
cylinders with radius r = 1/2 as a function of the volume fraction
p of cylinders, with varying cylinder heights & = 3, 10, 10? (solid
grey lines, top to bottom), 1/3, 10~%, 102, (dotted black lines,
top to bottom) and h = 1 (solid black line). Dark-grey solid line
on top: normalized integral range for a Boolcan model of spheres
of diameter 1.

Its integral range is defined by (see [17]):

(4.3)
1 / e 2 21 _ 4n(1-p) / = 2
Ag=——— | dtant? [O(t) —p?] = B [ 442 [ek®I0s0-m) _ 1] |
ST p0=p) Jo [T P o [e ]
where the integrand C(t) —p? is the d covari For cylinders the d

covariance is identically zero for t > t. where t. = v/&? + h? is the maximum length
of a chord in the cylinder. The integral range is useful to quantify the representative
volume element for the set B. Using the exact expression derived in Section 3.2,
we compute the normalized covariogram:

49 A3 = pre
for r = 1/2 (Fig. 3). The latter is equal to 1 when p = 0. Note that the integral

range is very close, but not equal, to that of a Boolean model of sphere of diameter
14

2 6. L 3
= sphere _ _ p)3t/2—13/2 _
(4.3) AY — -/o dt [(1 p) 1+ p] i

When p = 1/2, the maximum value of Aj is found to occur for h slightly smaller
than 1 (Fig. 4). This value is still smaller than A%"*"°. Furthermore, numerical
computations show that the normalized integral range As is almost unchanged
when h is replaced by 1/h (Fig. 3).

4.2. Variances and repr ive volume el prolate and oblate
cylinders. Let pi be the measure of the volume fraction of cylinders over a domain
W of volume V:

L3(BNV
(4.6) pw = # = / du xg(u).
w
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0
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Puc. 4. Normalized integral range As(p) in a Boolean model
of cylinders with radius » = 1/2 and volume fraction p = 1/2
as a function of the cylinders height h (solid line). Dashed line:
normalized integral range for a Boolean model of spheres of
diameter 1.

Denote by Py the mean of the estimates pw; taken over N independent realizations
W =W, ..., W of volume V. The variance D}(V) of the estimates py, is given
by:

4.7

D,’;(V)=%g}[%/;Viduxn(u)—iwr=%é[(%/w'duxu(u))n—iﬁ/]v

Taking N large and Py ~ p in (47),weget
8 DA(YV) = 3 E ] [xo ()xa(v) - 7] dudu.

Take W; — R® and use the change of variable ¢ = v — u. The double integral
amounts to an integral of the centered covariance function, and so we get

w9 DW= [ [00-7] dt=pt-n,

aresult first derived by Matk in [17]. The i ion (4.9) is actually
valid for volumes V' much larger than A3, and so requires that A3 (and t.) is fnite.
The latter shows that, when V' > A3, the volume W acts as n independent domains
of volume A3 with n = W/As. Thus, the volume Aj is said to be “representative”
of the Boolean model B. Note, however, that the variance D3 (V) also depends on
the point variance p(1 — p).

When Ay is infinite, a scaling law different from (4.9) is expected [12]. For prolate
and oblate cylinders, the theory respectively predicts [10]:

(4.10) DE(W) ~ 3: DE(W) ~ Vl/,x V> 4s,
where a, o/ are prefactors. The scaling laws above indicate a slower decrease of
the variance with respect to the volume than in (4.9), due to infinite correlation
lengths.
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For prolate and oblate cylinders, the behavior of D% (W) should be linked to
that of the integral of the covariance C(t) as t — 0o. Consider first the asymptotic
behavior of k() as ¢ = oo in the cases h = oo and 7 = co. Making use of the
expansions for ¢ = 0:

(4.11a) F(#m) = ¢+ ""T”s + '"‘*’;T;“)"ﬁ +0(¢7),
(4.11b) E@lm) = ¢- %+W+o(¢’),

one finds, as t = oo:

(4.12)

e ﬁ+o(1) Rl Pl +o(l
22 Gk ' 2t 2

Tor prolate and oblate cylinders, the integral of the centered covariance on a

spherical domain of radius € diverges as:

(4.13)

) , (ifr =+o0).

—20=B),210(1 — p)e, ifh—
A3(0) = 4mt?) [C(t) — it ~ 7 7 log(1l - p)e, i 0,
(0= [_ o) [0 -7 {-z&;ﬂmagu_,,)za, it

We remark that As(€)/€® behave as ~ V=2/3 and ~ V=1/3, respectively, for prolate
and oblate cylinders, where V' is the sphere of radius £. This qualitatively explains
the expansions (4.10).

However, the variable change ¢ = v—u leading to (4.9) can not be directly carried
out for finite domains W; and infinite integral range. We derive it here for spherical
domains W; of radius £. Onc nceds to compute the probability dP(t,€) that two
points A and B in a sphere are separated from a distance in the interval [t;¢ + dt].
We first fix 4, a point at a distance 0 < a < £ of the sphere center. The volume of
points at a distance in the interval [t; + d¢] from A is given by:

{ 4rt?dt, ift<l-a,
dav; =

(419) 2,,tdt(t-;+f’-"), fl-a<t<lta

Za

Integrating over a, one finds the required probability:

a\ "2
Replace now the term xg(u)xs(v) in (4.8) By C(t) and integrate over t:
(4.16)

N
DE(V) = zlvg Vlf K o, 020000 =57 o /‘ o0 -7 a0,

The above integral is ytically solvable as a closed-form ion, for oblate

cylinders (r = o0). When 2¢ > h, the solution involves the exponential integral

function E;(2) = — f: e~*/sds. The exact solution is a lengthy expression, which,

for conciseness, is not given here. It is provided by the software Mathematica [26].
73
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Dg(V)
0.25

0.20]
0.15]
0.10]
0.05|

+ \4

Pric. 5. Variance Dj(V) of the estimate of the volume fraction
measured in a spherical domain W vs. volume size V of the domain
for oblate cylinders (r = +o00). The cylinders height is fixed to
h = 1. Top to bottom: volume fraction of cylinders p = 0.5, 0.4,
0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9.

The variance Dg(V) is plotted as a function of ¥ for various volume fraction of
cylinders in Fig. 5.
Taking the limit £ — oo and using the expansion (4.12) yields:

(4.17) DA(V) ~ ""(“—”)z;“’wl+o(1/z)ﬁ, (ih=i2i=)

| —p)? =
DA(V) 3h(1 p;llog(l p)

(“.17b) +9%W O/ o).

as £ — oo, with V = (4/3)7£3. Notc that the above results arc identical up to a
constant factor to those obtained by replacing As in (4.9) by Aa(€) from (4.13).

4.3. Variances and rep: ive volume el ylinders with finite
height and radius. This section is concerned with the behavior of the variance
D%(V) for 7 or h large but not infinite. We first examine the case where h is
large. The integral in Eq. (4.16) is ically for i ing values of
h =10, 10, ..., 10* with » = 1/2 fixed (Fig. 6a). The data is compared to h = co
(solid line, top) and to the cxpansion (4.17) (dashed line, top). The variance D3 (V)
asymptotically scalcs as ~ 1/V for very large V, as long as h is finitc. However, for
h > 10, an intermediate regime appears where D3 (V) ~ 1/V?/3. This scaling law
occurs for V <« h3, that is, £ < h. It is very close to the asymptotic limit (4.17).
The change between the two regimes takes place, as expected, when £ is of the
same order as h. Numerical data indicates £ ~ 3h. A similar behavior happens for
73> h with h = 1 fixed (Fig. 6b): when £ > r, the scaling law D (V') ~ 1/V holds,
whereas D% (V) ~ 1/V*/3 when £ < 7. The change between the two regimes occurs
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Puc. 6. Variance DZ(V) of the estimate of the volume fraction
measured in a spherical domain W vs. volume size V of the domain,
in log-log plot. The cylinders volume fraction is fixed to p = 172
Grey solid lines, bottom to top : (a) cylinders height A = 1, 10,
100, 103, 10%, oo with radius fixed to r = 1/2; (b) cylinders radius
r =1, 10, 100, 10%, oo with height fixed to h = L. Dotted lines in
black: expansions (4.17).

when 7 ~ £. Plugging £ = 3h and £ = r into (4.17) yields:

(@18) DR(V) -‘—2%5“‘—”)’"". E>h>n),
(418b)  DA(V) w, (>3 h).

The above two expansions are in good agreement with the numerical data shown
in Fig. 6.

5. CONCLUSION

In this work, the covariance and integral range of the Boolean model of cylinder:
have been d using the ical covari of cylinders. As d
the integral range takes the form of a divergent integral for flat (oblate) or highly-
elongated (prolate) cylinders. This results in peculiar scaling laws of the variance of
the measurement of the volume fraction of cylinders over subdemains of volume V.
The latter variance scales as ~ V~1/3 for the oblate and ~ V=23 for the prolate
type when V' — oco. The 1 t-order ion in the ptoti jion for
the variance has been derived for domains of volume V' — oo with a spherical
shape. For cylinders with finite (but large) aspect ratio, the scaling law ~ V=2/3
or ~ V=2/3 occurs in an intermediate region where L = V'/3 is comprised between
the lowest and highest dimensions of the cylinders. The classical scaling law ~ 1/V
is recovered when L is much larger than both cylinders dimensions. These results
have implications regarding the effective thermal and elastic properties of cylinder
models where similar power laws have been observed (see [3, 1]).
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