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Abstract. In this paper, moti by certain recent of the Fuler's beta, Gauss®
y ic and confluent hy ic functions (see [4]), we extend the Srivastava’s
triple hyp:rgeometnc function H, by making use of two additional parameters in the integ-
rand. igation of its ies including, among others, various integral rep—
resentations of Euler and Laplace type, Mellin Lagucrre pe
ion formulas and a relation, is presented. Also, by virtue of Luke’s bounds
for hypergeometric functions and various bounds upon the Bessel functions appearing in the
kernels of the newly established integral representations, we deduce a set of bounding inequalities
for the extended Srivastava’s triple hypergeometric function Ha ,q-!
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1. INTRODUCTION AND PRELIMINARIES

Throughout the paper, N, Z~ and C will denote the sets of positive integers,
negative integers and complex numbers, respectively. Also, we denote No = NU {0}
and Zy =Z~ U {0}.

The definition of the generalized hypergeometric function with r numerator and
s denominator parameters, as a scrics, reads as follows:

: S e (a1)m - (ar)m 2™

+Fy(@n,e++ aps byy- o+ s bai 2) = Fa(ari bsi 2 Z I
where b; € C\Zg ,j = I, 5. The series converges for all z € Cifr < s. It is divergent

for all z # 0 when 7 > s+ 1, unless at least one p is a neg;

integer, in which case it becomes a polynomial. Finally, if r = s +1, the series
converges on the unit circle |z| = 1 when R( b — X a;) > 0. The celebrated
Gauss’ hypergeometric function is 3F1, and the confluent Kummer’s function is

1The research of Tibor K. Pogény has been supported in part by Croatian Science Foundation

under the project No, 5435.
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= ,A. i lizati and uni i of Euler’s Beta function
together with related higher transcendent hypergeometric type special functions
were investigated recently by a number of authors (see [2, 3], and references therein).
In particular, Chaudhry et al. (2, p- 20, E jon (1.7)] ted the foll
extension of the Beta function:

1
@ Bewn= [ E0-peTmE, R > 0;
where for p = 0, min{®(z), R(y)} > 0. They also obtained related connections of
B(z,y;p) with Macdonald (or modified Besscl function of the sccond kind), crror
and Whittaker functions. Further, Chaudhry et al. [3] used B(z, y;p) to extend the
Gauss’ hypergeometric and the confluent (Kummer's) hypergeometric functions in
the following manner:

(1.2)
= B(b+n, c—b; n

Fobes) =3 (@ 2 LB E, 1> 0,1 <1590 > %0) >0,
n20 3 A

13  B(hgz) = 25%’%%;—’2 fl—'; 22 0; R(e) > R(H) >0,
n20 ”

respectively. More recently, Ozarslan and Ozergin [14] defined the exztended first
Appell function in the form:

(1.4)
Abbianyn = T Onl), "ERINe G0 SV g5,

mn20
provided that max{|z|, [y|} < 1. They obtained the following integral representation
(see [14, p. 1826, Eq. (2.1)]):
1 11— ¢

—1
(1.5) Fi(a,b,b';¢;2,5;0) = /o‘ B(a,—c_a)(l —at) (1 — yt) ™ T At

for all %(p) > 0 and max{| arg(1 — )|, | arg(1 — y)|} < m; R(c) > R(a) > 0.
It is clear that the special cases of (1.1) - (1.4) when p = 0 reduce to the classical

Euler’s Beta, Gauss’ | fi hy ic and the first Appell
functions, rwpectwely.
Recently, Choi et al. [4] have introduced further ions for functions B(z, y; p),

Fy(a,b;¢; ) and @p(b; ¢; 2) in the following manner:
@) By = [ -1 -t torta,
o
when min{R(z), ®(y)} > 0; min{R(p), R(q)} > 0, and by means of (1.6):

B(,c-b) nl’
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EXTENDED SRIVASTAVA'S TRIPLE HYPERGEOMETRIC Ha,p,q FUNCTION ...

B | Ty B(b+mn, c—b;p,q) 2"
(1.8) Dp,q(bic2) = ; S EmEERT A R(c) > R(b) > 0.
Related properties, various integral i Mellin tr: are also given
in [4].
A further extension of extended Appell function (1.5), in terms of the extended
beta function B(z, ;,q) (1.6), we introduce as the series:

B(a+m+n,c—a;p,q) 2™ y*
1.9) Fi(a,bbiciz,y;p.a) = B)en (V) —— = —
(1.9) Fi(a,b,b;c2,v:p,q) m%n() ®), BaE=a) == ﬂl’

which turns out to be a special case of the double series ﬁ("‘)“"” when ke = 1
(see [20, p. 256, Eq. (6.3)]). It should be noted that the thorough study of these
functions is still an interesting open question. Note that series (1.9) plays one of
the central roles in the present paper. Also, it is clear that when p = q (resp.
p = g = 0), the functions in (1.6) — (1. 9) reduce to (1.1) - (1.4) (resp., to the
classical Euler Beta, Gauss hyper, hy, ric and Appell
functions), respectively.

In terms of the extended beta function B(z,y;p,q) defined by (1.6), we now
introduce the extended Srivastava’s triple hypergeometric function for all o, B, B' €
C and 7, 7' € C\ Z; in the form:

(1.10) Hapglo, 8,817 2,9, 2] =
(@)ktn(B)sm B(B'+m+n,v — Bsp,q) o y™ 2"
>0 Mk B(#',y' - B') k! mlnl’
when min{p,q} 2 0; || < r, |yl < s, |2| < ¢, while r = (1 — 5)(1 — ¢) when
p = q = 0. The special case of (1.10), Ha,00 = Ha reduces to the Srivastava’s
triple hyp ic function Hy, i duced in [16] (see also [17]):
Haloo B, BsmAizpd = 30 (@k4n(B)ksm BB +m+n,y —f)a*ym 2"

i BE.Y—F) Hmin
o (@Qktn(Besm(B)min T*y™ 2"
& = o T e ol

where |z] <1, |y| < 8,|2| < t;r = (1 — 5)(1 —t) (compare also [18, p. 43, Eq. (11)],
and references therein).

Motivated ially by the ial applications of functions B(z, y;p, 1),
Fp g(a.b;¢; 2), p,(b; ¢; 2) and the extended Appell’s function Fi(a,b,b'; ¢; 2, y;p,q)
in diverse areas of h ical, physical, engi and istical sciences (see

[4], and references therein), our aim is to introduce and investigate, in a rather

systematic manner, the extended Srivastava’s triple hypergeometric functions Ha,p,q,

by presenting:

(i) various Euler and Laplace type integral representations, as well as, further
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integral representations involving the Bessel and modified Bessel functions in the

kernel;

(ii) Mellin transf Laguerre p ial ions and certain recurrence
relations;
(iif) & set of bounding i itics, using the underlying new integral

where the main tool is the Luke’s rational and exponential bounds for the generalized
hypergeometric functions £, and as a counterpart, diverse bounds upon the Bessel
functions appearing in the kernels of integral representations.

2. ON THE EXTENDED SRIVASTAVA’S TRIPLE HYPERGEOMETRIC FUNCTION

In this section we study three different categories of results concerning the newly
defined special function Hy,p,, that are: integral representations, recurrence and
transformations formulas.

21 I rep: £ In this sut ion, we blish a set of Euler and
Laplace type integral representations for function Hy,,,. We also obtain certain
integral ions for H 4 p,, involving the Bessel and modified Bessel fi

‘We begin with a simple auxiliary integral representation result, which, to the best
of our knowledge, is new, and is of interest by itself.

Lemma 2.1. For all min{®(p), R(q)} > 0 and max{| arg(1 - z)|, | arg(1 —y)|} < =;
R(c) > R(a) > 0, we have

(2.1)
1 4a—1(7 _ g)o-a—
Fx(a.b,b’;cmu;p,q)=/n t——g((la—’ct_)u—)](l—zt)‘"(l—m)‘”'c‘f‘ﬁdt.

Proof. Applying the intcgral cxpression (1.6) to the cxtcn‘dcd Beta—function kernel,
we can write
3 Ont)n Bet+m+n,c—aipg) 2™ y*

Fi(a,b,b';¢;2,439,0) =
s G2:¥17,0) B(a,c—a) .m! nl

m,n>0

B)m®)n 2™ ¢ mn— e
Bla,c—a) ml nl / Lt C ) boiitdy

mn>0
@ SOV C ) e e SR
- GG SEt e s,

Taking into account the binomial series expansion (1+u)% = ¥,5 (32)u*; ful <
1, by legitimate exchange of the order of integration and summation, we obtain
(2.1). a
Now, we are in position to state our first main integral representation result, for
function Ha pq.
50
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Theorem 2.1. For all min{R(p),R(g)} > 0 and for all R('y‘) > R(B’) > 0 when
p=g=0, we havc

A e -1(1 —y)7'-#'-1
Hapgle: 887, 2,9,4] —/u B =) A= w0

(22) X 2Fy (a.ﬂ; i ~8-m do.

ae Sk
(1 —vy)(1—v2) o
Proof. Observe first that the extended Srivastava’s triple hypergeometric function
Hj p,q» defined by (1.10), can be expressed as a single series by the extended Appell
functions (1.9) as follows:
(2.3)
e k
Hapalen B,857,752,9,2] = Z (@Bl FB,B+k,a+k;y,2p.q) 1—| i
o O k!

Next, substituting the integral in (2.1) into (2.3), we obtain

1
Hapalo, 8,857 753,9,2) = m EA V11— )T (1 —vy)f
3 k>0

(24)

—a p__aq \ (@kB) z <l
Sl """("Tﬁ) fe K {(_l—w)(l—uz)} o

Finally, changing the order of summation and integratiou in (2.4), we arrive at
(2.2). Theorem 2.1 is proved. o

In the next theorem, we state two equivalent double integral expressions for
function Ha,p,q- 4

Theorem 2.2. Let the uasu;nph'nm of Theorem 2.1 be fulfilled. Then
1 . B-1,8'-1(1 _ 4, )1—B8-1
;7,7 = ik vl YR
Hapgqles 8,877 129,21 _‘/n /o BB, =P BE, 7 -F)
(=) =F10 —wy)=*
(1—uz — vy — vz + v2yz)*
and for all min{R(p), R(q)} > 0 we have

(2.5) ~¥- % dudv,

1
HapalesB,657:752,0:2 = 5= —grpm—r— g
11 gr-2y7'-2(] — )P S
e x|l e 0
Ifp=gq=0, then (2.6) holds when R(7) > R(B) > 0 and R(') > R(B') > 0.

Proof. Using the well-known inbegtal formula

2Fi(a, b ¢ 2) = / #1(1 - t)""“ (1-zt)"dt

T®) I‘(c b)
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for all R(c) > R(b) > 0; |arg(1 —z)| <7 —¢, 0 < e <, from (2.2) we obtain (2.5).
Next, the representation (2.6) can easily be deduced from (2.5) after some simple
algebraic manipulations. Theorem 2.2 is proved. )

Theorem 2.3. Let min{R(p),R(g)} > 0 and z > 0, max{R(y),N(2)} < 1, and
min{R(c), R(8)} > 0 when p = g = 0. Then we have

Hapalo . 5775%5,003) = Te / e
Jy—1(2Vzst,
{ :_ 1&\/%)) } ®,,4(8'73ys + zt) dsdt.
Proof. Using the integral form of the Pochhammer symbols (@)k+n and (8)k4m
and the elementary series identity (see [18 p- 52, Eq. 1.6(2)]):
Y Qm+mg) 2 Z agm) & ”’)
m1,ma20
in (1.10), and afterward applying the definition of
function (1.8), we obtain

1 0 oo
r. 1. Al —8—t o1 -1
Hapgles B B35, 21 = Froypo /o _/ﬂ (A

(2.8) X 0F1(=;7;z8t) ®p o (B';7';ys + 2t) dsdt .
Next, observe that the Bessel function J,(z) and the modified Bessel function I, (z)
can be expressed in terms of hypergeometric functions as follows (see [21]):
@9
Dyl e e ey GRS

. Tv+1) e o Tw+1) ** i
being » € C\Z™ in both cases. Finally, combining (2.8) and (2.9), we obtain (2.7).
Theorem 2.3 is proved. (m]

@7)

m'ma'

led confl

hy

1

2.2. Mellin and ions via La e poly
The double Mellin transforms of suitable classes of integrable functions flz,y)
with indices r and s are usually defined by (see [15, p. 203, Eq. (7.1.6))):

% oo
M{f(z,)}(r,3) =/‘7 /o 2"y f(z,y) dzdy,
provided that the improper integral exists.

Theorem 2.4. For all min{R(r), R(s)} > 0 and R(B'+7) >0, R(Y +5— ) >0

the Mellin transform of Ha,p,q with respect to p,q > 0 is given by formula:

©10)

M{Hppo}(r,8) = %ﬁ,;’;a—ﬁ’)
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Proof. Usiné the definition of Mellin transform, we find from (1.10) that
i 00
M{Hapa} (r,6)=/:/0 P Ha gl B, 857, 2,9, 2) dpdg

SIS e (@)k4n(B)itm B +m +n,9' = B;p,q) ¥ y™ 2"
L /n G (,“,,.z‘,;z,, @ B@ Y —F)  Hminl [?U

= 1 (@tn(Brtm z*y™ 2"
BB\ -8 She Dk Kl ml nl

x/:/;wp"‘q"’B(ﬂ’+M+n,'/—ﬁ';p,q)dpllq-

Next, applying the formula (see [4, p.342, Eq. (2.1)])
/n 5 /n wp ~1¢*~'B(z, y; p,q) dpdg = D(r)[(s)B(a+r, y+s)  (R(r) > 0, R(s) >0)
to the double integral, we obtain

M {Hapa} (r,8) = D(r)I(s)x

(@ictn(Bsm BB +m+n+r,o — B +38)aky™ 2»
[ BB,y - B") k' ml !’

kym,n20
which, in view of (1.11), gives (2.10). Theorem 2.4 is proved. [m]
The special case of (2.10) when r = s = 1 yields the following relation between the
function Hap,q and the Srivastava’s triple hypergeometric function H4:

B -B)

et LR /. . g .
ey Hale, B,8'+1L;7,7'+2 2,9, 7],

o
/ Hapqles 8,877 12,9, 2]dpdg =
0

provided that R(v') > R(8') > 0.

Theorem 2.5. The following Laguerre pols ial rep ion holds for R(p) >

0, R(q) > 0:

Hapqle, 8,657,755, y,2] = SnioRinl i Z B(f'+n+1.9 -8 +m+1)
2l B: 857,75 2,9, B(ﬁ”y_ﬂ')m.nzo ,

X Hppqlen B,6' + 1+ 17,9 + m+n+ 22,3, 2] Lm(p) Ln(9) -

Proof. We start by recalling the following identity, in a slightly corrected form, due
to Choi et al. [4, p. 350, Eq. (5.5)]:

exp (_% ot 1_3_!) = P4 { i Lon(®) Ln(q) £7 (1 — t)m+1}

m, n=0
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Using this identity, from (2.2) we obtain
L

Haples 8,857,752, 2] = m
(2.11) .
x 2/ [u.ﬂ;’ﬂ “ﬂ_‘m] {m;ﬂ Lun(p) Lun(g) v™ (1 - u)’"“} dv.

1
i e (R S

Now, changing i ion and ion order in the jon (2.11) and
using (2.2), we obtain the desired result. Theorem 2.5 is proved. a
23. T i and lati In this subscction, we first

derive a transformation formula and then obtain a recurrence relation for function
Hpp,q-
Theorem 2.6. The following transformation formula for Hap,, holds:
Hapalen B, 85717329, 2]
(2.12)
= Q-0 ) Hagy [a 8.7 ~ Bt

et L g Al
@—ya-2'y=1 -1
Proof. Applying to (2.8) the ded Kummer’s fi jon (see [4, p. 361,
Eq. (11.4)]): @p,q(8;7;2) = €* Bgp(y — B;7; —2), we find that
A S o e e e R ST
Hapgles 8,857,729, 2 = @I /; A € 1!
X oFi(=;7izst) B p(v — B3 75 —ys — 2t) dtds.
The substitution #(1 — z) = u, s(1—y) = leads to

(1 z)=0
Hapalon B, 85,5202 = = III‘)(a);‘l(ﬁ)Z) / / emmyal A1
Tuv o 2u ;
x oFy (—;7. T=na=a, _5)) Pqp (*/—B im —(”_ ) ——-—1)) dudv,

which is exactly the same as (2.12). Theorem 2.6 is proved. a
Theorem 2.7. The following recurrence relation for Hy p,q holds:

Hapalos B,8'37,7'i2,1, 2] = Haplo, B, 837 — 1,7 2,9, 2]

afz
A mfh,p.q[“"'l B+1,859+1,i3,u,2].
Proof. Using in the integral jon (2. 8) and the i relation
oFi(=i7 - 1;2) — o Fa(=;v@) — (7 i) oFi(=7+1;7) =
we obtain the desired result. Theorem 2.7 is proved. o
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3. BOUNDING INEQUALITIES

In this section, we find & ding i ities for the ded Sri ’s triple
hypergeometric function Hy,,,q. We begin with a simple auxiliary lemma that gives
a functional bound for function B(z,y;p, q), defined by (1.6).

Lemma 38.1. For all min{p,q} >0 and min{R(z), R(y)} > 0 we have
(3.1) B(z,;p,q) < e~ VPV B(z,g).
Indeed, using the sharp estimate
_P__9 |_ o (vmtva? i
oi‘:glm’{ 5 1—:} e , min{p,q} 20,
from (1.6) we obtain (3.1).

3.1. B d ined via series rep: 15t Applying the functional
bound (3.1) to all series repr ions of newly ded special fi lving
the function B(z,y;p,q), such as the ded Gauss’ hyper; ic Fpq, the

ded Kummer’s confl hy ic @p,q, the ded Appell’s F; and
the ded Sri ’s triple hy ic Hpp,q functions, given by (1.7) -

(1.10), respectively, we obtain the following functional bounds.

Theorem 3.1. For all min{p,q} > 0; R(c) > R(b) > 0 and for all |2] < 1 we have

(2 Fpa(a,bic; ) < e~ VPV’ F (g, b c; 2)

@3) Bpq(bics2) S VPV Bl 2).

Moreover, for max{|arg(1 — gc)l,la:g(l =)} < mR(c) > R(a) > 0, we have

Fi(a,b,8';¢;7,5:p,0) < e~ WPV Fy(a,b,b5;2,9) 5

while for |z| <, |y| < 8, |2| <t and t = (1 —7)(1 — ) when p = ¢ =0, we have

Hupalen B,837,732,9,2] < VPV Hylo, B,857,752,9,2] -

Proof. To prove the inequality (3.2), obscrve that all parameters and expressions
in (3.2) are positive, and hence we can use the series representation of the extended
Gauss’ hypergeometric function (1.7) and Lemma 2 to conclude that:

Fpq(a,b; c,z) 5 ) Z(a)nB(b+n c—b) =

B(b c—

e‘(ﬁh/’)’p(c) 2 (@)aT'(b+mn) 2 — WAt E (@)n(b)n 2" Fil

T(b) T(c+n) n! (©)n n!
From the last relation we easily obtain (3.2). The other three inequalities can be
proved similarly, and so we omit, the details. Theorem 3.1 is proved. o
55
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3.2. Bounds obtained via i In this ion, we
establish another type bounding mequa.lmes for function Hyp,q, combining its
newly derived integral expressions and the bound (3.1) stated in Lemma 2. Since
the integrands consist of either the exponential exp{—p/t — q/(1 — t)} or rational
functions (Theorems 2.1 and 2.2) and extended Kummer's ®,, together with
the modified Bessel functions (Theorem 3), we need auxiliary tools to bound the

involved special functions.
In [11], Y. Luke, has studied, among others, the problem of two-sided inequalities
for ,F,~type generalized hypnrgeometnc function, where the bounds consist of
ials and /or i ions. We recall some results from [11], which
are usable for Kummer’s function ®. If b; > aj > 0, j = 1,7, then for all z > 0 we
have (see [11, p. 57, Theorem 16, Eq. (5.6)]):

(3.4) €% < Fr(ari b 2) <1-0(1-¢%),
where

el
(3.5) g= 15950~

1‘51];‘121 i
For all ¢ > b > 0, the bilateral inequality (3.4), applied to the Kummer’s confluent
function ®(z) = 1 F1(b; ¢;z), reduces to the following:
(3.6) 8 < B(bcz) <1— ’;’(1 —e),
where the equality holds for b = c. Also, we point out some other estimates for o7
from [11, p. 55, Theorem 13, Eqs. (4.21), (4.23)], which are too complicated to be
used here.

For another estimation purposes we recall certain bcvunding inequalities for function
Ju(t) on the positive real half-axis. We first mention von Lommel’s results (sce [9),
110, pp. 548-549), and also |21, p. 406]):

3.7) @<L, |Jua®)l < ‘/_ v>0,u€cR,

and the bound obtained by Minakshisundaram and Szdsz (see [12, p. 37]):
1 i}

(39) wols oy (4), ver

Another bounds were derived by Landau [8], who gave in a sense the best possible
bounds for J,(t) with respect to » and ¢. These bounds read as follows:

(3.9) (@) b v™3, by = V2sup Ai(t),
120
(3.10) @) Serlt™,  cp =supt/Ph(t),
t20

where Ai(") stands for the Airy function.
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Krasikov [5] established uniform bounds for |, (¢)|. Let v > —1/2, then
4(48* - (v +1)(2v +5))
w((482 — )32 - §)
for all £ > %\/z\ FATB, A= (2v +1)(2v + 3). This estimate is sharp in a certain
sense (see [5, Theorem 2]). In turn, Krasikov recently has obtained a set of more
precise and simpler bounds for |J,,(t)| (see [6, 7]). More precisely, for all v > 1/2

and for all ¢ > 0 the following inequality holds (see [6, p. 210, Theorem 3]):

174 2
-3 < 2,
™

where the constant on the right-hand side is sharp. Next, Theorem 4 from [6, p.
210] implies the following inequality:

2 1
< - 2 _ —|4-3%/2
(3.12) |Ju(t)[_'/ﬁ+ﬁc|u 4|r . t>0,]p <1,

where

Jo) < = R,(1),

(3.11)

2)¥2, z>0,p<1/2
% O<z< 2=1/4],v>1/2
= x>/ -1/4],v>1/2.
Here the constant ¢ cannot be less then 1/v/2w. For another kind of bounds for
function J, (t) consult [6, Theorems 2, 5, 6] and [7, Theorems 2, 4].
It is worth to mention that Olenko [13, Theorem 1] established the following
upper bound:

a 3a2
(3.13) sup VAT, (8)] s.bm/um + .7% i '10—:/ =do, >0,

where o is the smallest positive zero of the Airy—function Ai and by, is the Landau’s
constant from above. In this respect we also point out Krasikov’s result [6, p. 211,
Eq. (7)]-

Further considerable upper bounds are listed, for instance, in [1, 19].

Finally, a different approach to estimate the function |J,,(t)| was used by Srivastava
and Pogény in [19]. Let us denote by xs(x) the characteristic (or indicator) function
of a set S, that is, xs(z) = 1 for € S and xs(z) = 0 elsewhere. In this approach,
the integration interval is the positive real half-axis, therefore we need an efficient
bound for |J,,(t)] on (0, A], A > VA + A?/3/2. So, we use the bounding function

d
(619 1LOIS%O = Zxoan®+ VRl (1= x0.a01(8) s
where, by simplicity reasons, we choose
A=1(+0+1%),

because £, (%) is positive and monotone decreasing for ¢ € £ ((A+X*?),00) (cf. [19,
§3]). Notice that as A can be taken any function of the form %()\ + (A + ) B)
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with 7 > 0. (The interested reader is referred to [1], too). Obviously, combining
(8.11), (3.12) in #,(t) replacing Olenko’s result and/or £,(t) in (3.14), we can
define further bounding functions for [J,(2)].

Since the integral representation (2.7) can also be expressed in terms of modified
Bessel function I, we can apply the Luke’s estimate to bound H 4 p,q. This incquality
reads as follows (see [11]):

()"
(3.15) I(t) < Tu+D) cosht, t>0,4+1>0.

Now we are ready to state and prove our second set of bounding inequality results.

Theorem 8.2. Let min{R(p), R(g)} > 0 and for all max{R(y), R(2)} < 1, min{R(a),
R(B)} > 0 when p=q=0. Then under 2min{e, 8} +1 > v > 0 we have

) P(y) e - I3 T(B - 332) 2] *F*
|Hapgles 8,877 ~2,9, 2| < W

v
{210) x {1—%(1—(1—:/)-”*’1'-‘ (1-,)—~+1-r')}.
In the same parameter range for all z > 0 we have

B T(y)D(a — 3 T(8 - 232) by, |2]'F*
|Hapalen B, 85173 =2, 1, 2] < V’yTI;‘(a)I‘(ﬂ)e(ﬁ*ﬁ)’

(3.17) x {1—5:(1—(1—14)“’“5" (1—z)~°+’i—‘)}.

For all min{a, 8,7} > 0 and for z > 0; y,z < 1, we have :
(3.18)
Hanglos 6,857, 72,0, 4] < WP 1 _ £(1 (1 )""(l—z)“’)}

For min{a, B} > 0; v > 1 and for = > 0; y,z < 1, we have

T(p)e=vrtvar

|HA.p.u(a.ﬂ.ﬁ’;7,’{; —z,u,t]l < T@TE
i ’ I
J‘Ti* Tle—3+3)T(B-F+3) (1 -5+ (1—1:)"'34‘(1--)"‘7*3)

=M Gz lT(pe1el) (1o 5 :
Bp =T (a-F+1T (8 2+4)(1 y+m}’m;—,;),

here the bound above holds if 6a—3y+2 > 0, while the eapression below appears for
4a—2y+1 > 0. Moreover, for allmin{a, 8,7} > 0 and for ally, z € 0,1-va), z >
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0, we huve.
Hppales 8,85 175502l < -t [ 1=
|Hapoles B, 857,75 2,9,2]| < e A= va=s
8
3.19 t— 5
e (1—\/5—11)”(1—@—:)"}
Proof. From the double intcgral ion (2.7) and the estimate (3.3), we

obtain
D(y)e=VPHva® 51
Hapale 8,877 —2.9,2]| < / / e T ek
|Hapalon B Il < DTGB s
(3.20)
[Jr—1(2Vzst)| } ) T(y) e WPHva?
(f;7sys+2t)dsdt = ——————
<{ R Jeoiunea T(@)I(B) o7
Next, using the second inequality in (3.6), we get
o oo
i < —o—ta-Tgi1 g-2z1_) |J'v 1(2Vast)|
o e Ly-1(2Vast)
X {1 LG (1- e"""“)} dsdt =
a7
Now, we bound the dulus of the Bessel functions in the i d of R, for each
of the cases of the theorem. First, using the von Lommel’s uniform bound (3.7),
valid for all v > 0, from (3.20) and (3.21) we obtain (3.16). In similar manner,
(3.17) follows from the Landau’s first inequality (3.9) and (3.20), (3.21).
The bound (3.8) due to Minakshisundaram and Sz4sz is of magnitude |J,—1(¢)| £
Cyt*, and so do the sccond Landau’s (3.10) and Olenko’s (3.13) incqualitics, where
Cy>0,6€{y, ——, —5 , respectively. Thus, by these three incqualitics, we get

R < G lal¥ / / ettt A {1 - ‘7—, @ —c"""")} dsdt
0 0

— Gzt _E') Nl RSP S
Clal {(1 £ A /0 oty s dsdt

B /“’ /m e~ (=)s—(1-2)tgock g1 iy nsgti g dsdt}
0 0

=C~:Iz¥*1‘(a+'°_T7+1) (ﬂ+n 7+1)

SR I S AR
e et (TS et
Now, choosing & = v — 1 we arrive at (3.18), then for £k = -1, —1 we realize the

bounds affiliated to the second Landau’s and Olenko’s estimates, respectively.
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As to the use of the bound (3.15) to estimate Rz, we remark that coshu <

ithmeti ic mean i ity, we get

¢*,u > 0, and hence by the

z|’1—/ / Ve el o] {1-%(1—(}””’")} dsdt

Ry <

T(7)
]z|"r —(1-VE)a—(1—y/@)t a1 gfi-1 {1 B 1 — guatat } dsdt = Ry,
s L -
Thus, we have
_T@r@p [ -5 &
s e =o't T=va—pPa—va—2¢ |
which proves the upper bound in (3.19). Theorem 3.2 is proved. (m]

4. CONCLUDING REMARKS AND OBSFERVATTIONS

In the present paper, we have introduced the extended Srivastava triple hypergeometric
functions Hap,qg with the help of the extended Beta function B(z, y; p,q). The
special cases of (2.2) - (2.8) and (2.12) for p = g = 0, reduce to the already known
results for the triple hypergeometric function Hyx (see [16, 17, 18]).

To refine the bounds presented above, we can also apply Luke’s companion
estimate to (3.4) (see [11, p. 57, Theorem 16, Eq. (5.8)])

(41) 1+ﬂze§’<.-F,(a,.; br; z)<1+0z(1—¥+%e’) ¥

where 6 is given by (3.5), and

These notations simplify (4.1) to

1+§zexp{ﬁx}<¢(b; c z)<1+éz (1 2(11-:110)( e*)) .
Now, following the procedure, used in the proof of Theorem 3.2 with this upper
bound and/or replacing some of bounds for the Bessel J, used there either by
Krasikov’s results (3.11), (3.12) or another kind bounds exposed in |6, 7|, we
can obtain a new set of bounding inequalities for function H4p,,. However, this
approach will be exploited in some future work.
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