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1. INTRODUCTION

In this paper, we obtain estimates for solutions of the following fractional order

elliptic equation:

(-A)3u(z) = Q(x)e*™  in QC R3,

(%) uw=10 sl
(-A)iu=0 on 52,
and investigate properties of solutions of the following fractional order elliptic
equation:
(%) (—A)%u(.'l') =Q(z)e™, zc R’

where © is a bounded smooth domain, Q(z) is a given function in L¥(Q) for some
‘—; < p< oo, and (-A)F is interpreted as (—A) o (—A)%. To define (=A% for a
function v in R, we require that

vE L%(R"’) — {'n € LLa(R) / lo(z)] dz < x} 5

R L+ |z

which makes (—A)7v to be a tempered distribution (see [13]).
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Definition 1.1. Given a tempered distribulion f in R*, we say that u is a solution
of equation (—A):'x'u = fifue Wf;,‘(R“), Au e L}\(R:‘), and

(1.1) / (—-Au)(——A)%;pd:r = (f.9) for every ¢ € S(R®),
”
where S(R*) is the Schwarz space of rapidly decreasing smooth functions in R3.

In equation (x), we assume that u € L'(Q) and ™ € LY"(Q)_ where p’ is the
conjugate exponent of p. so that (+) has a meaning in the sense of distributions (see
Delinition 3.1 of [5]). A first question of interest is whether one can conclude that
u € L>(Q) for (¥). In Section 2, we give a positive answer to this question.

Recently, a series of works have been done to prove the existence and to study

the qualitative properties of solutions of the following fourth order equation:
A% = Q(z)e™, x € R

For Q(x) = 6. Lin [7] has given a complete classification of solutions of this equation
in terms of their growth, or in terms of the behavior of Au at oo. Xu [17], has
obtained similar results by using moving spheres methods. In [8]. concentration
phenomena of solutions of this equation was deeply discussed. Robert and Wei
[9], have studied asymptotic behavior of solutions for a fourth order mean ficld
equation with Dirichlet boundary condition. Martinazzi [10], and Wei and Xu [14]
gave classifications of solutions for higher order Liouville’s and conformally invariant
equations, respectively. Concentration phenomena and asymptotic behavior of solu-
tions for higher order Liouville’s and a mean field equations was studied in [11, 12].
Based on these works, Jin et al. [6] have studied the existence and asymptotics of
solutions for equation (**). In Section 3, we extend the results of [6]. by considering
more general functions Q(x). We first obtain the asymptotic hehavior of solutions
near infinity, and then prove that all solutions satisfy an identity, which is similar

to the well-known Kazdan-Warner condition.

3 P
2. L°-BOUNDEDNESS FOR A SINGLE SOLUTION OF EQUATION (—A)Zu = Q(z)c3"
Let Q ¢ R? be a bounded domain and let h be a solution of equation:

(—~B)3h(z) = f(z) in Qc R3,
30§ aa8
on JQ.

(2.1)

1.

The following lemuna is obtained using the arguments of Brezis-Merle
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Lemma 2.1. ([5]). Let f € L'(), and let u € L*(R) be a solution of equation
(2.1). Then for any p € (0, HTTZI'EE) the following inequality holds:

/ exp"l da < C(p. diams2),
Ja
where diam§) denotes the diameter of domain .
We will use Lemma 2.1 to prove the theorems that follow.

Theorem 2.1. Let u be a solution of equation (2.1) with f &€ L'(Q). Then for
every constant k > 0 we have
ek e L'(Q).

Proof. Letting 0 < € < ,'5, we can split the function f as f = fi+ fo with || f1]|; < e
and fy € L=(2). Denote by w; (i = 1,2) the solution of the equation
(-A)u;=fi  inQ
=0 b3 b e ) e
(=A)3u; =0 on 09,
By Lemma 2.1, we have [, exp [W] dz < oo, implying that fn explkluy|]dz <
oc. Using Theorem 1.10 of [4]. we obtain |u| < |uy| + |us| and uy € L%(Q2), and the

result follows.

Theorem 2.2. Let u € Lioc(2) and (=A) u € Lyoe(RQ). Then for cvery constant
k > 0 we have
e € Lj,o(Q).

Proof. Without loss of generality, we can assume that Q = Bg(6) is a ball of radius
R centered at 6. For € small enougl, we split (—A)%u as (~A)%u = f1 + f2 with
[Ifdli < € and fo € L>(2). Write « = uy + uz + u3, where u; (i = 1,2,3) are
respectively the solutions of equations:
(-A)u;=f in By,
w =0 i (Bp)e, i=1,23
(—A)%(ﬁ:() on C)Bg
It follows from Lemma 2.1 that e*l“il ¢ L} ,.(Bg). Using elliptic estimates from
[4]. we get [u2|,,1(,;5) < ¢, implying that eklu2l ¢ L} .(Bgr).
Since (=A)3ug = 0, we have |(—A)%U3|L.s=(gq_) < c¢. Taking into account that
u € Lpoe(BR), we get |11;,|L®(B4) < c implying that ¢¥s ¢ L} _ (Bg).
Finally, in view of [u| < |uy| + |uz| + |ua, the result follows.

Remark 2.1. Note that Theorem 2.2 is a local version of Theorem 2.1.
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Theorem 2.3. Let u be a solution of equation (x) with Q € L?(Q), and let e** €
L? (82) for some 2 < p <L o0. Then u € L>(9).

Proof. By Theorem 2.1, we have ¥ € L'(Q) for all k, that is, e" € L7(Q) for all
r < . It follows that Qe3* € LP=9 for all § > 0 if p < ~o. and Qe e L7(9) for
all 7 < oo if p = oc. Now, standard elliptic theory and Sobolev embedding theorem

can be applied to conclude that u € L>(Q).

Corollary 2.1. Let u be a solution of equation
(-A)3u=Qc% + f(x) inQ,
u=g in Q°,

(-A)%u = gy on I

with Q) € L*(R) and X € L"’(Q) for some (ri < p < 00, where g1, ga € L(08)
and f € LY(Q) for some q > % Then u € L>(Q).

Proof. Let w be the solution of equation
(-A)iw=f(x) inQ,
w= g . 25
(- A)ém =1 on OS2.
So that w € L>(2). Observing that the function % = u — w satisfies the equation
(=A)3a = Qe i Q,
U=l in Q°,
(-A)ia=0 on 09,

we can apply Theorem 2.3 to complete the proof.

Theorem 2.4. Let u € L'(R?) be a solution of cquation (xx) with Q € L'(R®),
and let ¢3* € LP (R®) for some g < p < oco. Then u € LT, (R3).

Proof. Without loss of generality, we can assume that Q = Bp(f) ¢ R?. We
fix € > 0 small cnough and split Qe* as Qe™ = f; + f, with ||fi||; < € and
f2 € L™*(BRg). Denote u,, uz respectively, the solutions of equations:

(—A)%u. = f; in Bp,

=0 mLBREE =12

(~A)éu; =0 on JBg,
It follows from Lemma 2.1 that e¥I"1] € L!(By). Using elliptic estimates from [4]. we
get [uz|L~(p,) < ¢, implying that ezl e LY(Bpg). Denoting uz = u —uy — uy, and
observing that Awug is harmonic (see [6]), by the mean value theorem for harmonic
functions, we obtain |A1:3|L-./(B¥) < ¢, implying that |qu,_-,(39) < ¢. Next, using
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the equation (=A)}u = (QeP)eda+3us and elliptic estimates from [4]. we get
||(_A)%1,||Lw(ug) < c. implying that [|ul|z~(5 4 ) = ¢, and the result follows.
From results of Brezis and Merle [1], it follows that a solution u of equation (xx)
is bounded from above if it satisfies the equation —Au = V(2)e™ and some other
conditions. This result was used to study the qualitative properties and classification
of solutions for some second order elliptic equations (see [2, 3, 16]). The following
question arise naturally: do there exist a solution u of equation (+#) with fn-‘« Qe <
400 that is bounded from above? The theorem that follows coutains a partial answer

to this question.

Theorem 2.5. Assume that the function Q(z) in (%) s bounded away from 0
and bounded from above. and let u be a C? solution of equation (xx) satisfying
[ra €*" < +o00 and u(z) = o(|x|?). Then ut € L>(R3).

To prove the theorem we need a munber of lemmas that follow.

Lemma 2.2. ([15]). Let u be a C? function on R* salisfying:
(a) Qe* is in L'(R*) with 0 <m < Q < M for some constants m and M:
(b) in the sense of weak derivative, u satisfies the following equation:

cAuly)
Ave 2o 20)e

diji= 0.
BoJn lz—aPP. L

Then there is a constant ¢ > 0, depending on w, such that |Au|(z) < ¢ on RY, where
Bo is given by (—A,)? (Inh—l”-[) = Boby(x).

In fact, g = 8x2.
Lemma 2.3. ([15]). Let w be a C? function on R* such that 0 < (=A)u(z) < A
on R for some constant A, and let {5 Qy)erWMdy = o < oo with 0 < m < o=

M. Then there exisls a constant I3, depending only on A,m, M and o such that
u(z) < B on R,

Lemma 2.4. Let u be a solution of equation (**). and let

.1'

Then there is a constant ¢ such that u:(r) < Bin(|x| + 1) + ¢, where

: / Qy)e™Mdy.
-

ui(x) = )

Proof. For || > 4, we decompose R® = Ay U Ay, where A, = {y|ly — z| < M}
and Ay = {y|ly — 2| > %l} For y € Ay, we have |y| > |z| = |z —y| > 17 =
2
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which implies

|z —y| a5

In 8
Wy =

Since |z — y| < |x| + [y| < |2|(ly| + 1) for |z|,|y| > 2 and In|z — y| < In|z| + ¢ for
|z| > 4 and |y| < 2, we have

IA

1 |z -y 3
- = 1 L 3u(y)
w(z) 3 /A2 nlyH_lQ(y)( dy

1
< ot (/n‘ Q(y)e:"‘("}dy) In|z| + ¢ = Bin(|z| + 1) + c.

Lemma 2.5. Let u be a solution of equation (x) with u(x) = o(|z|2). Then Au(z)

admits the following integral representation:

1 Q(y)e’®

2 Au(z) = —— —_—dy.
(2.2) u(x) gy o dy
Proof. Let v = u + w. It is obvious that (—A)gv = 0 in K3 Using arguments
similar to that of applied in Lin [7], for any 2o € R* and r > 0. we obtain

2

67%r2exp (TAtr(xo)) <e 3”(’“)/ e¥do.
2 B

Since v = u + w < u(z) + Bln|z| + ¢, by Lemma 2.4, we have

r*3exp (wﬂ) € L'[0, +oc].

Thus, Av(zg) < 0 for all zyp € R®. By Liouville's theorem, Av(z) = —¢y in R for

some constant ¢; > 0. Hence, we have

L[ Qe
9. L kel [ A ) bl SRR
(2.3) u(x) B e R dy — ¢,

Now, we claim that ¢; = 0. Otherwise, we have Au(x) < —¢; < 0 for |z| > Ry
where Ry is sufficiently large. Let h(y) = u(y) + e|y|* + A(ly|=? — Ry '), where € is
small enough such that for |y| > Ry

(2.4) Ah(y) = Au+ 8¢ < —% <0,

and A is sufficiently large so that Iy}r;fkﬂh(y) is achieved by some y, € R® with
[yl > Ro. Applying the maximum principle to (2.4) at yg, we get a contradiction.
Hence, our claim is proved.

Proof of Theorem 2.5. By Lemma 2.5 and the proofs of Lemma 2.2 and Lemma

2.3, our conclusion holds.
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3. QUALITATIVE PROPERTIES OF SOLUTIONS OF EQUATION (-A)*u = Q(z)e*
In this section, we study the qualitative properties of solutions of equation (++).

In view of our Theorem 2.5 and Chen [3|, we obtain the following theorem.

Theorem 3.1. Assume that Q(z) is a positive C* function bounded away from 0
and from above, and u is a C? solution of equation (¥x) satisfying fm i
and u(z) = o(|z[?). Then

(81 —Bin(|z| + 1) —c < u(x) < —=Bin(|z| + 1)+ ¢ for some 3 > 1.
Furthermore, the following identity holds:
(3.2) / (¢, VQ)e* dx = 372B(8 - 2).
Jry
We first prove a number of lemmas.

Lemma 3.1. Assume that u satisfies the assumptions of Theorem 3.1, then

w(zx)

In|x|

— A uniformly as |z| — oc,
where w(x) and B arc as in Section 2.

Proof. We need only to verify that

72 / In|z — y| - In(|y| + 1) — In|z|
~ Jas In|z|

Qy)e*Wdy — 0 as |z| = oc.

" Write I = I) + I + I3, where Iy, I», Iy stand for integrals over the regions D, = {y:
e~y <1}, D2={y:|r—y|>1and |y| <k} and Dy={y:|z—y| > 1 and lyl >
k}. respectively. Assume that |z| > 3.

(a) To estimate Iy, we simply notice that
mse [ QueWay- oo tnfz — 41QU)e™ Py,
eyl <1 iz Jiz—yi<1
Then by the boundedness of Qe (see Theorem 2.5) and fR~‘ Q)P Wy, we sce
that I) — 0 as |z| - oo.

(b) For each fixed k, in region Dy, we have, as |v| = oc,

Injz —y| -1 -
n|z —y| = In(|y| + 1) — Injz| 5ok
In|xz|
Heuce, I, — 0.
(¢) To see that I3 — 0, we use the fact that
In|r —y| = In(|y| + 1) — In|x|
In|z|

<0

for [ — y| > 1. Then letting k — oo the result follows.
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Lemma 3.2. Assume that u satisfies the assumptions of Theorem $.1. Then

;g nal, [yl +1 3u(y)
we) = 523 [ QI Wy +

where ¢y is a constant.

Proof. By Lemma 2.5, we have A(u+w) = 0 in R®, and by Theorem 2.5, we have
ut € L. Ience, in view of Lemma 2.4, we conclude that u +w < cln|z| + c. Since
u + w is harmonic function, by the gradient estimmates of harmonic functions. we

obtain u(x) + w(z) = c.
Lemma 3.3. Assume that u satisfies the assumptions of Theorem 3.1. Then u(x) >
—Bin(Jz|+1) —c and 8 > 1.
Proof. By Lemmas 2.4 and 3.2, we obtain

u(x) > =gin(|lz] + 1) —c.
From the above inequality and fn:, e3dz < 400, we get 8 > 1.
Lemma 3.4. Assume that u satisfies the assumption of Theorem 3.1. Then u(x) <
—Bln(|lz| + 1) +c.
Proof. Observe first that for |z — y| > 1, we have

2] < o = wl(ly] +1).

Hence
In|z| = 2n(ly| + 1) < In|z — y| — In(|y| + 1).

Therefore, we can write

1 P
w(z) 2 _z/ (In]z| = 2In(ly] + 1)Q(y)e* W dy
2m |lz—ul21
1 P
T 52 /| jq(lnlr —y| — n(ly| + 1))Qy)e** Wy
=yl
In|z| [ ;
> Bln|z| - SSuly)
> finle] - 23 ./u_..,‘gQ("’)’ iy
1/ '
b In|z — y|Q(y)e**Vdy
2% Jio i

1
- — / In(ly| + 1)Q(y)e** @dy = Bin|z| + I, + I + I.
22 Jp

u(x)
Tnjz

of Q(z), we conclude that I;,[;, — 0 as |z — oc, and I3 is finite. Therefore
w(x) > Bln(|z| + 1) — c. Finally, by Lemma 3.2, we have u(z) < —8In(|z| +1) +c.

Proof of Theorem 3.1. The assertion (3.1) follows from Lemmas 3.3 and 3.4,

Taking into account the fact that — —f and 3 > 1, aud the boundedness

while the assertion (3.2) follows from Lemma 3.2 and Theorem 1.1 of [18].
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