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1. INTRODUCTION

1.1. Notation. The following standard notation are used throughout this paper.
The letters N, Z, R and C will denote the sets of natural, integer, real and complex
numbers. respectively, with known algebraic structure and topology. For E € C the
sets E, B and E will denote correspondingly the closure, the interior and the
boundary of E. Also, we set:

No:=NU{0};i R, ={zeR:z >0}

Iy :=[a.b], fapl =b—a 2 0; I, := (a,b). [I7,

D,.:={2€C:|z—¢| <r} - anopen disk of radius 7 > 0 and center at ¢ € C;

D, :={z € C: |z| < 1} - the unil disk; D) = {{ € C: |[¢| = 1} - the unil circle;

lp :={z =re? : r € Ry > 0} - a ray in direction ¢’ for § € R.

For « € (0,27, 3 € [0,27) and p € D) denote:

Ay :={z € C: |arg z| < 3/2} - an angle of opening 8 € [0, 27) and bisector R.

=b—-a>0;

Yo i={¢ € AD, : |arg(¢/p)| < 3/2} - an arc on dD; of length 3 centered at p;
79,0 :={¢ € ODn : |arg(G/p)| < a/2} - an arc on OD; of length a centered at .
For a closed set £ C C and a domain Q C C denote:
C(E) - the class of continuous functions f : E — C;

H(R2) - the class of holomorphic functions in Q.

1.2. The problem 1°. The notions of an analytic clement (element, for short) and

its analytic continuation are fundamental in the version of the analytic functions

theory, proposed by Karl Weierstrass (sec [1]. §2). An element, centered at ¢ € C,
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is a power series with coefficients {f,}72, C C, converging in a disk D, . :
o
(1.1) I(Z)=an z—c)" for z € Dy,
n=0
and presenting a holomorphic function f € H(D,..); couversely, any f € H(D, )
has a unique expausiou of form (1.1).

The main aim of the Weierstrass approach was to investigate the global properties
of an analytic function f, using the terms of its local presentation by an element
of form (1.1). This includes, in particular, the problems: on possibility of analytic
continuation of an element (1.1) to a domain, coutainiug D,. .., on restoration of that
continuation (if is known its possibility), on localization of possible singularities of
(1.1) out of Dy.c.

Recall that a point p € 9D, is said to be a regular point of clement (1.1) if
there is a direct analytic continuation of (1.1) from D,. . to some neighborhood T s
of p: otherwise p is called a singular point of (1.1). Thus, the set of regular points
of (1.1) on @D, is its open subset or is empty. An element (1.1) has a singular
point on dD,. . if and ounly if it is a canonical clement, that is, if r is the radius of
its convergence, aud 9D, is the natural boundary of (1.1) if all = € 9D,... are the
singular points of (1.1).

The main subject of this paper is the problem on localization the singularitics of
a canonical element (1.1) along AD, .. Note that it suffice to consider this problem
for the normalized clements [ with the unit disk Dy of converyence:

oo
(1.2) @)= %f,,z" for-lalec 0 li'x,li,s:mf,,\l/" =1.
The mentioned problem for an element (1.2) was a subject for a number of classical
investigations, due to K. Weierstrass, J. Hadamard, E. Fabry. G. Pélya and other
authors (sce [1], §2). The first results, concerning conditions guaranteeing that 9D,
is the natural boundary for (1.2). were obtained by K. Weierstrass and J. Hadamard

in terms of the gap or lacuna set of (1.2):
(1.3) Lf:={neNp: f, =0}.

E. Fabry has exploited a new approach for investigating the next general problem:
find conditions on coefficients f,, of (1.2) (using the terms of their modulus and
arguments), guaranteeing for (1.2) the existence of a singular point on a given arc
7 C ODy. The solution of this problem was the aim of E. Fabry’s known General
Theorem (see [2] and [1], Theorem 2.1.1). More perfect and strongly proved version
of this result has been obtained later by G. Pélya (see [3] and [1]. Theorem 2.1.3),
using the introduced notions of minimal and imal densities for the subsets of
1




POWER SERIES: LOCALIZATION OF SINGULARITIES ...

No (sce [3] and [4], VI E, Section 3). The obtained solution was satisfactory in case
of using the terms of the gap sets (1.3) (see Fabry-Polya theorem on gaps in [1]).
Its exactuess has been discussed in a number of papers (see [3] and [5], IX B), and
was proved in [6]. Mention also the extension of the noted theorem, obtained in [7].

Other principal result of the Fabry’s approach was the theorem on arguments
(see [8] and [1], Theorem 2.3.1), obtained in the special case, when the boundary
arc 7 actually is reduced to a point. Mention also the papers [9]-[10] on this subject,
extending the General Theorem and the noted concepts in different directions.

The aim of this paper is the description of some necessary conditions on coefficients
of an element (1.2) (expressed in terms of their modulus and arguments). in order
a given open arc 4’ C dD; be an arc of regularity for (1.2). This will allow to
find some sufficient conditions, guaranteeing the existence on v° (and also on ~) of
some singular points of (1.2), extending the results on singularities, obtained in [9]
and [7]. A necessary instrument to solve the above stated problems is the so-called
“Coefficient function” method, based on the idea of interpolation the coefficients
{/n}pZy of (1.2) on the set Ny by entire functions ¢ of exponential type with some
special properties.

2°. Returning to the normalized element (1.2). we present some preliminary
notation and terms. Associate with the coefficients {f,}o° € C of (1.2) a definite
sequence of their arguments {w, };" :
(1.4) fon = | fnl € for n € Ny,

selected by setting Aw,, = wy, —wy, 1 for n € Ny with w_; = 0 and defining each
argument w, for n € Ny uniquely by induction via minimizing [Aw,,| condition:
Aw, =0forn eLy,
Aw, € (—m, 7] for n ¢ Lj.

Setting now No\Ly := {nx}7<,, with fn, # 0 for k € Ny, one can present element
(1.2) in the form:

(1.5)

~

(1.2 i) = an,:"‘ for |2| <1, limsup|f,,|"/™ =1.
© k=0 i

Then it follows from (1.2°) and (1.5) that

(159 Awy,, = arg(fu,/fu,_,) € (—m, @) for k > 1,

with Awn, = wn, = arg fn, € (-m, 7).

3°. Consider now the related with (1.2) normalized element

(16) F'@)i=f(=2) =} far" for |2 <1
n=0
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with coefficients
(1.7) £2 = (=1)"fn = | fnl € for n € Ny,

where the arguments w}, of f; are defined uniquely by induction. Set for this Aw}, :=
wh —wh_y for n € No with w?; = 0, assuming as in (1.5), that Awy, =0 forn € Ly
with Aw};, = w},, = arg fu, € (=, 7). Then it follows by (1.5°) and (1.7), that Awy,
can be defined via Aw,,, uniquely, since either Awy,, = Awy, . or Aw;, = (- 1)Aw,,

(correspondingly if nx — nk—1 is an even or odd number). In the second case one

can choose the sign of arg(—1) = +, by setting:

= Aw,, + 7, if Aw,, € (-m,0],
(1.8) Lo { Rt DR T

Then with the condition Aw}, = 0 for n € Ly we obtain as in (1.5), that

(1.9) Awy, € (—m, 7] for n € No.

4°. Consider now for the element f in (1.2)-(1.2’) and for any interval 1,, , := [p. g|
with p. ¢ € Ny the quantity:
(1.10) Villoo) = 8 elAu = SN, T
ne(p,q) nr€(p.g)
the variation of the coefficient arguments of f on I, 4. This quantity can be defined

also for any interval 1, , C R, by formula:

(1.11) Velap) = max{Ve(L ) : Loy G i),

assuming Vy(Io,) = 0, if there is no any I, , C I, with p,q € Ny, p < q. Then by
(1.5) and (1.10)-(1.11), we have

(1.12) Vi(Iap) < | Tap.

Introduce also the quantity:

(1.13) vi(a.b) = Vi(lap)/ Lap| € [0, 7).

the mean variation of the coefficient arguments of f in (1.2) on I, 4.

Definition 1.1. The introduced in (1.10)-(1.13) quantities Vy(l,,) with vs(a,b)
Jor the element f in (1.2) can be defined also for the element z — f(—z) = f*(z)
in (1.6)-(1.7), replacing there the arguments {w, }3° by {wi}C. defined in (1.7)-

(1.9) for f*, and correspondingly replacing in (1.10)-(1.13), Vi(Ias) by Vilap)
and vs(a,b) by vi(a,b).

The rest of the paper is organized as follows: Sections 2 and 3 contain the
descriptions of some necessary auxiliary notions and results, including the above
6
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noted "Coefficient function"method with some new necessary constructions. The

statements and proofs of the main results are presented in Section 4.

2. AUXILIARY RESULTS

2.1. Entire functions of exponential type. The class £ of entire Junctions
of exponential type (see [11]-[13]) is defined by condition:

Op: = lim sup{|z|~" log™ |¢(2)[} < +o0,
|z|—0c
where o is the exponential type of p. Then o, € £ implies p+1) € £ and pt» € €.
The main characteristic for the behavior of any ¢ € £ along a ray Iy for € R

is the exponential indicator (indicator, for short) function h, of o (see [11]-[13]),

defined by formula (excluding the case @ = 0):

(2.1) he(0) = limsup {r ' log |tp(7'e‘a)!} for € R.
rovoc
In this terms the growth and decrease on C of any ¢ € £ is restricted by the
inequality:
(2.2) |e(re')| < exp{r[h,(0) + ()]} for re” € C,

where £(r) — 0 as r — +0c, uniformly for # € R. Below some properties of the
exponential indicator h = h,, are presented.

(a) hy is a veal valued, 2 - periodic and hounded by o, function:—o,. < h,(0) <
o, for # € R.

(b) For ¢, v € £ and any 6 € R the following inequalities are satisfied:
(2.3) Iy (0) < ho(0) + hy(8) and hy4(0) < max{hy(60), hy(0)}.

(c) h, has the property of trigonometric convezity, (see [13]): for any triple 6, <
0 < By with 0, — 0, < 7 the following inequalily is satisfied:
(2.4) hy(0) sin(0y — 01) < h(01) sin(Ba — 0) + h,(02) sin(6 — 6,).
This property implies the continuity of the indicator h, : R — [~0o e o,] and, in
addition, the following property:

(d) at each point ¢ € R, hy, has one sided derivatives hi,(6—) (from the left) and
hi,(0+) (from the right), satisfying:
(2.5) hiy(0-) < 1 (04) for 0 € R,
where the equality holds, that is, actually the derivative hl,(0) exists. except may

be only a countable set of points 6 € R.

Definition 2.1. Denote by &) the subclass of the functions ¢ € € with the exponential
indicator h,, satisfying the condition h,(0) = 0.
6
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(e) For any ¢ € & and § € (0,) the following inequality is satisfied (see [7)):
(2.6) hy(8) < cp(0) [sind] for |0] <4,

where for 6 € (0,7/2)
max{h,(—6), h,(8)}
cp(0) == ——_—Msiné A2 20

Actually, (2.6) follows from property (c) with (2.4) for the triples 0 < ¢ < 4 and
—§ < 6 < 0, while (2.5) for the triple —6 < 0 < 6 with § € (0,7/2) states that
he(8) + hyp(—6) > 0, implying ¢, () = 0.

(f) For any p € & and § € (0.7) from (2.2) and (2.6) we obtain the asymptotic
inequality
270 |¢(2)| < exp{cy(8) [Imz| + || e(|2])} for z € Ags,

where ¢(]z|) — 0 as |z| = +oc.
(g) Tt follows from properties (d)-(e) that c,(d) in (2.6) with ¢ € & has the

limit, as 6 — 0:

(2.8) lim c,,(6) = limsup {h,(0)/ |0} :=m, = 0.
040 00

where

(2.9) my, := max{—h{,(0_), h,(04)}.

Remark 2.1. 7t follows from (2.9) and (2.5) that

(2.10) —my < hi(0-) < hi,(04) < my,

so that my > 0. Here mg =0 <= hi,(0-) = h,(04) = 0, that is, if there exists the
derivative hi,(0) = 0. Also. (2.12) implies the following. more stronger than (2.11).
relation for my, :

(2.9%) M =max{|h'w(()_)|.|h;,(0+)|}.

with the equivalent to (2.8) equalitylims_,o ¢, (8) = my, = limsupg_,, |hy(0)/6).

2.2. The "Coefficient function” method. 1°. This method is the main tool
for analyzing the behavior of a normalized element (1.2) via interpolation the
coefticients {fn}7Z, of (1.2) on the set Ny by a function ¢ € € or ¢ € H(Ap)
of exponential growth:

(2119 ¢(n) = fn for n € Np.
The method was used mainly to establish a criterion on possibility of the analytic
continuation of (1.2) outside the unit disk D; in terms of o (see [1], §7, [14],

Chapter X and [15]-[18]). In particular, there is such a criterion for the element
8
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(1.2) on regularity of some open arcs of the unit circle dD,. which can be applied

in problems on localizatiou of singularities of (1.2) on 9D, (see |10] and [7]).
Next, as a “Coefficient function” for (1.2) and for the related series we will use

the functions from &. The following criterion (sce [14] and [7], Theorem 2) on

regularity for (1.2) of an open proper subarc of D) is essential for us.

Criterion 2.1. The open arc IDi1\Ag ondDy for 3 € [0, 2x) is an arc of regularity
for the normalized element (1.2) if and only if there is a function o € &, satisfying

the interpolation conditions (2.11) and the condition

(2.12) limsup {h,(0)/ 10|} :=m, < 8/2.
00
Note that by Remark 2.1, 1, 2> 0 and my, can be defined also by formula (2.9).

2°. Let now 3 := 27 — a € [0,27) in (1.15) with a € (0, 27], so that actually
ODi\Ag := g, is an open arc of 9D, of length a and center —1. Then the open
arc 73 ; € dD; of length o and center 1 will be an arc of regularity for the element
[ in (1.2) if and only if D1\Ag is an arc of regularity for the element, z — f(—z)
with cocefficients (—=1)" f,, for n € Np, and in view of Criterion 2.1 and Remark 2.1

we get the following result.

Corollary 2.1. The open arc 7§, € OD) of length a € (0,27] and center 1 is
an arc of reqularity for the normalized element f in (1.2) if and only if there is a
Sfunction ¢ € &, satisfying the interpolation conditions:
(218 (=1)"o(n) = f. for n € Ny,
and the condition (2.12) with 3 = 27 — o, where my, can be defined also by formulas
(2.11) or (2.9°). If « = 2x, that is, 8 = 0, implying m,, = 0. then there erists the
derivative hi,(0) = 0.

Note that the interpolation conditions (2.13) are more adapted for the applications

of Lemma 3.1 in Subsection 3.1. The next Remark 2.2 is adapting for this also the

interpolation conditions (2.11) in Criterion 1.

Remark 2.2. .Th(: interpolation conditions (2.11) can also be writlen as follows:
{2 (=1)"p(n) = fi for n €Ny,

with f; := (=1)" fp = | fa| €%, allowing to use the selected in (1.7)-(1.9) arguments
wp of f3.

3°. Consider now the open arc o dD, of length o € (0,27] and center
p=e™ with A € (=, ), so that i # —1. Then obviously Yo Will be an open arc
9
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of regularity for the element f in (1.2) if and only if 44, is an arc of regularity for
the normalized clement = — f(j1z) with coefficients {¢'*" fa} 125, By Corollary 2.1,
the necessary and sufficient condition for this is the existence of a function ¢, € &,

with 1, <7 — a/2, salislying by (2.16) the interpolation conditions:

(2.13) (=1)"pa(n) = e f, for ne N

Next, consider the function € &. defined by formula

(2.14) ©(2) = pa(z) exp(—iAz) for z = re eC,”

satisfying the interpolation conditions (2.13). In addition, by (2.14), we have
hy(0) = he, (6) + Asing  for 6 € R,

s0 that o € & with hy,(0) = hy, (0) = 0, that is, ¢ € &. Since hl, (0+) = AL (0+)-A,

it follows from (2.9) and Remark 2.1 for o that

(2.15) Nig, :=max{\ — h{,(0-), h,(04) — A}.

Then by (2.15), either —h/,(0_) = my,, — A with h{,(04) < my,, + A, or alternatively

h,(0-) < my, — A with h:,(()_‘.) = my, + A, so that

(2.16) my = max{me, — A, my, +A} =mg, +|A|.

Now, by Corollary 2.1 and (2.16), the above condition (2.12) for o, is equivalent

to the next condition for ¢ :

(2.17) my, < —af/2+ ).

Iu addition, if a = 2m, that is, 3 = 0, then by (2.12) it follows that m,, = 0,

implying by Corollary 2.1 the existence of the derivative hl, (0) = 0. that is, the

existence of the derivative h;(l)) = A, and by (2.16) the equation m = |A|.

From the above discussion we come to the following criterion.

Criterion 2.2. The open arc ~g, , C D, or the symmetric open arc 7y, » CODy
of length « € (0,2n] and center p or —p with = e for X\ € (==, 7) will be an
arc of regularity for the element (1.2) if and only if there is a function ¢ € &,
satisfying the condition (2.17) with (2.9) and the interpolation conditions: (2.13)
for the center p and (2.11) for —p. In both cases it follows for a = 2m the existence
of hiy(0) = A with my, = |A|.

Actually, the Criterion 2 for the center y follows from Corollary 1 with (2.15)-
(2.17). The case with center —pu follows from the case for p. applied to the related
with (1.2) element z — f(—2) in (1.16)-(1.17) (sec also Remark 2.2).

10
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3. TWO AUXILIARY ANALYTIC FUNCTIONS

3.1. The auxiliary function o, for a "Coefficient function". A function

U Iop — R is called real analytic if ¥ has a locally convergent power series
expansion around any center ¢ € Io, guaranteeing for ¥ a unique real analytic
coutinuation on some open interval, containing I, 5. If, in addition. ¥(c) =0 for
some ¢ € Inp, then it follows (excluding the case ¢ = 0 on I,4) the existence of

some m € N and a real analytic on I, ;, function 1, with Ye(e) # 0. such that
¥(r) = (x — ¢)"ve(z) for x € Iy,

that is, ¢ is a zero of the function ¥ of multiplicity m. Denote by ny,(1,) the total
uumber of zeros of v on I, . takiug also iuto account their multiplicity. The next

lemuia on estimation of ny(Z,.5) will be useful for us (see Lewnna 3 in [9]).

Lemma 3.1. Let ¢ be a real analytic function on the interval I, withp.q € Z,
and let wy(Ip 4) be the number of the sign changes in the finite sequence (—1 ) i (n)
forn € Iy NZ. Then ny(Ipg) > |Iyy| — wy(1) with |1, 4| = q—p.

Now our aim is to use the above Criterion 2.2 to describe the conditions on
regularity for normalized element (1.2) the open arc 4y, , C 9D of length « € (0, 27]
and center p = e for A € (=, 7) in terms of the function @ € &, satisfying the
necessary and sufficient conditions (2.13) and (2.17). Present for this the condition

(2.13) in terms (1.4)-(1.5) of the modulus and arguments of the coeflicients of (1.2):
(3.1) (=1)"¢(n) = fu = [ale™" for n e N,.

Since in general  is not real valued on any interval 1, , € R, then to apply Lemma
3.1, we need to replace p by another function with this property and closely related
to .

Associate with ¢ € & from Criterion 2 the function ¢, € € with the parameter
7 & (0,7):
(3.2) on(2) = [p(z)e" + G(2)e~™]/2 for z€C,

where

P2):=¢(z) for zeC,
so that @ € & with hz(0) = h,(—0) for 6 € R. Then ,, is real valued on R for any
ne(0.7):

(3.3) on(x) = Re[p(x)e’] for zeR,
11
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satisfying by (3.1) and (3.3) the interpolation conditions:
(34) (=1)"py(n) = Re(fne'") = |fu] cos(wn +1)  for n € Ny.
To estimate the growth of ¢, on C, note that by (3.2),

|en(2)] < max{|p(2)],l¢(2)[} for z€C,
and from (2.7) with ¢, () in (2.6) it follows for 4 € (0.7) the asymptotic inequality
(3.5) lon(2)] < exp{eg(0) [Im 2| + |z|(|2])} for z € Ajs,
where £(|z]) = 0 as |z| = 4oc, uniformly for n € (0, ).
3.2. Estimation of the number of zeros of ¢, on I,;, C Ri. Apply now
Lemma 3.1 to the real analytic function 9 := ¢, | R in (3.3) on any interval I, ;
with p,q € Ny, noting that the quantity w (1, ) for the function (3.3) is equal by
(3.1) to the number of the sign changes sy(1), 1 4) in the finite sequence {Re( f,,¢)}
for n € 1,4 N No with any fixed n € (0.7), where {f,}§° are the coefficients of the
element f in (1.2). Then for the number n,, (I, 4) of zeros of y,, on I, 4, it follows
with |1, ,| = ¢ — p the inequality:
(3.6) Dy, (Ipg) 2 Iyl =850, Lnyg)  for n.€ (0,7).
To use this estimate, we need some additional information on the character of
dependence of s¢(1),1,,) on the parameter n € (0, 7). Consider for this with the
cocfficients {fu}nzo of (1.2) also the subsequence {fn, }32, for {ng}3<, = No\L;s

of the nonzero cocflicients of (1.2) as in (1.2"), with the subsequence {wn, }320 Of

their arguments, satisfying the condition (1.5’). Then, we have

(3.7) Butl, log )i Z sf(n,I,,) for ne€ (0,7),

1 €(p.a)

where I,,, c—1. 1y for k € N, and setting

(38) e = {0 € 0.7) 18700, 1) = 1},
with sz (7, In, ) = 0 for n € (0.7)\e,,, we have by (3.4) that 7 € e,, C (0,7) if and
only if

(3.9) cos(wn,, , + 1) cos(wn, +n) <0.

2. Owr next aim is to calculale the length |ep, | of the set ¢,,, in (3.8). Note for
this that by (3.9), the condition Aw,,, = 0 (that is, wn, = wn, ,) implies ¢,, = @
with |e,, | = 0. Let us show that conversely the condition Aw,, # 0 implies that
len, | = |Awn, | €1(0,x].

12
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To this end, first note that if Aw,, = 7. that is, Wny = Wn,_, + 7, then (3.9) is
equivalent to the condition cos®(w,, + 7)) > 0. so that cither €n, = (0,7), or ey, =
(0, m)\{m} for some 5, € (0, 7) with cos(w,, +m) = 0, implying len| = 7 = Aw,,
in both cases.

Consider now the case Aw,, # 0 with Aw,, # , that is, if |Aw,, | € (0,7)
by (1.5), and let us see that then always we have l6na = |Aw,tk|4 Setting for

’ ; ” : ;
thisw;, = min{wn, _,,w,, } and wfl = max{w,,_, s @iy b, consider the open interval
(why - wir,) with |Awy, | = wpy, —wy, € (0,7). Denote by X the set of zeros of cosine

function, that is, X = {zm};h2_ with 2, = /24 mn and m € Z.

Remark 3.1. Let |Aw,, | € (0.7). The condition (3.9) will be satisfied for some
n € (0.7) if and only if there is (a unique) xp € X for some p € Z, satisfying
zp € I := (wy, + nywh, +n) with |I,7] = |Awn,| < 7.

The existence of x, and its uniqueness follows from (3.9) by the mean value
property of cosa for x € I} and by condition |l;,‘ | < 7. Conversely, for any such

z, € X NI with |[,‘,’| < 7 the condition (3.9) will be satisfied.

3". Now to calculate |e,,, | in case |Awn, | € (0,7), there are two alternative cases:
a) (wy,,wn,)NX # @ and b) (Why @i, ) N X = @. For both cases there is L EX

with m € Z, such that the following inequalities are satisfied:
(3.10) Bm—1 S Wy, < T < Wy, < Ty
in the case a), and

(3.11) 1 5w, U <z,

A8
in the case b).
By Remark 3.1, the condition (3.9) will be satisfied in both cascs a) aud b) for

some 7 € (0, ) if there is a unique z,, € I, satisfying the inequality:
(3.12) Tp1 <wp, +1 < Tp <wh, + 1 < Tpir.
Namely, (3.12) will be satisfied in the case a) with (3.10) if and only if

’ / . -
e d G =Ozn ) forp=m,
=18 = (Enn= wn, ) forp=m+1,

& % = S " ) 7 P s . * P Sy > g
so that e,, =€), Uep, with ¢}, Ne;, = @ and 'L,u’ =Im—w I"m

’ il
g =Wy, —Tm,

implying [en, | = [Awn,|. In the case b) with (3.11), the inequality (3.12) will be

satisfied for p = m and 9 € ¢, = (1, — Wl wr, ) with le,, | =Aw,, |.

Conclusion 3.1. The equivalence of (3.8) and (3.9), and the above cases a) and
b) imply that always |c,,| = |Awn, |, so that e,, # & |Awy, | € (0,7] and
en, =@ & Aw,, =0 by openness of en, -

13
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Using now (3.7)-(3.9) and Conclusion 3.1, one can calculate for an interval 1, ,
with p. ¢ € Ny the integral
us
Js(Tpq) 3=/ s7(n, pg)dn = Z / sr(, I, )dn.
0

ni€(pg) e

so that

3.
(3.13) L= Y leml= D [Bum. 4
. €(pa) n€(pa)
Then, by (1.10) it follows that
(3.14) Vit = 3 |Awal= Y |Bwn,|=3s(Ip0)-
ne(p.a) ni€(p.a)

Finally. integrating the inequality (3.6) by 5 € (0, ) and taking into account (3.7)
with (3.13)-(3.14), we obtain the inequality:

(3.15) [ 1. (gl 2 llIpal = Vi(Tp.a)]-

Corollary 3.1. It follows from (3.15) that for any L, C Ry witha € N orbe N
the following inequality is satisficd:

(3.16) / n,, (Lp)dy = wax{0, [7([T.4| = 1) = Vi (Ias)]},
JO

where Vy(1op) is the variation on L,y of the arguments {w,.}g‘ of coefficients { f,, }§&
of (1.2). defined in (1.11)-(1.12).

Actually, if |1, 5| 2 1 with a € N or b € N, then there is I, ; C Lo, with p.¢q € Ny
and p < g, so that Vy(I,4) < Vi(lap) and I g] 2 [Japl =12 0.

Remark 3.2. Applying Corollary 2 for the normalized element (1.6) with cocfficients
{13 in (1.7) and their arguments {w}, }3°, defined in (1.7)-(1.9), then using the
Junction ¢y, from (3.2) for corresponding ¢ € &y in Criterion 2.2, in Corollary 3.1

instead of (8.16), we obtain the inequality:
(3.16") ng, (lop)dn > max{0, (7(|fa.s| — 1) — V/ (Tas)]}

where \/'J‘(I,,_I,) is the variation on I,y of the arguments {wi} in (1.6)-(1.9) (sce
Definition 1).

3.3. An auxiliary Blaschke product. 1°. Consider the closed disk D, ; of the
radius » € (0,1) and center 1 with the diameter I(r) := I;_,1,. Below are
presented some notation, related with D, ;.
We first introduce the family of closed subintervals { I} of I(r) for 7 € I°(r)\{1}.
by setting
(3.17) L= { ;:_]j, 1? :i i
14
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so that 1 € (I7)° and |I7| = r + |1 - 7|. Next, for any 7 € 1°(r)\{1} denote by Dr
the closed disk with diameter 7 :
(3.18) Of .. ¢ B

where the radius r, < 7 and the center ¢, & (I7)°\{1} of DZ can be presented with
sy = sgn(1 — 7) by formulas:

(3.19) rri=(r+]1=-7)/2and ¢, :=1+ se(r—r,).

Also, let g, for 7 € (I1)"\{1} be the Green’s function of D in (3.18)-(3.19):
(3.20) 97(2,¢) = —log|b-(2.¢)| for 2, €D, 2 #£ ¢,

where b (=, () is the following Blaschke Jactor for D :

(3.21) br(2.0) = 1o (= = /1 (=.0)

with I(z,¢) = r? = (( — ¢r)(z = ¢7), satislying

(3.22) [b+(2,Q) =1 for 2 € DL and ¢ € (BY)°.

2°. We use mainly the special case 97(2) :=9-(2.1) of g, for z € D-\{1}:

Ne
(3.23) gr(2) = [ I, @) for 2 € DI\ {1},
b
where [,(z) := I;(2,1) is a non-constant lmear function of z, with real valued
restriction I,(¢) for ¢ € I7:
(3.24) L) =17+ (cr =)t — ;) =1,(1) + L) - 1),

increasing on I7 for 7 < 1 and decreasing for 7 > 1 by (3.19), since I(t) = ¢, — 1.

Thus, we have

(3.25) (1) S5:(t) Sl (vy) for t e IT,

where v = 1+ s, is the opposite to 7 endpoint of 17. Using (3.18)-(3.19), we find
from (3.25)

(3-26) L(r)=r-NN—1|, L, (wy) = rry, LM =r1 -7, |LA)=r—r.

It follows from (3.25)-(3.26) that =(t) > 0 for t € I,(r). Then from (3.23)-(3.24) w
have for t € I7\{1} that p-(t) := (1 — 1)a7(t) = 1-(1)/L-(t) > 0, implying gn(t) >0
fort < 1 and g.(t) < 0 for t > 1. This with g g-(t) =0 for t = 7, t = v, gives us
after integration by parts the equality

(327) 3= [ oie= [ (0

and setting k, := I.(1)/|IL(1)| > (;, we obtain :

(3.28) d.k = /’ dlogl,(t) = k, log
. 15
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Now let 7, for 7 € (I7)°\{1} be the interval with endpoints 7 and 1 independently
from r. Then using (3.25)-(3.26), similar to (3.28), we obtain

7
(3.29) o) :=/ pr(t)dt = k,s,/ dlogl (t) = k,logr— < ky.
h & I, r
39, The solution of the Dirichlet problem for D7 with boundary data ¢ € C(L,)
for Ly = O, can be presented by the Poisson integral:

(3.30) P-[0)(2) := (27()“/’. #(€Q)0uy-(2,¢) d¢]  for z € (D})”,

where 0,9, is the derivative of g-(-,¢). given by (3.20)-(3.21), in direction of the
inmer normal vector v on L.

Next. if u is a subharmonic function on D¢ with continuous extension on L,
then by the maximum principle, we have
(3.81) u(z) < P-[u)(z) for z € D7,
with equality sign for all z € DY, if u is harmonic on D7.
Example 3.1. Consider the subharmonic on Dy function u :
(3.32) ug(z) = |Imz| for z€D,.
Then the Poisson integral (3.30) with boundary data ¢ = ug | L, satisfies for z =1
the relation:
(3.33) Do) =7l
where 3, is as in (3.27)-(3.28).

Actually, the function ug € C(D;) in (3.32) is harmonic in both half-disks:

DF = {zeD}:+Imz >0}
and wy = 0 with d,up = 1 on I(r) (from both sides of I7). Also, by (3.23),
the function z — g-(2) is harmonic on D, except the integrable singularity at
z=1 €I, so that
(3.34) / [woAgr — g-AugldV = 0.
DIUD;
Apply now to the pair of functions 1. g- and to both closed half-disks DZ the
Green’s identity (see [19]) with Laplace operator A. by noting that g, = 0 on
OD;. Since ODE = I7 U LE with L¥ = L, N D, by (3.34), (3.27) and (3.30) for
¢ =g | Ly with z = 1, we have
0a / wo(C),9-(1, ) |dC] — 2 / g+ (B)dt = 2P, [uo) (1) — 23,
Ir
Ly "

16
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implying (3.33).
4°. Consider the Blaschke product with the finite number of zeros {z;}1" ¢ D2 :

(3.35) " B(2) = [[br(z.2) for zeDr,

i=1

where b, (z, () is the Blaschke factor for D, given by (3.21) and satisfying (3.22),
so that
(3.36) |B+(2)|=1for z € L,.
Iu terms of the Green’s function g-(z,¢) (see (3.20)-(3.21)), it follows from (3.36)
that

m

—log|B-(z)| = Zgr(:‘z,) for ze DY,
J=1

and. in particular,

(3.37) —log|B-(1)| = Y g-(z;).
i=1

1. POWER SERIES: LOCALIZATION OF SINGULARITIES

4.1. Application of the auxiliary function ¢,. 1°. We start with the following

definition.

Definition 4.1. Any sequence Q = {qx}32, C No will be called radial for the
normalized element f in (1.2) if

(4.1) lim |f,, ["% =1,
ko0

and the (non-empty) set of all such sequences Q will be denoted by Ry (see [7],
Definition 3).

Obviously, any radial sequence Q € R will be simultaneously a radial sequence
also for the element f* in (1.6)-(1.7), since |f]| = |fa| for n € No.

Consider now the auxiliary function i, defined by (3.2). Then by (1.4), (3.3)-
(3.4) and (4.1) with any Q = {qx};2, € Ry the following condition is satisfied:

(42) a; ' 10g @y (ar)| == g;" log [cos(wq, + )| + ek,

where €. — 0 as k — .
Returning to the closed disk D,; from Subsection 3.2 with the fixed radius
r € (0,1) and the diameter I(r) := [1 — 7,1 + r|, we will assume further that
r € (0.75) with 5 = siné for § € (0,7/2). implying D,; C Ags. Then it follows
17
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for z € D, and k € N that g2 € Diyyen © Ags with 7 = g, ek = gy, that is,
Dyy er = @ Dy1, implying by (3.5) the inequality:

(4.3) ;. og |y (gr2)| < o (8) [Im 2| + &4,

with &, — 0 as k — 400, uniformly for z € D, and 7 € (0, 7).

Consider the family of closed disks D, C D,y in (3.17)-(3.19) with diameter /7
for 7 € (I7)°\{1}. For a fixed qx € Q denote by t; = t;i(r,n), j = 1,2,...,my
possible finite number solutions of the equation:
(4.4) en(art) = 0 for t € I°(r), n € (0,7),
the zeros of @, (qxt) on I°(r), taking also into account their multiplicity. Denote by
By, the finite Blaschke product for the closed disk D, (see (3.35)) with the zeros
tix € (I7)°. satisfying by (3.36) the condition |B, ,(z)| = 1 for z € L, := 8D,.
Otherwise we will set By ,(z) = 1 for z € Dy, if ¢, (qxt) has no zeros on (D)% S0
that in both cases we have |By,(2)| =1 for z € L,.

Next, for a fixed k € N, consider the function ¥, , € H(D,) :

(4.5) Yrn(2) == @q(ak2)/Brq(2) for zeD. cD,,,

and introduce the subharmonic function

(4.6) Ur (%) 1= {/,:] log [¥rn(2)| for ze€ DL,

which is continuous on L. and, by (4.3) and (4.5)-(4.6), satisfies the inequality
4.7) ur(€) < ¢p(d) [Im¢| + e for ¢ € L.

Then from the maximum principle (3.31), applied to u, in (4.6) at the point z = 1,
and from Example 1 with (3.32)-(3.33), it follows that

(4.8) (1) < Prlur](1) < 71, (8)3r + e,

where ex — 0 as k — +0c. In addition. by (4.4)-(4.5) and (3.37), we have

(4.9) ur(1) = g; loglpg (i) + A, with A=gq" 3~ g.(t)).
t,e(Ir)e

selting A = 0, if the equation (4.3) has no zeros on I(r).

2°. Next, for any t € Ry\{1}, denote by I; the closed interval of the length
[It] = [t — 1| with the endpoints # and 1. Also, for any ¢ € N, denote by ¢I; the
closed interval of the length ¢ |/;| = q|t — 1| with the endpoints ¢f and g. In this
terms let us present the sum in (4.9) by an integral, if A # 0. Then the number
n,, (qi1r), the solutions t; € gy, of equation (4.4) on I, according their multiplicity,
is a function of ¢ € I(r)\{1}, decreasing for ¢ < 1 and increasing for ¢ > 1. Also,
taking into account that, in contrary to n,, (gily). the function g.(t) is increasing

18
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for t < 1 and decreasing for > 1, and, in addition, is vanishing at the endpoints
of I (useful for integration by parts), we obtain for any 7 € I°(r)\{1}:

q,..A=/’ g-(t) |dng, (grdt)| = frﬂwl,(flklt)l!l'r(!)ldf-

Using the notation p,(t) := (1 — t)g;(t) > 0 for t € I7 with p,(1) = 1, we obtain
the equality

A= [ .ot/ 1D (0,
which is preserving also in the case A = 0 with ng (gxly) = 0 for t € (I7)°. This

equality together with (3.2), (4.8), (4.9) gives us the asymptotic inequality:
(4.10) [ @10/ 1) = 7~ o e ()t < <,
7

where €}, = €1 — q,:’lk(u) with 1;(n) = log|cos(wg, +1)| and g5 — 0 as k — +oc.

Integrating both sides of (4.11) by 5 € (0,7) and setting

(4.11) Jo(arl) == / ny, (qili)dn,

0
we come from (4.11) with 7 € (£7)°\{1} to the inequality
(412) /, B (geld)/(ai i) = ()] p- ()t < .,

where &} = me — q[,"."(w,“) and J(wy,) = j(;' Lk (n)dy. Now since I(wg, ) = 3(0),

by 7 - periodicity of the function n = lx(n), it follows that £}/ — 0 as k — oc.

4.2. Necessary metric conditions on regularity arcs of (1.2). After the
above preparation, we can formulate the main results of this paper, using some
additional notation. For a radial sequence Q = {gx};2, € Ry of the element f in
(1.2) cousider the variation Vi(qxly) of the arguments {wn}§° of the coefficients
{fa}3° of (1.2) on the interval guly for t € Ry\{1}, so that Vy(q.ly) = 0, if
g |It] < 1. Now for r € (0,75) we set:

(4.13) vy(t, Q) = limsupwy(grdy) € [0,7] for t € I(r)\{1}.
ko0

where vy (gili) = Vy(arle)/(qx |It]) is the mean variation of the arguments {wn}3*

on the interval g, I; (see (1.13). Next, denote

(4.14) vp(r,Q) = sup vf(t,Q) and vy Q)= sup vs(t.Q),
L€[1-r.1) LE[1,147]
so that both v/i(r. Q) are non-decreasing functions of r, having the limits as r — 0 :
E r 2 B T o
(4.15) v (Q) ll_l}stf(r,Q)e [0, 7).
Finally, introduce the quantity:
(4.16) v4(Q) = min{v} (Q),+7(Q)} € [0, 7],

19



N. H. ARAKELIAN

the mean density the variation of {Aw,}§° along Q.
Analogously, using Definition 2.2 and replacing in (4.13)-(4.15) the element [
by the normalized element > — f(—z) = f*(z) in (1.6) with coefficient arguments

{w2 I in (1.7)-(1.9), we obtain for the element (1.2) also the quantity:

(4.17) vf(Q) := miu{v}.(Q),w;. (@)} € [0,7],

the mean density the variation of the arguments {Aw? }5° along Q.
Now we are in position to state the main results of this paper.

Theorem 4.1. Let for a € (0,27] and p = > with X\ € (—m,x) the open arc

Yau C ODy or the symmetric open arc vy, _, C ODy be an arc of reqularity for the
element f in (1.2). Then for any radial sequence Q € Ry the following inequality

18 satisfied:

G : ve(Q) + Al Jor ¥,
kil “/25{ @+ for v

Proof. From Corollary 2.2 for the interval I, , = qrl; with t € I(r)\{1} we have
the next estimate from below for the integral J,(qx1y), defined in (4.1 1):
(4.19) Jo(qrdr) 2 max{0, [x(qx | 1] = 1) = Vilady))}.
For t € I(r)\{1}, define the function
A
1.20 ai(t) == :
o o {1 if L] > g2
satisfying the condition: ox(t) = 1 as k — oc for t € I(r)\{1}, where r € (0,75)
for rs = sind with § € (0,7/2). Then from (4.12) and (1.19)-(4.20) for any 7 €
I°(r)\{1} we obtain the inequality:

(4.21) [r - (‘v(tf)]/ ok (t)p-(t)dt S/
Jizr 1

viaely) +7q, *Ip- (t)dt + <},

where €)' — 0 as k — oc. Applying to (4.21) the Fatou’s lemma (see [20]). we come
with & — oo to the inequality:
(4.22) [ — e (0)]3r < / vp(t, Q)p-(t)dt,

Jr

r

where

= / pr(t)dt.
&

Then from (4.22) and (4.14), for s, = sgn(1 — 7) with 7 € I°(r)\{1}. it follows
that [r — ¢, (6)]3, < I + vy (r,Q)J-, where J, is the next integral on the interval
I, with the endpoints 7 and 1 :
3. = [ petoyit
I-
20
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Using the relations for J; and J7 from (3.28)-(3.29), we obtain [r — ce (Ol (1) <
1+ v} (1. Q)lr(7), where

1,(r) := log ﬁ

Dividing both sides by /,(7) and letting 7 — 1 with 7 < 1 and r > 1, in view of
(4.13)-(4.14), we obtain

(4.23) T —cp(d) < min(u; (1:Q)‘1.’}"(7',Q)} for r € (0,1).

Now letting here » — 0. and using (4.15)-(4.16), we obtain 7 — ¢(8) < v4(Q).
Finally. by (2.8), ¢(8) = my, as § = 0, implying

(4.24) T < vp(Q) + my.

Then by Criterion 2, m, < 7—a/2+ |\|, which together with (4.24) implies (4.18)
for v .- Applying the above arguments for the normalized element > — TT(a) e
f(- 2) in (1.6) with coefficients {f}§ in (1.7), we obtain (4.19) for ° O

Yo~
4.3. Some consequences from Theorem 4.1. From the necessary condition
(4.18) of Theorem 4.1 on regularity of the element (1.2) on the open arcs of 9D,

we infer the following result.

Corollary 4.1. For any « € (0,27] and p = ¢ with A € (—m,7) the element
f in (1.2) has a singular point on the open arc Yau € ODy or on the symmetric
open arc 33 _,, C 0Dy, if for some radial sequence Q € Ry, or correspondingly for
Q' € Ry, the following inequality is satisficd:
wp(Q) AN fort a2,

4.25 a2 > . i
(e / { Q)+ for

Concerning the singularities of the element (1.2) on closed arcs of 9D, from

Corollary 1.1 we obtain the next result.

Corollary 4.2. For any 3 € [0.27) and p = e with A\ € (—m,7) the element
fin (1.2) has a singular point on the arc Y8 C ODy or on the symmetric arc
Y6,~n C ODy, if for some radial sequence Q € Ry, or correspondingly for Q' € T
the following inequality is satisfied:

v(Q) + 1Al for va

.26) B/2> ~
e iz { e7(Q) + [Al Jor s, .

Actually, if ¥4, contains only regular points of f, then the open. arc 7,‘:_“ for
a = 3 + ¢ with sufficiently small ¢ > 0 will be an arc of regularity for [, which
will contradict Corollary 4.1 for Ya.u- Of course. Corollary 4.2 is satisfied also for
3 = 2m. since the normalized clement (1.2) always has a singular point on 9D;.
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Remark 4.1. If the inequalities in (4.25) are satisficd simultancously for ~f, , and
Yo -y then the singular points on these arcs will be different for o € (0,7), since
G g et A similar remark with 8 € [0.7) is true also for the inequalities

in (4.26) of Corollary 4.2.

The next corollary contains some more concrete cases of the Corollaries 3-4.

Corollary 4.3. For the element f in (1.2) with a radial sequence Q € Ry the
following assertions hold: o

1) If A = 0 and vg(Q) < 7 for some Q € Ry, then for B = 2vs(Q) € [0,27),
it follows from Corollary 4.2 that f has a singular point on the arc vg.. implying
for vg(Q) = 0 with B =0, that the point 1 is a singular point of f. If A = 0 and
vj(Q') < m for some Q' € Ry, then [ has a singular point on the arc vz —y with
B = 217}(()') and center —1, implying for u}(Q') = 0, that the point —1 is a singular
point of [.

2) Let i = e with A € (—=m,m)\{0}, and 2|A| < a < 2m. Then for 6 = o —
2|\|, from Corollary 4.1 with (4.25) it follows that 78, C 5, and ¥§_; C Yo s
implying by 1) for ¥4 ., that: a) the point 1 is a singular point of 75, , if v (Q) = 0;
b) the point —1 is a singular point of v§ _,, if v3(Q) = 0.

3) Let for element f in (1.2) with radial sequences QeRyand Q € Ry, and

for a € (0,27) and p = e with A € (—m,7) the following inequalities be satisfied:
(4.27) a/2 > vp(Q)+|A and 8/2 2 v}(Q') + A,

where B = 27 — a € [0,27). Then by Corollaries 4.1-4.2 and (4.27), the element f
has (different) singular points on both complementary arcs v; , and y5.—, on aD,
with v¥3,—u = OD1\72 -

Note that in Theorem 1.1 and in Corollaries 4.1-4.2 iustead of v;(Q) ouc can
use also some other quantities of the element f in (1.2), related with any radial
sequence Q = {qr}$, € Ry, using in (4.13)-(4.17) directly the quantities {Aw, }§°
and {Aw}}5°, defined in (1.4)-(1.5) and (1.7)-(1.9).

For r € (0,75) and g € Q we set:

wy (r, gkx) = max
né€qls

|Aw,| and -w}“(r, qr) = max |Awyl,

neqelt
where I, = [1—r,1] and I;} = [1,147]. Then for r € (0,75) the functionﬁw%(r: Q)=
lim supy_; o0 wf (r, qx) € [0. 7] are both monotonic having the limitslim, o wf(r. o) =
wf(Q) € [0, 7], and we define
(4.28) wy(Q) := min{wy (Q), wf (Q)}-
22
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Replacing in this definition [ in (1.2) by the related with f element f* in (1.6)-(1.7)
with the coefficient arguments {w;, }§°, we come for f to the second quantity

(4.29) wi(Q) = wy-(Q) = min{wy. (Q), w{.(Q)} € [0,7].
The comparison of (4.28)-(4.29) and (4.16)-(4.17) shows that
0<eo(Q<wr@ <7 and 0<v7(Q) SwHQ) < .

Thus, replacing in Theorem 1 and in Corollaries 3-4 the quantity v 7(Q) by we(Q)
and correspondingly v} (Q) by w} (Q). we will obtain some new, and perhaps intuitively
more clear corollaries, including the influence of the gaps in coefficients of the
element f, taking into account that if f, = 0 for some n € Ny, then also Aw,, = 0
or Aw;, = 0. The converse is not true, since il f,/f,—y > 0, then again Aw, = 0
by (1.4)-(1.5), but fr/fa_, <0 with Aw}, = = by (1.8).

Assuming now that the condition limy, ;. [Awn| = 0 or lim, o a2 =0
is satisfied, it will follow from (4.28)-(4.29) that correspondingly w(Q) = 0 or
uv;(Q) = 0 for arbitrary radial subsequence @ € Ry. This will imply in Corollary
4.3, item 1) the singularity of the points 1 or correspondingly —1 for any Q € R,
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