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1. INTRODUCTION

In this paper, we deal with the following system of equations:
m '
i) zi(t) = —ai(t)zi(t) + Zfij (t,Ij(t),/ K,-_,v(t,s,l'](s))ds> + ci(t),
i=1 =

i = 1,...,m, with given continuous functions z;(t) = ;(t), t € (0,0, a;(t) > 0
and ¢(t), i = 1,...,m, t > 0. The functions f;; and Ki;. i,j = 1,....m, are assumed
to be nonlinear and continuous, and satisfy some condition that will be specified
later. Notice that the system (1.1) is a generalized version of much simpler systems,
appearing in the neural network theory (see [5, 7-9, 12, 14, 15|).

In designing (artificial) neural networks, the researchers were mainly interested in
the human brain. Neural networks consist of several simple computational elements
(processors) known as "neurons which are highly interconnected and arranged in
layers. The tasks of neurons is to transform the received signals from the input and
transmit the outcome to the subsequent neurons.

The applications are numerous: quality control, identification of consumer charac-
teristics, target marketing, financial health prediction, texture analysis, adaptive
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control, data segmentation, recognition of genes, medical diagnosis, signal processing,
etc.

Neural networks are particularly useful for tasks a traditional computer cannot
perform. Some of these tasks are, for example, detection of medical phenomena,
forecasting, identification and prediction.

After appearance of the basic neural network systems, they have been extensively
discussed in the literature. The goal was to generalize these systems and to discuss
various issues for basic and generalized systems (sec [5, 7-9, 12, 14, 15)). It seems, the
most studied question is the (global) asymptotic stability of solutions. To establish
this property, various conditions have been imposed on the coefficients and on the
activation functions, and a lot of efforts were spent to relax these conditions. The most
commonly assumed condition was the Lipschitz continuity condition for activation
functions. We must, however, mention the references [1, 2, 4, 10, 11, 13|, where the
non-Lipschitz case was studied.

In this paper we assume that the functions f;; and K;; in (1.1) are (or are bounded
by) continuous monotone nondecreasing functions that are not necessarily bounded
or Lipschitz continuous. Even the monotonicity condition may be dropped.

The main result of this paper provides sufficiently mild sufficient conditions for
solutions of the system (1.1) to converge to zero exponentially. To prove our main
result, we use a generalization of the Gronwall inequality presented below in Lemma
2.1. Notice that this lemma may also be used to prove the local existence of solutions.
The global existence can be derived from our theorem. Since here we are concerned
in the convergence to zero (of any solution), the uniqueness is irrelevant.

The paper is organized as follows. Section 2 contains some notation, assumptions
and a lemma, which is used in the proof of the main result of the paper. In Section 3

we state and prove our main result (Theorem 3.1), followed by some corollaries and

remarks.
2. PRELIMINARIES
The functions fi; and Kjj, i,j = 1,...,m, appearing in the system (1.1), are

assumed to satisfy the following assumption.

Assumption (H1). For t >0 and i,j=1,....,m,
‘f” (t,;r}(t).figc K.J(t,s,z:](s))ds)l

o t Bi;
< b0 Iy 01 (s O+ [ it = sy (s (s)D ds)
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where b,, are nounegative continuous functions, l;; are nonnegative continuously
differentiable functions with summable first order derivatives, ¥;; are nonnegative

nondecreasing continuous functions, and «;;, 8i; > 0,4,j =1,...,m.

Definition 2.1. A function [ : Ry — Ry is said to be in the class H, , if it satisfies
the following two conditions:
(i) f(u) is nondecreasing and continuous for u > 0 and positive for u > 0;
(ii) f(au) < r(a)w(u) for a > 0, u > 0, where r(a) is a nonnegative continuous
Junction in Ry and w(u) is a nondecreasing continuous function in R, which

is positive for u > 0.

Lemma 2.1. Let a(t) be a positive continuous function in J := [a, ), kj(t,s),
j = 1,..,n, are nonnegative continuous functions for a« < s < t < 3, which are
nondecreasing in t for any fived s, gj € Hy, o, for u > 0, and u(t) is a nonnegative

continuous functions in J. Then the inequality

2 1
u sa®+ Y /n kg (£, £)g5 (ula))ds, t € J,
implies that
u(t) < a(t)palt), a <t < B,

where a(t) := supyc,<, a(s), and go(t) =1,

0i(t) = \'y”J-l(t)CIl [Gl () + 7 [a( t)~P1 1 ]/ k;(t, 9)113]

B
G (u) :=/ m, i (o i detn )

Moreover, in this case
(8) < alt)éalt). a <t < By,
1

where &y(t)
t - [a e g
Glok e ol [G] (r)+/ kj(t,s)wds ,i=1,...n
a a(s)
Here 3], and B} are chosen so that the functions pj(t) and &(t), j = 1,...,n, are
defined for a <t < f3), and for a < t < Sl respectively.

We also will need the following assumption.
Assumption (H2). Assume that v;;(u) € H,, ., and g; is a relabeling of £+
and v;; with k; as coefficients (with k; in the other case).
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We will also use the following notation.

a(t) =Y lw(O)l, wo(t) = Y lwoi(t)]
=1

i=1

eft):= /Ot exp [/on a(a)do] i lei(s)|ds, t > 0,

=1
u

dr 3
Gj(u):= [, m, u>0(u;>0 5=1,..,n),

2(0) .I'u([)) + Z / t](—”)wn (IU(U)) do

i,J=1
=1, 500 = 51065 0,0+ SEQ L) [ ],
kj(s)r
6(0)=1, 60 = 5067 [0, 0+ [ LA AG. A ok

@o(t)=1landfor j=1,..,n

&5(t) = 81 (OG5 [G, )+ T’{[Z(OZ(Z;Y)C](‘;’)’ 1) / iy ( ]
&()=1andforj=1,..,n

&(t) = 61067 [c,. 0+ [ k(«m{[z((O):cp((?)]s, ()}, ]

and k; differ from k; by 1i;(0) + [~ |ii;(0)| do instead of 1;;(0).

3. THE MAIN RESULT. EXPONENTIAL CONVERGENCE

In this section we state and prove our main result on the exponential convergence

of solutions to zero.
Theorem 3.1. Assume that the assumptions (H1) and (H2) hold, and

-0
/ liJ(“C’)Uf‘aj (zo(0))do <, i.j=1,..,m.

Then the following assertions hold.
(a) Iflj;(t) <0, i,j = 1,..,m, then there exists 3], > 0 such that

0 < 0) + el at)ow |- [ atoas] 0t <5,
and there exists 3;, > 0 such that

L
a(t) < [2(0) + e(t)) & (t) exp [— / a(s)ds] ,0St< B
0
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(b) If Ui;(t), 3,5 =1,....m, are of arbitrary signs and
Am 15, ()] /(: ¥ij (uo(0)) dods < oo,
then there exists B, > 0 such that
£(t) < |2o(0) + Jz";l 10 (=) (20(@)) da]
X @n(t) exp [— f(: a(s)ds] R gl
and there exists [3: > 0 such that
z(t) < |o(0) + 1;‘::1 fi’w Lij(—o)¢i; (zo(0)) da}
xEq(t) exp [‘-— fnt a(s)ds] A<t<fl

Proof. We first obtain a relation that will be used to prove the assertions (a) and
(b) of the theorem.
Applying the Dini derivative to the equations in (1.1), for t > 0 and i = 1,...,m,

we can write
m

D |z;(t)] € —ai(®) ()] + Y

i=1

fis (t.a:]-(f),/—; Kis(t, s, z'j(s))(ls) + ci(t),

Then, using our notation and the assumption (H1), for ¢ > 0 we obtain
Dtza(t) < —a(t)z(t)
; m 5 : By m
GO+ 3 b0 RO (J2i(0+ [ bt = s @) ds) ~ + (o)
ig= i=1
Multiplying both sides of (3.1) by exp [fot a(s)ds] , for t > 0 we get
D+ {z({)exp [fnl a(s)ds] } < exp [fol a(s)ds] Y bij(t) |=(t)|*
ij=1
3 . Buj : m
x (lz‘,(t)! + [t Lt — 8 (a(s)) ds) +exp [f“ a(s)ds] 3 leit)].
i=1
Next, it follows that (sce [6])
E(t) < z(0)+c(t)+ X j(: {Z bi;(s) exp [(1 - aij) foﬂ {l(d)lidj F(s)
(3.2) j=1 =1 -
x (:?(.s') + 1 Lis(s — o); (#(0)) (ia) } ds, t >0,

where
I(t) := z(t) exp [/o a(s)ds] A >0
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We define #(t) = z(t) := 20(t) = Z |zo:i(t)] for t < 0. Let y(t) denote the right hand
side of (3.2) for t > 0, and let 1/(t) = z(t) for t < 0. Tt is clear that y(0) = (0),
Z(t) < y(t) for t > 0, and

vO =cO+ 5 5500 (50 + [y - o) (3(0)) dr) ™

(3.3) i
<d(t)+ Z bu(t)y )2 (J(t) + [ o Lis(t = o) (y( a))du) S
where :
bij(t) := exp [(1 - ayj) /0 u(a)da] bi;(t), t > 0.
Define
y(t) + Z f_ ii(t —o)Yij (y(o))do, t >0
(3.4) S(fle=

ug(t) := zo(t) + Z fimlq(f, — a)¥;j (z0(0)) do, t < 0.
ij=1
Differentiating z(t), given by (3.4), and using (3.3), we can write
m m
FO=VO+ 3 GO W)+ 3 [l - o) (v(0) do

<+ £ hnoutoe (w08 + S st = o) (v()) dr) ™

i,j=1
(3.5) + };:11-1 0)vi; (y(1)) + E JE o Uyt = o) (y(0)) dor
ci(t) + Elbu {)4(')n’+q”+ Z L (0 (2(1))
G- i,7=1

+ 30 [ty = oy (v(o) de
=

Now we use the relation (3.5) to prove the assertions (a) and (b) of the theorem.
Proof of (a). Let [;;(t) <0, 4,j = 1,...,m. This case corresponds to the so-called

"fading memory"situation. In this case, the relation (3.5) reduces to the following:
m
ORLIOE DY [51,(1)2(0"-’*% +1;(0)y; (z(z))] Es0,
4)=1

Therefore, we have

(3.6) =(t) < 2(0) +c(t) + Z/ 13(8)2(8)%4 H24 4 13 (0)wy (2(s ))] ds, t >0,

=1

where 2(0) = zy(0) + i flc lij(=0)ij (z0(0)) do
ij=1
e
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It is clear that the functions z(s)* 24 belong to Hy, w,, and since 1;; are also
assumed from this class, we can apply Lemma 2.1 to (3.6), to obtain
(3.7) #(t) < 2(8) < [2(0) + ()] pa(t), 0 L < B

() < 2(t) < [2(0) +c(t)] &a(t), 0 <t < 7.

This completes the proof of assertion (a).

Proof of (b). Let lj;(t), i.j = 1,...m, be of arbitrary signs. Then, in view of
relation (3.5), we have

m: . m
() <)+ X bii@®)z(0) B + 3 L;(0)vi; (2(2))
ij=1 ig=1

(3.8) e
+ 3 I3 @) b (e - o do ¢ > 0.

The integral term in (3.8) may be treated by introducing the auxiliary function:

¢
(t) = 2(t) + Z/ ;¢ )I/’_ ij (z(0)) dods. t > 0.

i,g=1

Differentiating 2(t), and using (3.8), we can write
() =2'(t) + Zl I 115 (9)| g (2(8)) = i (2(t = s))) dords
ij=

0+ 3 Bty B + _fj‘t..,»(om-,v (1)
ij=

ij=1
+ 3 Jo* (el 9 (2F <o)} de
ij=

+ 5 I 60 W (0D = s (o= D s
<d(t)+ 'Z"jl{),,- B2+ + [ (0) + [5° [1,()] ds] i (z(t))}, t>0.
i
Therefore, we have
H(t) <20) +<(0)

G z [0{ 13(5) (G6)™ 5 + [1(0) + [57 [t (@) do] vy (3(5)) } ds

with
Z(O) = z(0)
& ”ZE f_ (—0)vij (z0(0)) do + Z jo 3)| ff’ ¥ij (uo(0)) dods.

Finally, we apply Lemma 2.1 to (3.9) and use (3.8), to obtain

Z(t) < 2(t) < [In 0) + Z / Lij(—0)ij ( zo(a))do] Palt), 0<t < B,
ij=1
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and

0

&(t) < 5(t) < [20(0) + Z/ Lij(=a)¥si; (20(0)) do | £n(t), 0 < t < AL

ig=1""

This completes the proof of assertion (b). Theorem 3.1 is proved.

Corollary 3.1. If, in addition to the hypotheses of the theorem, 3, 8l!, B, and B

are infinite, then we have global existence of solutions.

Corollary 3.2. If. in addition to the hypotheses of the theorem, we assume that
[2(0) + ¢(t)] pu(t) and IO(OH‘”Z;l fi),,, Lij(—o)i; (Io(ﬂ))da] Pn(t) grow at most

polynomially. and exp [ f(: a(s)ds] — 00 as t — oo, then the solutions decay in

exponential rate.

Remarks:

1. The smallness condition in the initial data is dictated by Lemma 2.1. Indeed, it
is required for existence of functions @;(t), j = 1,...,n. It will be superfluous, for
instance, if the functions G; (1) have infinite range. However, the other conditions on
the initial data in the statement of the result remain the same.

2. The classical Hopfield neural network system with distributed delays
m '
zi(t) = —a;(t)zi(t) + Zb.](t)/ Lij (t — $)ij (| (s)]) ds + ¢,
j=1 S

may be considered as a special case of ours when a;; =0 and 3;; =1,i,j =1,...,m.
Regarding the asymptotic behavior, our Corollary 3.2 shows that the condition on
c(t)
t s -ym
elt)u= / exp [/ u((r)da:l Z lei(s)| ds, t >0,

0 0 i=1
for the 'constants’ ¢; becomes ¢; = 0. ¢ = 1,...,m. The convergence to zero would
wean stability of the equilibrium 0 (¢4 (0) =0, ¢,5 = 1,....m).
3. The class H,, is sufficiently large. For instance, it contains all submultiplicative
functions ¥ since Y € Hy . It contains also the class F introduced by Deo and
Dongade [3]. Recall that the class U is formed by all nondecreasing continuous
functions ¢ in R4 such that ¢¥(u) > 0 for v > 0 and %t’r(u) <9(%),u=20,a>1.To
see that H, . contains F, is it is enough to take r satisfying r(a) = max(1, a).
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