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1. INTRODUCTION

In this paper, we consider a new class of boundary value problems of Caputo
type fractional differential equations of arbitrary order involving a nonlocal sub-strip

condition given by
“Diz(t) = f(t,a(t)),n—1<q<n,n2>2 te0,1],

z(0) = 2'(0) = 2"(0) = ... = z*=2(0) = 0,

£
az((l)+bz((2)=(‘/ z(s)ds, 0< (i <n<€é<la<l,

n
where f:[0,1] x R — R is a given continuous function, and a, b, ¢ are real constants.
In (1.1), the nonlocal strip condition can be interpreted as follows: the linear
combination of the values of unknown function at two points ¢; and (3, located to the
left and right hand sides of the strip, respectively, is proportional to its strip value
([: z(s)ds). This situation has interesting applications in oil exploration (geophysics)
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and acoustic scattering (scattering from a strip together with some nonlocal scatterers
off the strip located on a given boundary).

The interest in the study of fractional calculus mainly owes to its extensive theoretical
development and widespread applications in a variety of disciplines such as biological
sciences, ecology, acrodynamics, control theory, viscoelasticity, electro-dynamics of
complex medium, electron-analytical chemistry, environmental issues, etc. The nonlocal
characteristic of fractional-order differential and integral operators helps to trace the
past history of several materials and processes, and thus fractional calculus’ tools have
contributed toward revolutionizing the traditional mathematical modeling techniques
based on integer-order calculus. More details on the topic can be found in [1}-[7).
Fractional-order boundary value problems involving classical, nonlocal, multi-point,
periodic and anti-periodic, fractional-order, and integral boundary conditions have
recently been investigated by many researchers (see, [8]-[26], and references therein).
The paper is organized as follows. In Section 2, we recall some preliminary concepts
of fractional calculus and establish an auxiliary lemma concerning the linear variant
of the problem (1.1). In Section 3, we state and prove our main existence results.
We emphasize that the tools of fixed point theory employed in this section are well-
known, however, their exposition in the present setting allow to explore further insight
in terms of the existence criteria for solutions of the problem at hand. In Section 4,
we extend the existence results, obtained in Section 3, to the case of Stieltjes type

strip conditions.

2. BACKGROUND MATERIAL
In this section, we recall some basic definitions and tools of fractional calculus (see

[1, 3]), and state two auxiliary lemmas, which will be used in the proofs of the main

results of the paper.

Definition 2.1. The fractional integral of order q > 0 with the lower limit zero for
a function f is defined as follows:

L bahs < 4(8)

=1‘(T o (t—s)-a

provided the right hand-side is pointwise defined on [0, 00), where I'(g) = ik pa5 et

I91(t) ds, t>0,

is the gamma function.
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Definition 2.2. The Riemann-Liouville fractional derivative of order ¢ > 0, n—1 <

g<n,n€N,is defined as

28,100 = gy () =0 s

where the function f(t) has absolutely continuous derivatives up to order (n —1).

Definition 2.3. The Caputo derivative of order q (n —1 < q < < n) for a function
f:[0,00) > R is defined by

cDIf(t) = D ( Z f(A) 0)) Boali

=D,
Remark 2.1. If f(t) € C"[0,00), then for n —1 < q < n we have

3 1 L () B s
D= meon) G- =t 4EE(L), 10,

Lemma 2.1 (see [4, 14]). Let u € AC™[0,1] and v € AC(0,1]. Then for p € (m —
1,m). m € N and t € [0,1] the following assertions hold:
(a): the general solution of the fractional differential equation “DPu(t) =0 is
u(t) = by + Inf + bzt2 + .ot bp1t™ !, where b; €R, i =0,1,2,....m—1;.
(b): 17 °DPu(t) = u(t) — Ty Luk(0);
(e I)”I”n(f) - 1:(1).

To define a solution of the problem (1.1), we consider its linear variant:

“Dia(t) = h(t), n—1<q<n,n22 teo1],

T =g =z" =..= (n~2) =
@1 #(0) = 2/(0) = 2"(0) = .. = 2""(0)

£
az($1) + bx() = r:/ z(s)ds, 0< 1 <N<E<(<],

n

where h : [0,1] = R is a given appropriate function.

Definition 2.4. A function x € AC™[0, 1] is said to be a solution of the problem (2.1)
on [0.1] if it satisfies the conditions in (2.1), and the fractional differential equation
in (2.1) for any h € AC[0,1].
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Lemma 2.2. A function z is a solution of the problem (2.1) (in the sense of Definition
2.4), if and only if it satisfies the following fractional integral equation:

t (t— s)q—l tn—1 131 (5 = s)q—]
——————h(s)ds + 7} [—a/” l\h(s)ds

pi Sl L 7y o)
131 q—1 £ s e
" (Ea—9)* (s = u)i?
@2) L A T —h(aa 4 /,, | g hwduds),
where
(2.3) A= [uc," 14 pen-1 %(5" - ,,")] £0.

Proof. By Lemma 2.1, the solution of fractional differential equation in (2.1) can

be written as follows:

* =)t 2 n-2
(24) “uity= / Tq)h(.«s)ds +bo + b1t + bat® + ... + bu_ot™ 2 4 b, _ "1,
0

where bp.b1,...,bp1 € R are arbitrary constants. Using the boundary conditions
2(0) = z'(0) = z(0) = ... = z2(0) = 0, we find that by = b; = bp=..=bp_o=
0. Thus. (2.4) takes the form:

a-1
s) "

(2.5) .r(z)=/0 (‘t_r(T) (8)ds + bp 18"~ L,

Now applying the condition az(¢y) + bz((2) = ¢ : z(s)ds in (2.5), we obtain

i 1 €1 (EI N s)q—l &2 (51 = S)q 1
o Z{—a ; Th(s)ds—b/o SR s

+ ('/: /0“ (s—;(ug);;]h(u)duds],

where A is given by (2.3). Substituting b,_; into (2.5) we get the solution (2.2).
Conversely, by direct computation with the aid of Lemma 2.1, we infer that z(t)

given by (2.2) satisfies the problem (2.1). This completes the proof.

3. EXISTENCE RESULTS

Let P = C([0,1], R) denote the Banach space of all continuous functions from [0,1]
to R endowed with the norm :||z|| = sup{|z(t)|,t € [0,1]}. In view of Lemma 2.2, we

define an operator X: P — P associated with problem (1.1) as follows:
15
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& =
- —8)¥
o = [ G steatis+ S =a | %ﬂm(s))«u
2 (52 =k (sr)ly
Ay ds + / / s 2
/0 o) (s (s))ds + ¢ TW f(u r(u))duda].
(3.1)
Observe that the problem (1.1) has solutions if and only if the operator X has fixed
points.
For the sake of computatimml convenience, we set
1 (g —nt)
: = b
09 o= * Tl Pt T

Now we state an existence and uniqueness result for problem (1.1) which is based on

Banacli’s contraction mapping principle.

Theorem 3.1. Let [ : [0,1] x R — R be a continuous function satisfying the
Lipschitz condition:
(A1): |f(t2) = [ty < be—yl, VLE0,1], 2,y €R,£> 0.
Then (1.1) has a unique solution provided that o < 1, where o is given by (3.2).
Proof. We first show that the operator X defined by (3.1) satisfies the inclusion:

XB, C By, where By = {z € P: |lz|| v}, 7 > 0a/(1-0¢), and a = sup,o 1) | f(2,0)].
For x € B, and t € [0,1], it follows from Lipschitz condition that

(3:3)  If(t.z®)] < |f(t.2(8)) = £ 0)| + [f(#0)] < €]l + o < br + a.

In view of (3.2) and (3.3), we can write

-\ | = ([ ke =
|1m<a)‘|s:[;’pu{ o tolas + ol [ " s o

(G 8 —uyr
b [ s+ [ O ]

i 14 t(n-1) ¢ e} (€9+1 — put1)

5 +")l:}$ﬂl{rq+l)+lT['a‘ ey Iblr(q+1)JrIcI T(q+]2) 1}
: 1 : (€1 )

< tr+a)magt |A1('“' q11)+"”r(q+1)+'°' e

<(r+ajg<r,

showing that XB, C B;.
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Now, for x,y € R and for each t € [0, 1], we obtain

. : E(t=)ts o
ozl < s { [ 51500000 - sto,uolas
t"l (Cl
¢ fa [ F() G o 2(00) — S, w(e)lds

a0 [ T ) - 05l

+ I / b 0 ) — S, ()]}

(= e £ (Cl_s i,
< |z - / ——ds +— / ds
llz =yl :}qu{ ) A IaI s
i |b|/ (€ sl M \q/ (‘ i duds]} < lo|z - y||.
0

Taking into account that fo < 1, we conclude that the operator X is a contraction.
Thus, by Banach’s contraction mapping principle, there exists a unique solution of

(1.1). This completes the proof of theorem 3.1.

Our next existence result is based on the following fixed point theorem .

Lemma 3.1 (Krasnoselskii, [28]). Let Y, be a closed, convez, bounded and nonempty
subset of a Banach space Y. Let X1, x2 be operators satisfying the conditions:

(a) x1y1 + x2y2 € Y1 whenever y1,y2 € Y;

(b) x1 is compact and continuous;

(¢) x2 is a contraction mapping.

Then there exists y € Yy such that y = x1y + x2¥.

Theorem 3.2. Let f : [0,1] xR — R be a continuous function satisfying the condition
(Ay), and |f(t,z)| < d(t) for all (t,z) € [0,1] xR and § € C([0,1],R*). Then problem
(1.1) has at least one solution on [0.1] provided that v < 1, where

’I q
¢
+ [
|(l"’r( 1) s
1F

{tletiid )

34 = T(g+2)

+ cf
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Proof. We fix r > ||§||o and set B, = {z € P : ||z|| < r}. Define the operators X,

and K, on B, as follows:

@ = [ st

e (e g
e = E[-a ; ¥ e g f(s.x(s))ds - b/ T ) ~ (o, s(e))ds

= /,A s—u) (U-w(u))dud,,],

For z,y € By, it is easy to .slmw that [|(Xyx) + (K29)|| < ||6]le < r, where o is as in

(3.2). Hence X2 + K2y € B;,.
Next, using the condition (A;) and formula (3.4), we can show that the operator

K is a contraction. Indeed, for z,y € R and t € [0, l], we can write
(2
[[(Xaz) = (Kay)ll < S“P |A| |a |/ F(q) ——=——1|f(s,2(s)) - f(s,y(s))|ds
% (6 —a)97!

+lbl @ [£(s,2(5)) = f(s,y(s))lds
+|c|/ / (8"1;)) flu,z(u)) = f(u, y(u))lduds]}

= = ; 1 24 (69! — 7i+1)
<tz vl sue {7 [" q+1> +"'r(qil) i v )

(‘1 (§q+l = nq+l) :
q+1) r(q+ R T(g+2) ] < byflz — gl

This shows that X3 is a contraction in view of the condition fy < 1. The continuity

<t~ ylog [|a| + [o]

of f implies that the operator X, is continuous. Also, X; is uniformly bounded on
B,

q t — <)u—1
1Kzl < sup/gﬂsre ds < su ‘/(L—S)J 1
t€(0,1] I'(g) ! )l te[Opl] I'(g) ot
‘ (t—s)17! |l
< s s /(—i = 5
P B

Moreover, with SUP(y,0)efo,1)x B, IS (£, Z)| = F < oc and 0 < ¢, < t; < 1, we have

ta (tg—s)q_l (fl 5 )
’ Tf(sgt(s))ds—/ *s)

0
ty q— 25 —g)i-1
|/ = r(q)(tl 7 fs.ato)as

]

(Kyz)(t2) — (:Kl-"")(tl)‘ £(s,2(s)) dq‘

5 ta (tg _ s) 7 :
W g SCEOTE a2 =l +1 - ¢2),

18
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which tends to zero independent of « as t; — t; —s (). This implies that X; is
relatively compact on B, and hence, by the Arzeld-Ascoli theorem, Ky is compact
on By. Thus, the assumptions of Krasonselskii’s fixed point theorem (Lemma 3.1) are
satisfied. Hence we can apply Lemma 3.1 to conclude that the problem (1.1) has at

least one solution on [0, 1]. This completes the proof.

Now we are going to show the existence of solutions for problem (1.1) via the

following fixed point theorem (see [28]).

Theorem 3.3. Let X be a Banach space. Assume that T : X — X is a completely
continuous operator and the set V = {u € X|u = €Tu,0 < € < 1} is bounded. Then T
has a fixed point in X.

Theorem 3.4. Assume that there exists a positive constant L, such that |f(t,2)| <
Ly for allt € [0,1], z € R. Then problem (1.1) has at least one solution on [0,1].

Proof. We first show that the operator X defined by (3.1) is completely contimous.
Indeed, observe that the continuity of X follows from the continuity of folet Dc P
be bounded. Then, it is easy to show that |(Xz)(t)| < Lyo = L, for all z € D, where

o is given by (3.2). Furthermore, for 0 < ¢, <ty < 1, we can write

|(Xz)(t2) — (Kx)(t1)|
35 < | / i e il R

T(q)
¥ /I‘h(—t’%))qqf(s,r(s»dﬂ
Cle cae "" e
i b/u" E&;(—;irldf(.s.w(s))d.¢+c/';£ /;%f("-w(“))d““”
ﬁj(mz - il + |t§ — £4])
+ Lllt;—:;t?—ll(H )+|bI q+1) llf“(lq;nlq)ﬂl)'

whick tends to zero independent of z as t, — t; — 0. Therefore, KX is equicontinuous
on [0, 1]. Thus, by the Arzeld-Ascoli theorem, the operator X is completely continuous.
19
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Next. we show that the set V = {z € P : ¢ = ¢Kz,0 < € < 1} is bounded. Let

2z €V and t € [0,1]. Then we have

+ — )il -1 3} (6 —a)7!
w0 = [ st s [ e i

b/“ zl—(sil ooy )d,H/ / (’I(’;) (1, x(u))duds]

As before, it can be shown that |z(t)| = €|(Xz)(t)| < Lio = La. Hence, ||z|| < L,
for all z € V and t € [0, 1], showing that the set V is bounded. Thus, we can apply

Theorem 3.3 to conclude that problem (1.1) has at least one solution on [0, 1]. This

completes the proof.

In our next existence result, we make use of the Leray-Schauder nonlinear alternative

for single valued maps (see [29]).

Lemma 3.2 (Leray-Schauder nonlinear alternative). Let Ey be a closed, conver
subset of a Banach space E, and let V be an open subset of Ey with 0 € V. Suppose
that U : V — E, is a continuous, compact map (that is, W(V') is a relatively compact
subset of Fy). Then either U has a fired point in V or there is x € OV (the boundary
of V in E,), such that x = kU(z) for k € (0,1).

Theorem 3.5. Let [ : [0,1] xR — R be a continuous function, and let the following

conditions hold:

(Az): there ezist a function p € C([0,1],R") and a nondecreasing function v :
Rt — R* such that |f(t,z)| < p(t)(||z]) for all (t,z) € [0,1] x R;

(A3): there exists a constant M > 0 such that
M) #
M T+l _ e+l -
iz @+ D (141 + lac + licfl) + lete N} >t

Then problem (1.1) has at least one solution on [0, 1].

Proof. We consider the operator X : P — P defined by (3.1), and show that it
maps bounded sets into hounded sets in P. For a positive number r, let B, = {z €
P |lz|l £ r} be a bounded set in P. Then, in view of condition (A3), for z € B, and

20
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t € [0, 1], we have

g1 E
(Xa)®) < / ( ”q) Eo o eywlialys + £ T AI [l / i p(s)w(|m|)ds
o b [ S a1 [ [0 o 2 et s
< ,_},’&%[@ + 1)1+ alc? + 1leE) + ellgr* — o).

Next, it will be shown that X maps bounded sets into equicontinuous sets of P. Let
t1,t2 € [0,1] with ¢; < t, and © € B,. Then, we have

|(Xz)(t2) — (Ka)(t1)]

20ty — 1|7+ |63 — ¢]]
< B T Va
Gl PESY)
|l.§"_1) _t(n—nl

g {@+ (11 +1alct + picg) + leler* ~ n+1)}].

[AT(q+2)
Clearly. the right-hand side of the above inequality tends to zero independent of
z € By asty — t;. Thus, by the Arzeld-Ascoli theorem, the operator X is completely
continuous.

Let = be a solution of problem (1.1). Then, following the method employed to

establish the boundedness of the operator X, for A € (0,1) we obtain

e < Lblel ol B
et = INX)ON < e 255 la+ D (141 + lalcf +1b168) + el(€™* — o],

which can alternatively be expressed as follows:

el el [ 4 1)1+ ol + ict) + kltge*t — o)} <1,
In view of condition (A3), there exists M such that ||z]| # M. We choose N = {z €
P : |lz]l < M + 1}, and observe that the operator X : N — P is continuous and
completely continuous. Also, from the choice of N, it follows that there is no = € N
to satisfy = = A\X(x) for some X € (0,1). Thus, we can use Lemma 3.2, to conclude
that the operator X has a fixed point z € N, which is a solution of problem (151 )

This completes the proof.
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Example 3.1. Consider the following fractional boundary value problem:
xT
ePp(l) =
i gy o
2(0) = 2'(0) = 2"(0) = ="(0) = 0,

+5ttan~!x + e~ cos(t? + 1), € [0, 1],

(3.6)
3
ax(Cy) + bx(¢2) = c/ z(s)ds,0< (1 <n<€< (<1,
n

Here we have ¢ = 9/2,a=1/2,b=1/3,c=1,(=1/5,2=2/3,6 =1/2,n=1/3

and f(t,z) = T
{=11/2,

+ 5ttan' o + e~'cos(t> + 1). With the given data, we get

c
4] = la¢? ™" + b — ~(€" —7")| = 0.061217,

1 1 q q g+l — qatl)
ok + o[l s + o .
T(g+1) " |AIL"T(g+1) T(g+1 (¢+2)
It is clear that o < 1. Thus, all the conditions of Theorem 3.1 are satisfied, and

3+ 1ot & ] ~ 0.037113.

consequently there exists a unique solution for the problem (3.6).

Example 3.2. Consider the problem (3.6) with
-2

3.7 f(t,z) = (@2t + 1)( + cosw).

xr
1+ 22
Clearly, we have |f(t,z)| < p(t)y(|z|) with p(t) = (2t + 1) and v(|z|) = 2. By the

assumption:

h( ] 7 =1
M{—er‘(?% [0+ 1)(141 +lalct + 1bicg) + lelte*® —n#+1)]} " > 1,

we find that M > 0.222678. Thus, by Theorem 3.5, there exists at least one solution
for problem (3.6) with f(t,x) given by (3.7).

4. EXISTENCE RESULTS FOR STIELTJES TYPE PROBLEM

In this section, the existence results obtained in Section 3, we extend to the case
of Stieltjes type strip condition. More precisely, we consider the following boundary
value problem:

‘Diz(t) = f(t,x), n—-1<g<n,n>2,tel0,1],

@) z(0) = 2/(0) = 2”(0) = ... = z"~2(0) = 0,

€
az (1) + baz((2) = r./ z(s)de(s),0< (L <n<é<(a<l,
n
where () is a function of bounded variation.
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In this case, we define an operator K,: P — P as follows: (K x)(t) =

£ rat eyt n-1 & _ g)a-1
(12) =/.QT?T—ﬂ&ﬂ@Mr+L—[—an gﬁzglquﬂu»w

S (=)t i klipas s c/ / (s—uyi? u,x(u))dudg)(s)],

0 = ST
(4.3)
where
£
4.4 Ay = [aPt+b3 " —c [ s"ldp(s)| #0.
(4.4) [“ 1 2 /', v(*] #

In what follows we use the notation:

i 1 1

& e
=t e D

i [ [ e

e, 'r(q+1) ety 1 Tg)

dudp(s)|.

Theorem 4.1. Let f : [0,1] x R — R be a continuous function satisfying the
Lipschitz condition: |f(t,z) — f(t,y)| < flz —y| for all L € [0,1], z,y € R and £ > 0.
Then problem (4.1) has a unique solution provided that fos < 1, where o, is given by
(4.5).

Proof. With the help of the operator K defined by (4.2), (4.4). we can complete

the proof following the method of proof of Theorem 3.1. So, we omit the details.

Remark 4.1. The analogs of Theorems 3.2, 3.4, 3.5 for problem (4.1) can also be
obtained by using the operator X, and o defined by (4.2), (4.4) and (4.5), respectively.

Example 4.1. Consider the follounng Stieltjes type fractional boundary value problem:
D2(t) = f(t;z), t e [0,1],
§
2(0) = 2'(0) = 2"(0) = 2"(0) = 0,a2(G1) + bx(C2) = C/ z(s)dp(s).

n

Here we have ¢ = 9/2,a = 1/2,b=1/3,c=1,(; = 1/5,( = 2/3,6 = 1/2, =
1/3, ¢(s) = s +5%/2 and f(t,z) = z/Vi+4+5ttan z+e7t cos(t? +1). Using the
given data, we find that £ = 11/2,|A,| = 0.058841 and o, = 0.038353. With fo, <1,
all the conditions of Theorem 4.1 are satisfied. So, there exists a unique solution for

problem (4.6).
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CONCLUDING REMARKS

In this paper, we have studied a new class of nonlocal fractional boundary value
problems of arbitrary order in presence of classical and Stieltjes type strip conditions.
Our results are new and take care of some new special situations. For instance, by
taking ¢ = 0, we obtain the results for a boundary value problem of fractional-order
= 0 with

¢ € (n — 1.n] involving a nonlocal condition of the form ax(¢;) + bx((s
a/b # V—C.;_‘_'/(]"_'. In the case where a = 0 (or ¢, —» 0%) and ¢, —» 17, our results
correspond to a condition of the form: (1) = i f: x(s)ds (j1,—constant). Letting
b=0and { = 0, we get the results for the condition: f: (s)ds = (). The last two

ohservations obviously hold for Stieltjes type strip conditions as well.

Acknowledgement. The authors thank a referee for useful comments that led to

the improvement of the original manuscript.
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