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1. INTRODUCTION. DEFINITIONS AND RESULTS

In this paper, a meromorphic function means meromorphic in the complex plane.
We adopt the standard notation of Nevanlinna's value distribution theory of meromor-
phic functions as presented in [9], [12] and [23]. By letter E' we denote any set
of positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For a nonconstant meromorphic function h, we denote by T'(r,h) the
Nevanlinna characteristic function of h and by S(r,h) any quantity satisfying the
relation S(r,h) = o{T(r,h)}, r = 00, r ¢ E.

Let f and g be two nonconstant meromorphic functions and let a € CU {oo}. If
zeros of f —a and g — a coincide in location and multiplicity, then we say that f and
g share the value a CM (counting multiplicities). On the other hand, if zeros of f-a
and g — a coincide only in their location, then we say that f and g share the value a
IM (ignoring multiplicities). A meromorphic function « is called a small function with
respect to f if 7'(r,a) = S(r, f). Throughout the paper, we denote by pl f) the order
of f (see [9], [12], [23]). We define the difference operators A, f(z) = f(z +1) = f(z)
and ﬂ.:;f{z} == &:;‘1{&,,3"(:)}. where 7 is a nonzero complex number and n > 2
is an integer. In the special case where = 1, we use the usual difference notation

Bnf(z) = Df(2).
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A number of papers has been devoted to the uniqueness of entire and eromorphic
functions whose differential polynomials share certain values or fixed points (see [5].
G]. [16]. [19], [20], [22], and references therein). Recently the value distribution in
difference analogue has become a subject of gleat interest among the researchers.
For instance, Halburd and Korhonen [7] established a version of Nevanlinna theory
based on difference operators. The difference logarithmic derivative lemma, given by
Halburd and Korhonen [8] in 2006, and by Chiang and Feng [4] in 2008, plays an
important role in the study of difference analogues of Nevanlinna theory. With the
development of difference analogue of Nevanlinna theory, the researchers concentrated
their attention to the distribution of zeros of different types of difference polynomials

. il . "
aud obtained the corresponding uniqueness results.

Theorem A. (see [13]) Let f be a transcendental entire function of finite order, and
let 1 # 0 be any complex constant. Then forn > 2 the function f"(2)f(z+n) assumes

every nonzero value a € C infinitely often.

Example 1.1 ([13]). Let f(z) = 1+ e*. Then the function FR)f(z4+mi)—1=—e22

has no zeros, showing that Theorem A does not hold if n = 1.

Example 1.2 ([17]). Let f(2) = e~ % . Then f2(2)f(z+n)—2=—1 and p(f) =00,
where 7 is the solution of equation e = —9, Evidently, the function f?(z)f(z+n) -2

has no zeros, showing that Theorem A does not hold if [ is of infinite order.

Theorem B. (see [18]) Let f and g be two transcendental entire functions of finite
order. Let 1) # 0 be a compler constant and let n > 6 be an integer. If f"(2)f(z +n)

and g"(2)g(z + n) share 1 CM, then cither 9=t or [ =tag for some constanis t

and ty satisfying 71! = (=1,

Theorem C. (see [17]) Let f be a transcendental entire function of finite order, and
let 1) be a nonzero complex constant. Then forn > 2 the funetion [™(2) f(z+n)—Py(z)

has infinilely many zeros, where Py(z) # 0 is any polynomial.

Example 1.3 ([17]). Let f(z) = e . Then fY(2)f(z+n) — Po(z) = 1 = Py(z) and
pl[) = oo, where 1) is a nonzero constant salisfying " = —n, Py(z) is a nonconstant
polynomial, and n is a positive integer. Fuvidently, the function f"(z)f(z +n) — Py(z)

has finitely many zeros, showing that the condition p(f) < oo in Theorem C is

necessary.

Now the following question arises naturally.
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Question 1. Is there any uniqueness result corresponding to Theorem C 7

Theorem D. (see [15]) Lel [ and g be two distinet transcendental entire functions
of finite order, and let Py # 0 be a polynomial. Suppose that 1) is a nonzero comples
constant and n 2 4 is an integer such that 2deg(Py) < n + 1. Also, suppose that
f'(2)f(z +n) — Po(2) and g"(2)g(z + n) — Po(z) share 0 CM. Then the following
assertions hold.

(I) If n > 4 and f"(2)f(z + 1)/ Po(2) is a Mobius transformation of ¢"(z)g(z +
1)/ Po(z), then either |

(i) f =tg, where t # 1 is a constant sutwfying_t":l =1.or

(ii) f = €9 and g = te~ 9, where Py reduces to a nonzero constant c. t is a constant

such that t"*! = ¢*, and Q is a nonconstani polynomial.

(II) If n 2 6, then I(i) or I{ii) holds.

Theorem E. (see [13]) Let f and g be two transcendental entire functions of finite
order, and let o (# 0.2¢) be a Tﬁﬂfﬂﬂtﬂ?phiﬂ function such that p(«r) < p(f). Suppose
that 1 s a nonzero complex number. and n and m are positive integers satisfying
n>m+6. If f"(2)(f™(z)=1)f(z+7) and g"(2)(9"" (z) — 1)g(=+n) share a(z) CM,

then f = tg, where t is a constant such that t™ = 1.

Let P(z) = an2™ + an-12""1 4+ ... + ap be a nonzero polynomial, where a,, # 0,
Qn—1, .- 5 ag are complex constants. Define I’y := m +m and T'y := m; +2m3. where
m is the number of simple zeros of P and my is the number of multiple zeros of P.
Throughout the paper we use the notation d = ged(Ap, Ay, ..., An). where A, =n + 1
o =and =111 1a; =0

Theorem F. (see [21]) Let f be a transcendental entire function of finite order and
n be a fized nonzero complex constant. Then for n > m the function P(f(z))f(z +
n) — a(z) = 0 has infinitely many solutions, where a # 0 is a small function with

respect to f. and m is the number of distinct zeros of P.

Theorem G. (see [21]) Let f and g be two transcendental entire functions of finite
order, 1) be a nonzero complex constant, and n > 2I'3+1 be an integer. ITP(f(z)) f(=+
n) and P(g(z))g(z + n) share 1 CM, then one of the following cases hold:

(i) f = tg, wheret! =1;

(ii) f and g satisfy the algebraic equation R(f.g) = 0, where R(un,wy) = P(w;)wy(z+

n) — P(wz)wa(z +n);
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(i) [ = e, g =€’ where a and 3 are two polynomials and a + 3 = ¢, and ¢ s a

constant salisfying HEH“""”"' =1

Example 1.4. (see [21]) Let P(z) = (z — 1)°(z + 1)z, f(2) = sinz, g(z) = cosz
and n = 27. It is easy to see that n > 2T9+ 1 and P(f(2))f(z+n) = P(g(2))g(z+n).
Therefore P(f(z))f(z+n)and P(g(z))g(z+n) share 1 CM. It is also clear that though
f and g satisfy R(f,g) = 0, where R(w;,w2) = P(w)wi(z + n) — P(ws)wa(z + n),

we have f # tq for a constant ¢ satisfying t™ = 1, where m € ZT.

Note that the functions f and ¢ in Example 1.4 do not share 0 CM, and the

following question arises naturally.

Question 2. What can be said about [ and g, if [ and g share 0 CM in Theorem
GY

Theorem H. (see [14]) Let f, g be two transcendental entire functions of finite
order such that f and g share 0 CM. Suppose that Py # 0 is a polynomial, n is a
nonzero compler constant, and n is an integer such that deg(Fy) < n + 1. Assume
that P(f(z))f(z+n) — Py and P(g(z))g(z+n) — Py share 0 CM. Ifn > 2I'; + 1 and
P(f(z))f(z+n) ts a Mobius transformation of P(g(z))g(z +n), or if n > 2I's + 1,
then one of the following two cases hold:

(i) f = tg, where t¢ = 1;

(i1) f = €™, g = te™™, where Py reduces to a nonzero constant ¢, t is a constant such

!!H-l-l 2

tha = ¢*, and « s a nonconstant polynomial.

Regarding Theorems D. E and H. it is natural to ask the following question which

is the motivation of the present paper.

Question 3. Is it possible in some way to relax the nature of sharing in Theorems
D, E and H?
T

lu this paper, our aim is to find out the possible answer to Question 3. We will
prove three theorems which improves Theorems D, E and I by relaxing the nature
of sharing. To state the main results, we need the following definition of weighted

sharing which measures how close a shared value is to being shared CM or to being
shared TM.

Definition 1.1 ([10]). Let k be a nonnegative integer or infinity. For a € CU {c0}
we denote by Ey(a: f) the set of all a-points of f where an a-point of multiplicity m
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ts counted m times if m < k and k + 1 times if m > k. If Ej.(a: f) = Ei(a;g), then

we say that [ and g share the value a with weight k.
»

This definition implies that if f and g share a value a with weight k, then z; is
an a-point of f with multiplicity m < k if and ouly if it is an a-point of g with
multiplicity /n < k, and 2y is an a-point of f with multiplicity m > k if and only if it
is an a-point of g with multiplicity n > k, where m is not necessarily equal to n.

We write f, g share (a,k) to mean that f and g share the value a with weight k.
It is clear that if f, g share (a. k), then f, g share (a,p) for any integer p. 0 < p < k.
Also, note that f, g share the value a IM or CM if and only if f. g share (a,0) or
(@, 00), respectively.

Remark 1.1. Let « € CU {oc} and k be a nonnecgative integer or infinity. Le
b : , . :

Ny(r a: f, g) denote the reduced counting function of those a-points of f whose
multiplicities are equal to that of the corresponding a-points of g, and both of their
multiplicitics arc not greater than k. Also. let N (7, @ f,g) denote the reduced
counting function of those a-points of f which are a-points of g, and both of their

multiplicities are not less than k. If

N(r,a; f |< k) = Ny (r,a; f,9) = S(r. f),

N(r,a;g |< k) = Niy(r.a f.9) = S(r.9),
N(r,a; f [> k+1) = Ny (r.a: f,9) = S(r. /),
N(ra;g |2 k+1) - W?m (r,a: f,g) = S(r.9),
or if £ = 0 and
N(r.a; f) = No(r,a; f.g) = S(r, f),
N(r,a;g) = No(r,a; f,9) = S(r,9),
then we say that f and g share “(a, k)".
Now we are ready to state our main results.

Theorem 1.1. Let f and g be two distinct transcendental entire functions of finite

order, and let Py (Z 0) be a polynomial. Suppose that 1) is a nonzero complex constant

and n > 4 is an integer such that 2deg(Py) < n+1. Suppose that f"(z)f(z+n)—Fo(z)

and ¢"(2)g(z + 1) — Po(z) share (0,2). If n > 4 and f"(2)f(z+n)/Po(z) is a Mobius
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transformation of g"(2)g(z + n)/Py(z). or f n > 6, then one of the following two

cases hold:
(t) f =tg, wheret # 1 is a constant satisfying t"*! = 1;
(1i) [ = €Y and g = te Q. where Fy reduces to a nohzero constant c, t 15 a constant

such that t"*! = c?, and Q is a nonconstant polynomial.

Theorem 1.2. Let f and g be two transcendental entire functions of finite order,
and let o (£ 0,00) be a meromorphic function such that pla) < p(f). Suppose that 1
ts a nonzero complex number, and n and m are positive integers such that n > m+ 6.

If f*()(f™(z) = 1)f(z +1) and 9"(2)(g"(z) = 1)g(z + n) share (@.2), then f = tg,

where t is a constant satisfying t™ = 1.

Theorem 1.3. Let f and g be two transcendental entire Junctions of finite order
such that f and g share 0 CM. and let Fo(Z 0) be a polynamial. Suppose that 7 is
@ nonzero compler constant and n is an integer such that deg.ng] <n+1. Assume
that P(f(z))f(z+1n) — Py and Plg(z))g(z +n) — Py share (0, 2). If n > 2I'; + 1 and
P(f(2))f(z + n)/Po(z) is a Mobius transformation of P(g(z))g(z + n)/Fo(z), or if
n> 20y + 1, then one of the following two cases hold:

(1) [ =1tg, where t* = 1;

(11) f =€, g = te= 3, where Po reduces to a nonzero constant c, t 1s a constant such

that 1"*! = ¢2, and B is a nonconstant polynomial.

Definition 1.2 ([11]). Fora e CuU {oc} we define N(r.a: [1=1) to be the counting
function of simple a-points of f. For a positive integer p we define N(r,a; f |< p) to be
the counting function of those a- pounts of f (counted with proper multiplicities ) whose
multiplicities are not greater than p. By N(r.a; f |< p) we denote the corresponding

reduced counting function. In an analogous manner we define the functions N (r, a: [z
1) and q:"'l._"t_'r:r::: o] P P).

®efinition 1.3 ([10]). Let p be a positive integer or infinity. We define Np(r, a; f)
to be the counting function of a-points of f, where each a-point of multiplicity m is
counted m times if m < p and p times if m > p. Then define

Np(r.a; f) = *—f(f a; f) +-‘T|"'F(T: a. f|22)+.. +F(T= a; f |> ).
Clearly, Ny(r, a: f)= N(r,a; ¥

Definition 1.4 (]1

). Let f and g be two nonconstant meromaorphic functions such
that f and g share 1 IM. Let zo be an 1-point of f and g with maultiplicities p and q,
11
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respectively. Define N (r,1; [) to be the counting function of those 1-points of f and
g. where p > ¢, Né.}[r: 1; f) to f?E‘HrE counting function of those 1-points of f and g,
where p = g = 1, and NE'{T, 1; f) (k > 2 is an integer) to be the counting function
of those 1-points of  and g, where p = g > k, and ecach point in these counting
functions is counted only once. In the same manner we can define the functions
Ny(r, Liagly NE(T, l:9) and NE'{T, 1;g).

Definition 1.5 ([10]). Let f and g be two nonconstant meromorphic functions such
that f and g share the value a IM Define E;(T,’ﬂ:f? g) to be the reduced counting
Junction of those a-points of | whose multiplicities differ from that of the corresponding
a-points of g. Clearly, N, (r, a: f, g) = F,(r,u;y, f) and N ,(r. a; f, g) = Ni(r, a; f)+
Ni(r,a:g).

2. LEMMAS

In this section, we state some lemmas whicl will be needed in the sequel. We

denote by H the following function:

H FH EFJ' GH‘ ?GF
o (F” % F—l) _(E‘_’_G— 1)'

where F', G are nonconstant meromorphic functions defined in the complex plane C.

Lemma 2.1 (see [23], Proof of Theorem 1.12). Let f be a nonconstant me romorphic

function in the complex plane, and let
(2.1) P(f) =an"(2)+ SRRy a3 BN a1 f(z) + ap.
where ay, ay, ... , a, are constants and a, # 0. Then m(r, P(f)) = nm(r, f) + O(1).

Lemma 2.2 ([4]). Let f be a meromorphic function of order p(f) < oo, and let

11 (# 0) be a complex number. Then for each € > 0 we have

; f(:"l_n}) (1" f(E) ): Ji,ﬂ{f}—l-l-f_
w ("’ RS L) }

Lemma 2.3 ([4]). Let f be a meromorphic function of order p(f) < oo, and let
n(# 0) be a complex number. Then for each ¢ > 0 we have

T(r, f(z+m)) = T(r, f(2)) + O{r" V)" 1*} 4 O{logr}.

Lemma 2.4. Let f be a transcendental entire function of order p(f) < oo, and let

n(# 0) be a complex number. Suppose that F = P(f(z))f(z + n), where P(f) is as
: 45
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in (2.1). Then
T(r.F) = (n+ 1)T(r. f) + O{r*D -1} + S(r, f).
Besides, we have S(r,F) = S(r, f).

Proof. Noting that f is an entire function of finite order p, in view of Lemmas 2.1

and 2.2 and the standard Valiron-Molion ko theorem, we can write

(n+ 1)T(r, f) = T(r, f(z)P(f(z))) +8(r. f)

= m(r, f(z)P(f(2))) + S(nf)<m (T, f(:};:};{:”

L]

) +m(r, F(z)) + S(r. f) <

(2:2) s (r. f{{{j}l’ﬂ) +m(r,F(z))+S(r.f)<T(r,F) + O{r"-14¢} 4 S(r, ).

Oun the other hand, by Lemmas 2.1 and 2.3 and the fact that f is a transcendental
entire function of finite order, we obtain i
I(r,F) < T(rP(f(2)))+T(r f(z+m) + 50 f)
= nT(r,f)+T(r. f(z+7)) + 8 f)
(2.3) < (o4 1)T(r, )+ Ofr" =SS

Now the result follows from (2.2) and (2.3). O

Lemma 2.5 ([14]). Let f and g be two transcendental entire functions of finite
order, n(# 0) be a complex constant. a(z) be a small function of f and g, P(z) =
2" +a,- 12" '+ ...+ a1z + ay be a nonzero polynomial, where ag, ay, ... , an (% 0)
are complex constants, and let n > T'y be an integer. If P(f)f(z+n) and P(g)g(2+n)
share a(z) IM, then p(f) = p(g).

Lemma 2.6 (see [23], Lemma 7.1). Let F and G be nonconstant meromorphic
Junctions such that G is a Mobwus transformation of F. Suppose that there exists

a subset I C R™ with linear measure mesl = +00 such that forr € I and r = o
& N(r,0; F)+ N(r,0;G) + N(r,00; F) + N(r,00; G) < (A +0(1))T(r. F),

where A < 1. If there exists a point zy € C satisfying F(z) = G(zy9) = 1, then either
F=0GorFix='1

Lemma 2.7 ([2]). Let F and G be two nonconstant meromorphic functions sharing
(1,2), (0c,0) and H # 0. Then the following assertions hold.
(i) T(r,F) € Na(r,0; F) + Na(r,0; G) + N(r,00; F) + N(r,00;G) + N,(r,00; F,G) -
m(r,1:G) — NE(T, 1;F)=Ny(r,1;G) + 8(r, F) + S(r, G);
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(1) T(r,G) < Na(r,0; F) + N2 (r,0; G) + N(r. 50; F) + N(r, oc: G)+ N.(r,00;F,G) -
m(r,1;F) = Ng (r,1;G) - Np(r, 1; F) + S(r. F) + S(r, G).

Lemma 2.8 ([24]). Let F' and G be two nonconstant meromorphic functions, and lef
H=0.1If

N ; N 5 N D N [ ¥a.
limsuph{r’& F)+ N(r,00; F) + N(r,0; G) + N(r.oc; G)
r—300 T(r)
where T(r) = max{T'(r, F),T(r,G)}, r € I and I is a set with infinite linear measure.
then either F =G or FG = 1. R

ol

Lemma 2.9 ([3]). Let f and g be two transcendental entire functions of finite order,
and let 11 (# 0) be a complex constant. Let n and m be positive integers, such that
n>m+5 and

FH2)("(2) = D)f(z +n) = g"(2)(9™(2) - 1)g(z +1).

Then f(z) = tg(z), where t is a constant satisfying t" = 1.

Though the authors of [3] claimed that the result of Lemina 2.9 is true for n > m+6.

from the proof it can easily be viewed that in fact it is true for n > m + 5.

3. PROOF OF THEOREMS

Proof of Theorem 1.2. Let F(z) = LEUTG-DIGE4) 4n g G(z) = £ E)-Valtn)

afz) x(z)

Then F' and G are transcendental meromorphic functions that share (1,2). Noting

that p(a) < p(f). from Lemma 2.4 we see that

(3.1)  T(r,F)=(n+m+1)T(r f) +O{r" =1t} 4 Ofprio)te},

(32) T(r,G) = (n+m+1)T(r, g) + O{rP 911} 4 OfrF®)+<}.
From (3.1) and (3.2) we get

(3.3) p(F) < max{p(f).p(a)}, p(f) < max{p(F),p(a)},

34)  p(0) < max{p(e)p(@)), p(e) < max{p(G), p()}.
Using (3.3) and the fact that p(a) < p(f) we obtain

(3.5) p(F) = p(f).
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Now, using Nevanlinna's second fundamental theorem, we can write

N(r,0; F) + N(r, 00; F) +N(r,1: F) + S(r, )

< N0 f(2)) + N(r.0: f(z + m) + N(r, 1; f(2))
£N(r,1;G) + O{r"@+<} 4 8(r. f)

(m+2)T(r. f) + T(r,G) + OfrF\V)-14€}

(3.6) +0{r"*<} & S(r, f).

T(r.F)

1A

IA

Similarly, we get
T(n,G) < (m+2)T(r.g)+T(r, F) + Ofr"a)-1+¢)
(3.7) +O{r"'®*<} L S(r, f).

From (3.1), (3.5), (3.6) and the condition pla) < p(f) < oo we see that

N
(3.8) p(F) < p(G).

and from (3.4). (3.5), (3.8) and the condition pla) < p(f) < oc we obtain

(3-9) p(G) = p(g).

Also, from (3.2), (3.5), (3.7) - (3.9) and the condition pla) < p(f) < oo we get
(3.10) p(G) < p(F).

Combining (3.5) and (3.8)-(3.10), we obtain

(3.11) p(f) = plg) = p(F) = p(G).
Suppose that H # 0. Then using Lemmas 2.3 and 2.7 we can write

T(r.F)+T(r.G) < 2Ny(r,0; F)+2Na(r,0:G) + 2N(r, o0; F) + 2N (r. 00: )
+2N.(r,0c; F,G) + S(r, F) + S(r, G)

AN(r.0; f) + 4N (r,0; g) + 2N (r, 1; f™ )+ 2N (r,1: g™)
+2N(r,0; f(z+ ) +2N(r,0; g(z + n)+S(r, f)+ S(r,g)
(2m + 6){T(r, f) + T(r, g)} + O(r*P=1+¢) 4 O(yprlo)-1+e)
(3.12) +S8(r, f) + S(r, g).

¢
IA

IA

Therefore, from (3.1), (3.2) and (3.12) we obtain

(n—m —5{T(r, f) + T(r,g)} < O -1+ 4 O 9)=1%€) & S(r, f) + S(r, g);
48



RESULTS ON UNIQUENESS OF ENTIRE FUNCTIONS ...

vielding a contradiction with the assumption that n = m + 6. Thus we must have
H = 0. Taking into account that

N(r,0; F) + N(r,0:G) + N(r,00: F) + N{(r, 00 G)
< N@0;f)+ N(r,0; 9) + N(r,1: ™)+ N(r,1;¢g™)
+N(1,0; f(2 +n)) + N(r,0; g(z + 1)) + S(r,f)+ S(r,g)
s (m+2UT(r, f)+T(r,9)} + S(r. f) + S(r. g)
2m+4 _
< n+m+ 1I{T)’

where T(r) = max{T(r, F), T(r. G)}, by Lemma 2.8, we deduce that either F = G or
FG = 1. Let FG = 1. Then we have

FAE)(f™(2) = 1) f(z + 0)g™(2)(g™(2) — 1)g(z + ) = a2,
implyving that
f(z)(f(z) - I}(f'""i(zJ + M2 (2) 4+ 1) f(z + i:i}y"{:—}l“!;(:} —19
(g L) + q8(m) A 1)g(z + 1) = a”.

Noting that f and g are transcendental entire functions of finite order, it is easily
scen from the above equality that N(r,0; f) = S(r,f), N(r,1; f) = S(r, f) and
N(r,o0; f) = S(r.f) for r € I and r - oc, where I ¢ (0.4020) is a subset of

infinite linear measure. Thus, we obtain
T(r,f) < N(r,0; f) + N(r, 1; f) + N(r, o0; f) = S(r. f),

for r € / and r — oo, which is meaningless. Thus, we must have F' = . and hence

F*G)™(2) = D (= +n) = g"(2)(g™(2) = g (= + n).

Therefore by Lemma 2.9, it immediately follows that f(2) = tg(z), where t is a

constant satisfying t" = 1. This completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Let F| = P”%{f{ﬂ”“ and G, = Pmﬂ%ﬂf}* ')  Then Fy and

G are two transcendental meromorphic functions sharing (1,2). From Lemma 2.4 we

get
(3.13) T(r,F1) = (n+ 1)T(r, f) + O{r"V=1*¢} 4 O{logr),
(3.14) T(r,G1) = (n+ 1)T(r, g) + O{pr(9)—1+e) 4 O{logr}.
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Since f and g are of finite order. it follows from (3.13) and (3.14) that Fy, and G, are

also of finite order. Moreover. from Lemma 2.5 we deduce that

plf) = p(g) = p(F1) = p(Gy).

We now discuss the following two cases separately.

Case 1. Suppose that F) is a Mobius transformation of (1. Then using the standard
Valiron-Mohon ko lemma we obtain I'(r,P(f)f(24n)) = T(r, P(g)g(2+n))+0{logr}.
Then from (3.13) and (3.14) and the fact that f and g are transcendental entire

functions of finite order we deduce
T ey
T(r, q) ’ Tl I}
From Lemma 2.3 and the condition that J and g are transcendental entire functions

—+n+1 as r—ocoandrel.

we have
X
N(r.0; Fi(2)) + N(r. oo Fi(z)) < N{(r,0: P(f(z))) + h_’{n[l;f(z + 1)) + O{log r}
< DWT(r, f(z)) + T(r, f(z + 1)) + Oflogr}

< (L1 + 1T(r, f(2)) + O{r*N=14¢} 4 Oflogr},
as 7 — oo and r € I. Similarly. we get
N(r,0;G1(2)) + N(r, 00;Gi(2)) < (T + 1)T(r, g(2)) + O{r*=1%} + Oflogr},
asr = oc and r € I. Thus

N(r,0; Fi(2)) + N(r,o0; Fi(2)) + N(r,0: G1(z)) + N(r, 00; Gy (z))
s 2(I'y +1)_
313 < =1L L T(r, F1)(1 + o(1)),

asr — oo and r € 1. In view of Nevanlinna's second fundamental theorem. we obtain

I'(r,Fi(z)) < N{(r0: Fi(z)) + N(r, oc; Fi(z)) +:“?'{-r, 1; Fi(2)) + O{logr}
< ﬂ_"[TTU:P{f(EJJ}+ﬁ_’(r,0:fl‘.z+n))+'F(r-.1.:FI(E}J+O{10ET'}
< Lo+ DT(r, f(2)) + N(r, 1; Fi(2)) + O{pn)=14¢y 4 O{logr},

which together with (3.13) gives (n—TI'))T(r, f) < N(r,0; Fi(z))+8(r,f),as r = oo
and r € 1. From this and the fact that Fy and Gy share (1, 2) we conclude that there
exists a point zg € C such that Fi(z0) = G1(20) = 1. Hence from (3.15), Lemma 2.6
and the condition n > 2I') + 1 we infer that either Fi1Gy =1 or F} = G;. Now the
conclusion of the theorem in this case follows from the proof of Case 1.1 and Case

1.2 of Theorem 5 from |14].
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Case 2. Now we assume that n > 22+ 1 and H # 0. Then using Lemmas 2.3 and
2.7 we can write

T(r,Fy) + T(r Gi1) < 2Na(r,0; Fy) + 2N3(r,0; Gy) + 2N(r, oo Fy) + 2N(r,0c: G;)
2N . (7, 0c: FiI.Gy) + S(r, Fy) + S(r,G,)

2Ny(r,0; P(f)) + 2N3(r,0; P(g)) + 2N (r. 0; f(z+mn)+2N(r,0: 9(z + 1)) + O{logr)
= 202+ DIT( ) + T(r, )} + O(ro)~14) 4 O(rotod-14e) 1 500 1) 4 507 01

A

which together with (3.13) and (3.14) gives
(n =20 — ){T(r, f) + T(r, 9)} < S(r, ) + S(r. g).

yielding a contradiction with the fact that n > 2I'2 + 1. Thus we must have i/ = 0
Sincen > 2I' + 1> 2I'; + 1, we obtain

N(r,0; F\) + N(r,0:G,) + N(r,o0; Fy) + N(r. oo Gi)
< N(n,0;P(f)) +N(r,0; P(g)) + N(r,0; f(z + 1)) + N(r,0; 9z + n)) + Oflogr}
< P+ D){T(, f) + T(r.9)} + O@P - 1) 4 O(rPlo)-1+e) + O{logr}

< ]:11‘:']1 {T(?", Fl) %L T(TT Gl]} 3 O[.PP':I]_I-%-E} £ {’J}(rﬂhﬂ—l-f} L S[:nl f} - S{Tyj
2(' +1)

<

e AT ) ATOEPY,

where T'(r) = max{T(r, F1),T(r,G1)}. Therefore, in view of Lemma 2.8. we can
conclude that either £y = G4 or £1G1 = 1. Now the result follows from Case 1 This

completes the proof of Theorem 1.3.

Proof of Theorem 1.1. Let Fy = fﬂ"}j:’;ﬁ'"” and Go = ﬂw Then Fy and G,
are two transcendental meromorphic functions that share (1,2). Applying arguments
similar to those used iu the proof of Theorem 1.3, we conclude that in both cases
either F5G2 = 1 or F; = G5. Then the conclusion of the theorem follows from the
proof of Subcase 1.1 and Subcase 1.2 of Theorem 1 from [15]. Here we omit the

details. O
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