Известия НАН Армении, Математика, том 52, н. 2, 2017, стр. 20-25.

THE CASAZZA-TREMAIN CONJECTURE IN THE INFINITE DIMENSIONAL HILBERT SPACES

M. A. HASANKHANI FARD

Vali-e-Asr University, Rafsanjan, Iran E-mail: m.hasankhani@vru.ac.ir

Abstract. In this paper, the proof of the Casazza-Tremain Conjecture in the infinite dimensional Hilbert spaces is given.

MSC2010 numbers: 42C15, 46L05.

Keywords: frame; frame sequence; Kadison-Singer problem; Weaver conjecture; Casazza-Tremain conjecture.

1. Introduction

Let \mathcal{H} be a separable Hilbert space with inner product <.,.>. A sequence of vectors $\{f_k\}_{k=1}^{\infty}$ in \mathcal{H} is called a frame for \mathcal{H} if there exist constants A and B (0 $< A \le B < \infty$), such that for all $f \in \mathcal{H}$ we have

(1.1)
$$A\|f\|^2 \le \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \le B\|f\|^2.$$

The constants A and B are called the lower and upper frame bounds, respectively. The second inequality of the frame condition (1.1) is also known as the Bessel condition for $\{f_k\}_{k=1}^{\infty}$. If A = B, then $\{f_k\}_{k=1}^{\infty}$ is called a tight frame, and if A = B = 1, then $\{f_k\}_{k=1}^{\infty}$ is called a normalized tight frame or Parseval frame. A sequence $\{f_k\}_{k=1}^{\infty}$ in Hilbert space \mathcal{H} is called a frame sequence in \mathcal{H} if it is a frame for $\overline{span}\{f_k\}_{k=1}^{\infty}$.

A bounded linear operator T defined by

80

$$T: \ell_2(\mathbb{N}) \to \mathcal{H}, \quad T\{c_k\}_{k=1}^{\infty} = \sum_{k=1}^{\infty} c_k f_k$$

is called the synthesis operator of $\{f_k\}_{k=1}^{\infty}$. Also, a bounded linear operator S defined by

$$S: \mathcal{H} \to \mathcal{H}, \quad Sf = \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k$$

is called the frame operator of $\{f_k\}_{k=1}^{\infty}$. It is easy to show that $S = TT^*$, where T^* is the adjoint operator of T.

Two frames $\{f_k\}_{k=1}^{\infty}$ and $\{g_k\}_{k=1}^{\infty}$ are called dual frames for $\mathcal H$ if

$$f = \sum_{k=1}^{\infty} \langle f, f_k \rangle g_k = \sum_{k=1}^{\infty} \langle f, g_k \rangle f_k$$
, for any $f \in \mathcal{H}$.

The frame $\{\tilde{f}_k\}_{k=1}^{\infty}$ defined by $\tilde{f}_k = S^{-1}f_k$ is a dual frame of frame $\{f_k\}_{k=1}^{\infty}$, and is called the canonical dual frame of $\{f_k\}_{k=1}^{\infty}$.

A Riesz basis for \mathcal{H} is a family of the form $\{Ae_k\}_{k=1}^{\infty}$, where $\{e_k\}_{k=1}^{\infty}$ is an orthonormal basis for \mathcal{H} and $A \in B(\mathcal{H})$ is an invertible operator. Every Riesz basis for \mathcal{H} is a frame for \mathcal{H} . A sequence $\{f_k\}_{k=1}^{\infty}$ in the Hilbert space \mathcal{H} is called a Riesz basic sequence in \mathcal{H} if it is a Riesz basis for the Hilbert space $\overline{span}\{f_k\}_{k=1}^{\infty}$. For more information concerning frames we refer to [2, 3, 11].

In 1959, R. Kadison and I. Singer [4] introduced the problem of extensions of pure states.

Kadison-Singer Problem. Does every pure state on the (Abelian) von Neumann algebra \mathbb{D} of bounded diagonal operators on ℓ_2 have a unique extension to a (pure) state on $B(\ell_2)$, the von Neumann algebra of all bounded linear operators on the Hilbert space ℓ_2 ?

Recall that a state of von Neumann algebra \mathcal{A} is a linear functional Λ on \mathcal{A} with $\Lambda(I) = 1$ and $\Lambda(T) \geq 0$ for all positive operators $T \in \mathcal{A}$. A pure state of \mathcal{A} is an extreme point of the family of states of \mathcal{A} .

For $a, b \in \mathbb{R}$, consider the translation and modulation operators on $L_2(\mathbb{R})$, which are defined as $(T_a g)(x) = g(x-a)$, $(E_b g)(x) = e^{2\pi i b x} g(x)$, $\forall x \in \mathbb{R}$, respectively. A Gabor frame is a frame for $L_2(\mathbb{R})$ of the form $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$, where a,b>0 and $g \in L_2(\mathbb{R})$ is a fixed function.

Studying the Gabor frames, H. Fiechtinger noted that all examples of Gabor frames can be written as a finite union of Riesz basis sequence and so he suggested the following conjecture:

Fiechtinger Conjecture. Every bounded frame can be written as a finite union of Riesz basic sequences.

This conjecture is equivalent to the Kadison-Singer problem (see [7]), which has been solved recently by Marcus, Spielman and Srivastava [5]. Hence the Fiechtinger conjecture is now a useful theorem in the frame theory.

Another conjecture that is equivalent to the Kadison-Singer problem is the Bourgain-Tzafriri conjecture.

Bourgain-Tzafriri Conjecture. There is a universal constant $\eta > 0$ so that for

every $\theta > 1$ there is a natural number $r = r(\theta)$ satisfying: for any natural number n, if $T: \mathbb{C}^n \to \mathbb{C}^n$ is a linear operator with $||T|| \le \theta$ and $||Te_i|| = 1$ for all i = 1, 2, ..., n, then there is a partition $\{I_j\}_{j=1}^r$ of $\{1, 2, ..., n\}$ so that for all j = 1, 2, ..., r and all choices of scalars $\{c_i\}_{i \in I_j}$ we have

$$\|\sum_{i \in I_j} c_i T e_i\|^2 \ge \eta \sum_{i \in I_j} |c_i|^2.$$

In this paper, the proof of two conjectures (the Weaver conjecture KS_2 and the Casazza-Tremain conjecture) in the infinite dimensional Hilbert spaces is given.

2. The conjecture KS_r

The famous Kadison-Singer problem in C^* algebra, posed on 1959, has been solved recently by Marcus, Spielman and Srivastava [5]. In fact, in [5] was proved the Weaver conjecture KS_2 in the finite dimensional Hilbert space \mathbb{C}^d , $d \in \mathbb{N}$, which implies the Kadison-Singer problem. Observe that the Kadison-Singer problem is also equivalent to the Paving conjecture (see [1, 10]).

Paving Conjecture: For any $\epsilon > 0$, there is $r = r(\epsilon) \in \mathbb{N}$ such that for every zero diagonal operator T on \mathbb{C}^n , $n \in \mathbb{N}$, there exists a partition $\{I_j\}_{j=1}^r$ of $\{1, 2, ..., n\}$ such that $\|P_{I_j}TP_{I_j}\| \le \epsilon \|T\|$ for all $j \in \{1, 2, ..., n\}$, where P_{I_j} is the orthogonal projection onto $\{e_i\}_{i \in I_j}$ and $\{e_i\}_{i=1}^n$ is the canonical orthonormal basis for \mathbb{C}^n .

N. Weaver [6] using the equivalence of the Kadison-Singer problem and the Paving conjecture suggested another equivalent Conjecture KS_r .

Conjecture KS_r . Let $r \in \mathbb{N}$. There exist universal constants $\eta \geq 2$ and $\theta > 0$ such that the following holds. Let $f_1, f_2, ..., f_m \in \mathbb{C}^n$ with $||f_k|| \leq 1$ and suppose

$$\sum_{k=1}^{m} |\langle f, f_k \rangle|^2 \leq \eta \quad for \ all \ unit \ vectors \ f \in \mathbb{C}^n.$$

Then there exists a partition $\{I_j\}_{j=1}^r$ of $\{1, 2, ..., n\}$ such that

$$\sum_{k \in I_j} |\langle f, f_k \rangle|^2 \le \eta - \theta \text{ for all unit vectors } f \in \mathbb{C}^n \text{ and all } j \in \{1, 2, ..., r\}.$$

Note that the constants η and $\theta > 0$ must be independent of n and m.

In fact, N. Weaver has proved the following theorem.

Theorem 2.1 ([6]). The Kadison-Singer problem has a positive solution if and only if Conjecture KS_r is true for some $r \geq 2$.

Also, N. Weaver has indicated modifications in Conjecture KS_r , which do not alter its truth-value.

Theorem 2.2 ([6]). If either or both of the following modifications is made to Conjecture KS_r , the resulting conjecture is equivalent to Conjecture KS_r :

- a) require $\theta = 1$;
- b) assume $\sum_{k=1}^{m} |\langle f, f_k \rangle|^2 = \eta$ for all unit vectors $f \in \mathbb{C}^n$ instead of $\sum_{k=1}^{m} |\langle f, f_k \rangle|^2 \leq \eta$.

In [5], A. Marcus, D. Spielman and N. Srivastava using the mixed characteristic polynomials and the above theorem have established the following theorem, and hence proved the Kadison-Singer problem.

Theorem 2.3 ([5]). There exist universal constants $\eta \geq 2$ and $\theta > 0$ such that the following holds. Let $f_1, f_2, ..., f_m \in \mathbb{C}^n$ with $||f_k|| \leq 1$ and suppose

$$\sum_{k=1}^{m} |\langle f, f_k \rangle|^2 = \eta \quad for \ all \ unit \ vectors \ f \in \mathbb{C}^n.$$

Then there exist a partition I_1, I_2 of $\{1, 2, ..., n\}$ such that

$$\sum_{k \in I_j} |\langle f, f_k \rangle|^2 \le \eta - \theta \quad \text{for all unit vectors } f \in \mathbb{C}^n \text{ and all } j = 1, 2.$$

It is easy to show that Theorem 2.3 remains true in the case where \mathbb{C}^n is replaced by any finite dimensional Hilbert space. To prove the Weaver Conjecture KS_2 in the infinite dimensional Hilbert spaces we need the following lemma (see [9], Proposition 2.1).

Lemma 2.1. Fix $r \in \mathbb{N}$ and assume for every natural number n we have a partition $\{I_i^n\}_{i=1}^r$ of $\{1,2,...,n\}$. Then there are natural numbers $\{n_1 < n_2 < ...\}$ such that $I_i^{n_j} \subset I_i^{n_k}$ for all $k \geq j$ and $i \in \{1,2,...,r\}$. Also, if $I_i := \{j|j \in I_i^{n_j}\} = \{j_1 < j_2 < ...\}$, then $\{I_i\}_{i=1}^r$ is a partition of \mathbb{N} and $\{j_1,j_2,...j_m\} \subset I_i^{n_{j_m}}$ for all $m \in \mathbb{N}$.

The proof of Weaver Conjecture KS_2 in the infinite dimensional Hilbert spaces is given in the next theorem.

Theorem 2.4. There exist universal constants $\eta \geq 2$ and $\theta > 0$ such that the following holds. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence in an infinite dimensional Hilbert space \mathcal{H} with $||f_k|| \leq 1$ and suppose

$$\sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 = \eta \text{ for all unit vectors } f \in \mathcal{H}.$$

Then there exists a partition I_1, I_2 of \mathbb{N} such that

(2.1)
$$\sum_{k \in I_i} |\langle f, f_k \rangle|^2 \le \eta - \theta \text{ for all unit vectors } f \in \mathcal{H}i = 1, 2.$$

Proof. Let $\eta \geq 2$ and $\theta > 0$ be as in Theorem 2.3, and let (2.1) holds. We fix a unit vector $f \in \mathcal{H}$ and for any $n \in \mathbb{N}$ consider the space $\mathcal{H}_n := span\{f_1, f_2, ..., f_n, f\}$. Then for all $n \in \mathbb{N}$ and for all $g \in \mathcal{H}_n$ with ||g|| = 1, we have

$$\sum_{k=1}^{n} |\langle g, f_k \rangle|^2 \le \sum_{k=1}^{\infty} |\langle g, f_k \rangle|^2 = \eta.$$

By Theorems 2.2 and 2.3, for any $n \in \mathbb{N}$ there exists a partition I_1^n, I_2^n of $\{1, 2, ..., n\}$ such that

$$\sum_{k \in I_i^n} |\langle g, f_k \rangle|^2 \le \eta - \theta \text{ for all unit vectors } g \in \mathcal{H}_n \text{ and } i \in \{1, 2\}.$$

Next, by Lemma 2.1, there exist natural numbers $n_1 < n_2 < ...$ such that $I_i^{n_j} \subset I_i^{n_k}$ for all $k \ge j$ and $i \in \{1, 2\}$. Also, if $I_i := \{j | j \in I_i^{n_j}\} = \{j_1 < j_2 < ...\}$, then $\{I_i\}_{i=1}^2$ is a partition of $\mathbb N$ and $\{j_1, j_2, ... j_m\} \subset I_i^{n_{j_m}}$ for all $m \in \mathbb N$.

Thus, for all $m \in \mathbb{N}$ we have

$$\sum_{k=1}^{m} |\langle f, f_{j_k} \rangle|^2 \le \sum_{k \in I_i^{n_{j_m}}} |\langle f, f_{j_k} \rangle|^2 \le \eta - \theta,$$

and hence we get (2.2). Theorem 2.4 is proved.

P. Casazza and J. Tremain suggested the following conjecture (see [7, Conjecture 8.2]).

Casazza-Tremain Conjecture. There exists an $\varepsilon > 0$ so that for large K, for all n and all equal norm Parseval frames $\{f_i\}_{i=1}^{Kn}$ for ℓ_2^n , there is a $J \subset \{1, 2, ..., Kn\}$ so that both $\{f_i\}_{i\in J}$ and $\{f_i\}_{i\in J}$ have lower frame bounds which are greater than ε .

The proof of the Casazza-Tremain Conjecture in the finite dimensional Hilbert spaces can be found in [8]. The following theorem contains a proof of the Casazza-Tremain Conjecture in the infinite dimensional Hilbert spaces.

Theorem 2.5. Let the constants η and θ be as in Theorem 2.4. Then every η -tight frame in the infinite dimensional Hilbert space $\mathcal H$ with normalized elements can be partitioned into two frames with frame bounds θ and η .

Proof. Let $\{f_k\}_{k=1}^{\infty}$ be a η -tight frame in the infinite dimensional Hilbert space \mathcal{H} with $||f_k|| \leq 1$. Then by Theorem 2.4, there exists a partition $\{I_i\}_{i=1}^2$ of \mathbb{N} such that

(2.2) holds, and

$$\eta = \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 = \sum_{k \in I_1} |\langle f, f_k \rangle|^2 + \sum_{k \in I_2} |\langle f, f_k \rangle|^2 \le \sum_{k \in I_1} |\langle f, f_k \rangle|^2 + \eta - \theta,$$

and hence $\sum_{k \in I_1} |\langle f, f_k \rangle|^2 \ge \theta$. Therefore

$$\theta \le \sum_{k \in I_1} |\langle f, f_k \rangle|^2 \le \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 = \eta.$$

Similar arguments can be used to show that

$$\theta \leq \sum_{k \in I_2} |\langle f, f_k \rangle|^2 \leq \eta.$$

Theorem 2.5 is proved.

Acknowledgment. We thank a referee for careful reading the paper and useful comments which improved the paper.

Список литературы

- [1] J. Anderson, "A conjecture concerning pure states on B(H) and a related theorem", in Topics in modern operator theory, Birkhäuser, 27 43 (1981).
- [2] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, Basel, Berlin (2002).
- [3] C. Heil, D. Walnut, "Continuous and discrete wavelet transform", SIAM Rev., 31, 628 666 (1969).
- [4] R. Kadison and I. Singer, "Extensions of pure states", American Jour. Math., 81, 383 400 (1959).
- [5] A. Marcus, D. Spielman and N. Srivastava, Interlacing families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem, arXiv 1306.3969v4.
- [6] N. Weaver, The Kadison-Singer Problem in discrepancy theory, Discrete Math. 278, 227 239 (2004).
- [7] P. G. Casazza and J. C. Tremain, "The Kadison-Singer problem in mathematics and engineering", Proceedings of the National Academy of Sciences of the United States of America, 103 (7): 2032 – 2039 (2006).
- [8] P. G. Casazza, J. C. Tremain, Consequences of the Marcus/Spielman/Srivastava solution of the Kadison-Singer problem, arXiv:1407:4768.
- [9] P. G. Casazza, O. Christensen, A. M. Lindner and R. Vershynin, Frames and the Feichtinger Conjecture, preprint (2003).
- [10] J. Bourgain, L. Tzafriri, "On a problem of Kadison and Singer", J. Reine Angew. Math., 420, 1-43 (1991).
- [11] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York (1980).

Поступила 16 апреля 2015