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1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper by meromorphic functions we always will mean meromorphic functions
in the complex plane, and will use the standard notation of value distribution theory
(see [7]):

T(r,f), m(r,f), N(r,o00;f), N(r,oc:f),....
By letter E we will denote any set of positive real numbers of finite linear measure. not
necessarily the same at each occurrence. We denote by T'(r) the maximum of T(r, f(*))
and T'(r,¢™), and by S(r) any quantity satisfying the relation S(r) = o(T(r)) as
rT—oo,r € E.

If for some a € CU {00}, the functions f and g have the same sets of a-points with
the same multiplicities, then we say that f and g share the value a CM (counting
multiplicities}. If the multiplicities are not taken into account, then we say that f
and g share the value a IM (ignoring multiplicities).

Let S be a set of distinet elements of C U {oo}. Denote E¢(S) := |J,.s{2: f(2) -
a = ﬂ}, where each zero is counted according to its multiplicity. If we do not count

—
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the multiplicities, then the set (J,.¢{z : f(2) —a = 0} is denoted by Ef(S). If
E¢(S) = E4(5), then we say that f and g share the set S CM. On the other hand, it
E+(S) = E,(S). then we say that f and g share the set S IM. Evidently, if S contains
only one element, these definitions coincide with the usual definitions of CM and IM
shared values, respectively. - ;

[n 1926, R. Nevanlinna showed that a meromorphic function on the complex plane
C is uniquely determined by the pre-images, ignoring multiplicities. of 5 distinct values
(including infinity). A few years latter, he showed that when multiplicities are taken
into consideration, then 4 points are enough. More precisely, Nevanlinna proved that
if two meromorphic functions share four distinct values CM, then either they coincide
or one of them is the bilinear transformation of the other.

These two results are the starting point of uniqueness theory. The research became
more interesting. although sophisticated, when F. Gross and C. C. Yang transferred
the study of uniqueness theory to a more general setting, namely considering sets of
distinct elements instead of values. For instance, they proved that if [ and g are two
non-constant entire functions and S;. S; and S3 are three distinct finite sets such
that f=2(8;) = g7(S;) for i = 1,2,3, then f=g:

The following question was asked in [19].

Question A. Can one find three finite sets S; (7 = 1,2,3) such that any two non-
constant meromorphic functions f and g satisfying E¢(S;) = B (55 for ji= 1,23
must be identical ?

Question A may be considered as an inception of a new horizon in the uniqueness
of meromorphic functions concerning three set sharing problem and so far the quest
lor affirmative answer to Question A under weaker hypothesis has made a great stride

(see, e.g., [1]. 2], [5] - [7], [14], [16], [18] - [21], [22]).

Unfortunately the derivative counterparts of the results obtained in the above

cited papers are scanty in number. In 2003, in the direction of Question A concerning

the uniqueness of derivatives of meromorphic functions, Qiu and Fang obtained the

. -
following result.

Theorem A ([18]). Let §) = {z: 2" — 271 — 1 = 0}, S2 = {0} and S3 = {0},
and let n > 3 and k > 0 be integers. Let [ and g be two non-constant meromorphic
funetions such that Efn;[ﬂj} - Eg:k;(s_,) for 7 = 1,3 and E;(S;) = E,(S,), then
[0 = k)

In 2004, Yi and Lin [22] proved the following theorem.
1
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Theorem B ([22]). Let S, = {z:2"+az""14+b=0}, 5, = {oo} and Sy = {0},
where a and b are nonzero constants such that z"+az"~'+b = 0 has no repeated roots,
and let n > 3 and k > () be integers. Let f and g be two non-constant meromorphic
funetions such that EI;H(S'}-} = K ) (Sj) fm‘j =1,2,3, then f(*) = q'k),

The following examples show that in Theorems A and B the condition a # 0 is

necessary.

Example 1.1 ([4]). Let f(z) = ¢* and g(z) = (-1)*¢=*, and let S; = {z:2'-1=0},
92 = {oo}, 83 = {0}. Since fik) _ ot = g'®) — w3~ where w = r?r:-.qz—:;i + f.wfn.%'l_,

The tollowing examples establish the sharpness of the lower bound of 1 in Theorems

A and B.

Example 1.2 ([4]). Let f(2) = Va F 3 vapB e* and g(z) = (-1)*/a ¥ B8 oBe>
and let Sy = {a+ 3,08}, S, = oo}, i85 = {0} with a+ 8 = —a and aff = b, where a.
b are nonzero complex numbers. Clearly we have E)(S5) = By (S;) forj =1.2,3,
while f*) % gk}

Example 1.3. Let f = av/Be* and g = (—1)*Bv/ae*, where a and 8 are two non
zero complexr numbers such that 5 7 —1 Let § = {B\/a,a\/B}, S = {0} and
S3 = {0}. Clearly we have Eru(S)) = E,a0(S;) for j = 1,2.3, while f8) 3 g(k),

Example 1.4. Let f = v/2¢* and g = (—1)%/2e~*. Let S, = {1+i,1-i}, S5 = {0}
and Sy = {0}, Clearly we have E i (S;) = Eyx) (S;) for 3 =1,2,3. while k) £ g(k),

The above examples assure the fact that in Theorems A and B, the cardinality
of the set S| cannot be further reduced. Rather, on the basis of these examples, one
may try to relax the nature of sharing the range sets. For the purpose of relaxation
of the nature of sharing the sets the notion of weighted sharing of values and sets.

which appeared in [12, 13|, has become an effective tool.

Definition 1.1 ([12, 13]). Let k be a nonnegative integer or infinity. For a & Cu{oo}
we denote by Ex(a; f) the set of all a-points of f. where an a-point: of multiplicity m
is counted m. times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a: g), we say

that f and g share the value a with weight k.

It follows from Definition 1.1 that if f and ¢ share a value @ with weight &, then

A point zp is an a-point of f with multiplicity m < k if and only if it is an a-point of
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g with multiplicity m < k, and z¢ is an a-point of f with multiplicity m > k if and
only if it is an e-point of g with multiplicity n > k, where m is not necessarily equal
to n.

We will write “ f, g shate (a, k)" to mean that f and g share the value with weight
k. Clearly if f, g share (a. k), then f, g share (a,p) for any integer p, 0 < p < k. Also,
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a,00),

respectively.

Definition 1.2 ([12]). Let S be a set of distinct elements of CU {oo}, and let k be

a nonnegative integer or oo. We define E;(S, k) := Uaes Er(a; f). It is clear that
E¢(S) = Ef(S,00) and E¢(S) = Ef(S,0).

In 2009, Banerjee and Bhattacharjee [3] used the concept of weighted sharing of

sets to unprove Theorems A and B.

Theorem C ([3]|). Let S;, i =1—3 be as in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that Efu(51,.4) =

Egm_-(.‘;lﬁl]. EI(SE.:'.‘:C} = EQ[SQ,"I:) and Ef{k:.(Sa,T-) = Eg{n(rs;g,?), then f{k} “=
(k) ’ _
grii.

Theorem D (13])- Let S;,i=1-3 beas in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that E¢4)(S1,5) =

E!?:A.I{Sliﬁ]l. Ef(Sg,"I) = EQ[SQ:DG) und Efm(S;;,l) = Eg[H(Eq,I), HI'.EH f{” =
(k)
q 3

Theorem E ([3]). Let S;, i = 1,2,3 be as in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that Esi(5,6) =

Egrk.{S].ﬁJ, E_f[S;_:,-I) = EQ(S;E.DGJ and Eﬂu(s:],ﬂ) - gth(Sﬂ,ﬂ), then f{'ﬂ -
(k) :
gy

In 2011, Banerjee and Bhattacharjee |4] further improved the above results, by

proving the following theorems.

Theorem F ([4]). Let S;, i =1~ 3 be as in Theorern B and k be a positive integer.,
If f and g are two non-constant meromorphic functions such that E 10 (81,5) =

E ) (5:1,5), E;(Sy,00) = E,(S3,50) and E ¢ x) (S3,0) = Egm(S;;,O), then f“‘} =
(k)
g\,
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Theorem G ([4]). Let Si,1=1,2,3 be as in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that E¢w (51,4) =

Eg;&}(Si,ti}: Ef(Ss,00) = E4(S2,00) and Ef{h;(s:;,l] = By (53,1), then &) =
(k)
g\™,

»

Theorem H ([4]). Let S;, i = 1,2,3 be as in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that B¢ (51,5) =

Eg*-“-"' (51,5), Ef(52,9) = Eq(S2,9) and E_,HH(S:LUG) = Ey'[l:I(S:j,‘:x:)_- then %) =
(k)
g

In the present paper we significantly reduce the weight of the range sets in all the

above theorems. The following theorem is the main result of this paper.

Theorem 1.1. Let S;, i = 1,2,3 be as in Theorem B and k be a positive integer.
If f and g are two non-constant meromorphic functions such that Esu(S1,k1) =
.E'gm (81, k1), E¢(So,k2) = EQ(S;;.. ks) and E_,-m-m[.s:;._ k) = Egm{ff;;, ki), where ky >
4, ky 2 0, k3 = 0 are integers satisfying

kykaks > ky + kg + 2ks + k — 2kkyk — kykg — kky + 3.
then f(K) = g(k),

Remark 1.1. Note that Theorem 1.1 holds for k; = 4, k2 = 2 and k3 = 0, and so it

improves Theorems A-H.

Remark 1.2. Examples 1.2-1.4 assure the fact that in Theorem 1.1, n > 3 is the

e

best possible.

Throughout the paper we will'use the standard definitions and notation of the value
distribution theory available in [10]. Below we recall some notation and definitions

which are used in this paper.

Definition 1.3 ([11]). For a.e CU {oc} and a meromorphic function f, we denote
by N(r,a; f |= 1) the counting function of simple a-points of f. For a positive integer
m we denote by N(r,a; f |< m) (resp. N(r,a; f |> m)) the counting function of those
a-points of [ whose mulliplicities are not greater (resp. less) than m, where each
a-point is counted according to its multiplicity. The functions N(r,a;f |< m) and
(N(r,a; f |> m)) are defined similarly, where in counting the a-points of f we ignore
the multiplicities. Also, the functions N(r,a; f |< m), N(r.a:f |> m), N(r.a; f |<

m) and N(r,a; f |> m) are defined analogously.
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Definition 1.4. We denote by N(r,a: f |= k) the reduced counling function of those

a-points of a function [ whose mulliplicities are exactly k, where k > 2 is an integer.

Definition 1.5 ([2]). Let f and g be two non-constant meromorphic functions such
that [ and g share (a, k), where a € CU{oc}. Let zg be an a-point of f with multiplicity
p. and an a-point of g with multiplicity q. We denote by Np(r,a; f) the counting
function of those a-points of f and g, for which p > q and each a-point is counted

only once. In the same way we can define the function N (r, a.g).
Definition 1.6 ([13]). We denote Ny(r,a; f) = N(r,a: f) + N(r,a: f |> 2).

Definition 1.7 ([12, 13]). Let f and g share a value a IM. We denote by N, (r. a: [, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g. Clearly, we have N.(r,a; f.q) =

——

N.(r,a;g.f) and N.(r,a; f.g) = Np(r.a: f) + N.(7, a: q).

Definition 1.8 ([15]). Let a.b € CU {oc}. We denote by N(r,a;f | g = b) the
counting function of those a-points of f, counted according to multiplicity. which are

b-pownts of q.

Definition 1.9 ([15]). Let a.by,b;.... by € C U {oc}. We denote by N(r,a: f I
g #F b1,ba,... b,) the counting function of those a-points of f, counted according to

multiplicity, which are not the b;-points of g fori =1.2,...,q.

Definition 1.10. Let f and g be two non-constant meromorphic functions such
that E¢(S.k) = E4(S.k), and let a and b be any two elements of S. We denote
by N.(r,a; flg = b) the reduced counting function of those a-points of [ whose
multiplicities differ from the mulliplicities of the corresponding b-points of g. Clearly,
we have N ,(r, a; flg="0) = ﬁ?.{ru b: g|f = a). Also, if a=b, then F*(r,u;ﬂy = hY=
N.(r,a; f, g).

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Let F' and GG be two non-constant meromorphic functions defined as follows:

(f“-:}}“'] (F® + a) (gm)“" (g% + )
= . =b ’

G =

(2.1) =
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where n > 2 and k > 0 are integers. Define the following functions:

T e e £
e gy e BER] R

. nd v
g ot &

F -1 -1
(k)y' (k)y'
o, = I g L)
F&) g

ancl

s G O R S BN C )
| [ —w; [ g —w; ~ g™ J°
where w; and w; are any two roots of the equation 2™ + az""!' + b = 0.

Lemma 2.1 ([13|, Lemma 1). Let F. G share (1,1) and H # 0. Then

NinLF|=1)=N@1;G|=1)<N(r,H)+ S(r.F) + 8(r,G).

Lemma 2.2. Let Sy, S and Ss be as in Theorem 1.1. and let F and G be given by
(2.1). If for two non-constant meromorphice functions f ond g we have E; . (8,.0) =
Eg[kl(-g],ﬁ]_. Ef{'k} (S;z,ﬂ) — Egu:(Sg._”}, EI(S;;.{]} = Ifq[ﬁ'_-;.ﬂ'} and H Z 0. then

n— 1 n— 1

:f[;"'r} + N(r, iee—1 ] : ]
mn 1

+ﬁ..(r,ac=;f. g) + No(r.0; [f”"'j]J] + Ny(r, 0; {g“‘:']r'}.

N(r,H) < N.(r0;f® ¢"+N.(r.1:F.G)+N(r,—a

where No(r,0; (f%))) is the reduced counting function of those zeros of (f*)) which
are not the zeros of f*)(F — 1) and Ny(r,0; (g®))') is defined similarly.

Proof. Since EI{H[H].U) = E'gu,.{ﬁ'l,{]], it follows that F, G share (1.0). From (2.1)
we have

F = [nf® + (n - 1)a)(f*)"2(f®)/(-b)

and
G = [ng® + (n - 1)a)(9™)"*(4) /(-0)

We can easily verify that the possible poles of H can occur at:
(i) those zeros of f'*) and g'* whose multiplicities are different from the multiplicities
of the corresponding zeros of g'* and ¥ respectively,
(ii) the zeros of nf™® + a(n — 1) and ng'™™ + a(n —1),
(iii) those poles of f and g whose multiplicities are different from the multiplicities of
the corresponding poles of g and f, respectively,
(iv) the 1-points of F and G with different multiplicities,

9
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(v) the zeros of (f*))’ which are not zeros of f(*)(p _ 1
(vi) the zeros of {_a;.r{""'j]I which are not zeros of g”"}[(}' = 1)
Lemma 2.2 is proved. O

Lemma 2.3 (117]). Let f be q non-constant meromorphic function and let

n

' Z ﬂ'kfk :
R(f) = &2
2 bif?

3=0

be an irreducible rational function in f with constant coefficients { @k} and { b}, where
a, #0 and b,, % 0. Then

I(r, R(f)) = dT(r, f) + S(r. f).
where d = max{n, m}.

Lemma 2.4 ([4]). Let F and G be gwen by (2.1). If f® o® ghore (0,0) and 0 is
not a Picard exceptional valye of f%) and 9%). then Py = 0 implies F = G.

Lemma 2.5 ( [4]). Let F and G be gwen by (2.1), n > 3 be an integer and ®, £ (. If

F, G share (1, k1); f. g share (00, k), and f) 9% share (0,k3), where 0 < k3 < o,
then

(n—=1)k3 +n — 2] N(r.0: A 1> k3 +1) < .r?.,(r,l;F,G} +ﬁ,..|f‘r. oo; F, G) + S(r).

Lemma 2.6. [¢f J and g be two non-constant meromorphic functions, F and G e
gwen by (2.1), n > 3 be an integer and ®, Z0. If F, G share (1,k;); f““}, 9'%) share
(0.k3), and f, g share (00, k3), where 1 < k1 < oo, then

LN (r L F) > ky + 1) < N, (.0 I, 9W) + W.(r,00; £, 9) + S(r. I'®) + S(r, g®),
Proof. Note that
ky N(r, LF[>k+1)< N(r,0;®;) < N(r,®;) + .S‘{T,f{k]) + 3@39‘“) <
Na(r 0, £®, ™) L W, (r, 00: 1 9) + 8(r, fP) + 8(r, g®)),
and the result follows. O
Lemma 2.7, [ J and g be two fion-constant meromorphic functions, F and G pe

gwen by (2. 1), n >3 be an integer, and let D £ 0, ¢, #0.IfF, G share (1, k1),
where k; > 9. T g% ehare (0,k3), and f, g share (o0, k;), 0 < k2 < 00, then

< ky +1 L.
N(r.0: f&) s 1. 1) < 1 o(r, 00; f, S(r, f*) (k)
"0 512 g J-h[(n-.lika+(n—2H—1N(r PR Bl L)k B g,

10
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A similar resull also holds for ¢'*).

Proof. Using Lemmas 2.5 and 2.6, and noting that N. (r, 0: f®, %) < N(r,0; f®)| >
ks + 1), we can write g

b

[(n = 1)k3 + (n - 2)]N(r,0; f®)| > ks +1)

< N.(r1;F,G) + N,(r,00; f,9) + S(r, f®) + S(r, g'*))
:
< EN{P‘U;I{A” 2 ky3+1)+ h;_ 'y N.(r oc; f.g)
1
+S(r, f*) + S(r, g'»),
and the result follows. Lemma 2.7 is proved. O

Lemma 2.8. Let f and g be two non-constant meromorphic Junctions. Suppose f,
g share (00,0) and oo is not a Picard exceptional valuc of f and g. Then &5 = 0

implies f(F) = o (k).

Proof. Suppose ®3 = 0. Then by integration we obtain

A

L),
f{k q“‘*.}

where A # 0. Since f, g share (oc,0) it follows that A = 1, and hence f(¥) = = g%,

=

Lemma 2.9. Let f and g be two non-constant meromorphic functions and &5 # 0,
and let F and G be given by (2.1). If f®), %) share (0, ks); f, g share (0o, k), where
1 < ks < 00, and Ef[.lrl (Sl,k]) = Eg:hjtsl,k]}, where 1 < k1 < oo and the set Sy is

as in Theorem 1.1, then

(ka +k) N(r,00;f|>ka+1)
= H.(nu®, “-1) + Nu(r,1;F,G) + S(r).

A similar result also holds for g*),

Proof. If oo is an e.v.P. (Picard exceptional value) of f(*) and ¢'*), then the result

follows immediately.

Next, suppose oo is not e.v.P. of f*) and ¢*), Since Efo (81, k1) = E o (81,k1), it
11
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follows that N, (r,w;; f]¢g'®) = w;) < N,(r.1; F.G). Hence we can write

(ka + k) N(r,o0; fl =2 ka+1)
= (ko + k) N(r.oc;q! > ko + 1)

<  N(r,0; ;)
< N(r,®3)+ S(r. f™) + S(r, ¢'™)
< No(r.0; f*, g™ + No(r, wiz f¥)g® = wy) + S(r, £*) + S(r, g*))
< N.o(r,0; f* ¢")+ N,.(r,1;F,G) + S(r),
and the result follows. Lemma 2.9 is proved. O

Lemma 2.10. Let f and g be two non-constant meromorphic functions, ® # 0,
®; 2 0, and let F and G be given by (2.1). If f®), ¢'® share (0. ks); f. g share
(oc. ko). where 0 < k2 < x, and F, G share (1,k;), where k; > 1, then :

k =8
-t (7.0: 7%, 9®) + 5(r).

ﬁ#".. : > IL" ] .'ﬁh'l.‘
o

A similar result also holds for ¢'*) also.

Proof. Using Lemmas 2.6 and 2.9 and noting that N.(r,oc; f.g) < N(r,oc; f| >
ka + 1). we can write

(k2 + k)N(r.00; f| 2 k2 +1) < No(r,1;F,G) + Nau(r, 0; f®), g®)) + 5(r)
< %ﬁ[r, x; fl 2 ka 4+ 1) + klk-:- 1?.(?*. 0; f%) (k)
+S(r, f*) + 8(r. '),
and the result follows. Lemma 2.10 is proved. O

Lemma 2.11 ([4]). Let F and G be given by (2.1) and H # 0. If f*), %) share
M. k3); f. g share (00, k;), where 0 < ky < o0, and F, G share (1,k;), where 1 <

ky < oo, then

{(nky + nk +n) — 1}?[‘1', oo [ |2 ky +1)
£ N (r, 0: [, g**‘»") +N (r,0: /% + .:.-,) +N (r,u;g“" 4o a.) +N.(r,1;F,G) + S(r).
A similar result also holds for q.
Lemma 2.12. Let f and g be two non-constant meromorphic functions. Also, let F

and G be given by (2.1), n > 3 be an integer, and &y Z0, P2 #£ 0 and B3 £ 0. If F,
12
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G share (1,k,); f®, ¢'¥) share (0,k3), and f, g shave (50, ks), where ky > 1, ks > ()

and ky > 0 are inlegers salisfying
. |

2kykhoks > ky + ko + 2k3 + k — 2kkyks — kiks — kky + 3,

then

N, 1L;F| >k +1)+ N(r,00; f| 2 ka + 1) + N(r,0; f¥)| > k3 + 1) = S(1).
Proof. Since @, # 0 from Lemma 2.5 we get

(2ks +1) N, 0; f B > ks +1) < N(r, 1;F |2 ki +1)+ N(r,00; f| 2 k2 + 1) + S(r).
.Next, since @y # 0 and Py # 0, we can apply Lemmas 2.6 and 2.9 to obtain

ky N, L, F| 2 ki +1) < N(#,0; f® |> ks +1) + N(r,00; f| = k2 + 1) + S(r),
and
(ks + k) N(r,00: f| 2 ka+1) < N@LF|2ki+1)+N(r0: /%> ks +1)+S().

Using the above inequalities and arguments similar to those applied in the proof

of Lemma 2.6 from [20], we can complete the proof the lemma. We omit the details.
O

Lemma 2.13 (|13]). Let N(r,0; fR) | f =£0) be the counting function of those zeros
of %) which are not zeros of [, wherc a zero of %) s counted according to its

multiplicity. Then
N(r.0: f®) | f #0) < kN(r,00: f) + N(r,0; f |< k) + kN (1, 0; f |= k) + S(r. ).

Lemma 2.14. Let F and G be given by (2.1), F, G share (1. k1), 2 < ki < o0, and
lelt ® Z0 and n = 3. Also, fr't ﬁ“ (X) share (0,k3) and [, g share (oc,00). Then

N(r,0; f¥) < ——

L )
S =1 N(r,00: f) + S(r, f\*).

Proof. Using Lemmas 2.3 and 2.13 we can write

N.(r,1; F.G) < Nr,LiF|2k+1)< Ly, 1 F) ~ N(r,1; F))

k_
< 1 [i (N[T,lef[k]) "F[T.wﬁf{k}))] % (h’{'ﬁ O [ # lH)

< = [Fer,0:1%) + Nirox: n| +50. 7).
1

AR EY i3 L
where wy, ws . . . w, arc the distinct roots of equation 2" +a2""" + b = 0. The rest of

the proof follows from Lemma 2.5 with kg = 0. a
13
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Lemma 2.15. Let F and G be given by (2.1), F, G share (1.k;), 2 < k; < oo, and
let &, Z0 and n > 3. Also, let f“‘}, g'*) share (0,k3) and f, g share (00, 0c). where
0 < kg < oc. Then

§ .J(‘[I:ﬂ.— 2] E[T,ﬂﬂ;f] . S(T,f{kjj.

= (k1 + 1)[ky(n — 2) — 1]

A similar result also holds for G.

Nu(r1;F) <

Proof. Using Lemmas 2.3 and 2.13 we can write

Ni(r,1;F) € N@1:F|>2k+2) < (N(r,1: F)— N(r,1; F))

ki +1
= B 1 [“_r('ﬂ”:f‘”) +ﬁ{?'-m;ﬂl + S(r, f*N).
1
Now using Lemma 2.14 the proof of the lemma can easily be completed. We omit the
details. 0

Lemma 2.16 ([1]). Let f and g be two non-constant meromorphic functions sharing
Hﬂl} where 2 E .I\*l < 00. Then

}Tir.l:f,l=‘2]+2£?{r*,1:f|"-'3] .4 (ky =1) N(r,1; f) = k1) + ky N (r,1; iif)

+(ky +1) N(r,1; g)+ k1 N“'H(r,l;g} < N(r.1l;9) - N(r.];g}.

Lemma 2.17. Let F and G be given by (2.1) and they share (1,k;). If f®) ¢k

share (0.k3) and f, g share (o0, k;), where 2 < k1 < oc, and H Z 0. Then
n —

2
.f”‘:'J+:"~'(1 00; g) + N(r, -ﬂnﬂ :9®)

+N(r,0; f*) + N{r._ﬂ;g““}) + Nu(r,0; f®, ") + N, (1, 00; f, g)
—(ki = 1)N.(r,1; F,G) + Np(r,1; F) + S(r, f®) + S(r, g*)).

nT(r, f*) < N(r,oo; )+ N(r,—a

A simular result also holds for g“ﬂ

Proof. Using Lemmas 2.13 and 2.16 we can write
2.2) No(r,0; (™)) + N(r,1; F |> 2) + N.(r,1: F,G)
< No(r,0; (™)) + N(r,1; F| =2) + N(r,1; F| = 3) +.. 4+ N(r1;F| = k)
+Ng' T (r1; F) + No(r,1; F) + No(r,1:G) + N.(r, 1; F,G)
< No(r,0;(g™) )=N(r,1; F| = 3) ...~ (ky =2)N(r, 1; F| = k1)— (k1 =1)Np(r,1; F)
~kiNL(r,1;G) = (ks = 1)Ng' "' (r,1; F) + N(r,1;G) = N(r,1;G) + Nu(r, 1; F, G)
< No(r.0:(9'¥) )+ N(r,1;G) = N(r,1,G) — (ks = 2)N 1 (r, 1; F) - (ks — )N 1 (r, 1: G)

< No(r,0;(9™™) )+ N(r,1;G) = N(r,1;G) — (ks = 2)N1(r, 1; F) = (ky = )N 1 (1, 1; G)
14
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< N(n,0:(g') | g®) #0) = (ky = 2)N 1 (r, 1; F) = (ky — )N 1(r,1:G)
< ﬁ(r,ﬂ;g{”} + N(r,00;9) — (ki —=2)Np(r,1;F) — (k; — )N (r,1;G) =

N(r,0;¢'™) + N(r,00;g) — (ks = )N, (r, 1; F,G) + Ny (r, 1; F),

where ﬁu{r,ﬂ;(ﬂ’m:’}’} has the same meaning as in Lemma 2.2. Hence using (2.2)

LR 1

Lemmas 2.1, 2.2 and 2.3, in view of second fundamental theorem. we obtain

(2.3) n T(r, f®) < N(r,0; f*)) + N(r, 00 f) + N(r,1I; F |= 1)+

+N(r,1; F |> 2) — No(r,0; (/™)) + S(r, f®)) < N(r,0; f®) + N(r, 0: f)

n-—1 n-—

1 & : _ iy
n :g®) + N, (7,0; £, g®) + N, (r, 50 f. g9)+

-l-ﬁ{r, —a ;f“‘}} + N(r,-a

+N.(r, 1, F,G) + N(r, 1; F| > 2) + No(r,0; (g™)') + S(r, f®) + 5(r, g¥)

L 3l R A A YT s = Lt |
< N(r,00; ) + N (r, —~a——; f¥) + W(r, 001 9) + N (r, —a = 9¥)) + N(r,0; £ ¥))

T

+N(r,0;9%) + N.(r,00; f.g) + No(r,0; f®) g*)) = (ky = )N, (r, 1; F.G)+

+FL(?‘, 1; K) + S(r, f“"}} + S(r, y{k}}.

This proves the lemma. O]

Lemma 2.18 ([4]). Let F and G be given by (2.1) and they share (1,k,), and let
n2>3. If f[k]: H{H share (0,0) and f, g share (oc, k3), and H = 0. Then fiR) = gtk)|

3. PROOFS OF THE THEOREM

Proof of Theorem 1.1 Let F and G be given by (2.1). Then F, G share (1. k) and

(00: k). We consider the following cases.

Case 1. Let H # 0. Clearly F # G and so f*) # g%,

Subcase 1.1: Let &, #Z (.

Subcase 1.1.1: Suppose ®3 £ 0.

Suppose first that 0 is not an e.v.P. of f*) and ¢'*). Then by Lemma 2.4 we get

$, # 0. Since f) - g(k) share (0, k3) it follows that N.(r,0; f®), gtk)) < N{(r,0; £k,

Hence, successively applying Lemmas 2.17 and 2.7 for k3 = 0, Lemma 2.10 for k2 = 0
15
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and Lemna 2,12, we can write
(3.1) nT(r, )
< N(r,o00; f),+ N(r, S f“ﬁ%h(r oc; g) + N(r, _”_r_:_l q™™)
+2 N(r,0; f*N + N, (r, U: 7. 0% + N (r, 00; f.9) — (ky - 1)N.,(r,1; F,G)
+N,.(r1;F) + S(r, f*) + S(r. g'*)
N(r,—a f] f®) + N(r,—aZ==:g®) + 3 N(r, 0; 7®) 4+ 2K (r, 03 f)

+N.(r,00: f,9) + S(r, f®) + S(r, )

i

|/

— -1 ’ — — 1 3k . =
< N(r—a™—: /") + N(r,—a"—;4®) + " 2‘; 3 = N(r,00: f| > ky + 1)
o
ioy 1, e : . .
+N(r o0 fl 2 k2 +1) + £+ = N(r,0: f%) > ks + 1) + S(r, f¥) + S(r, g™)
1 —
< T(r, M)+ T(r,g™®) + S(r, f®) + S(r, o)

< 2 T(r)+ S(r).

Next, suppose 0 is an e.v.P. of f*) and ¢g'¥). Then N(r,0:; f15) = S(r, £1%)). Assuming
that @, # 0. we can apply Lemma 2.10 for k; = 0 to get N(r, oc; f) = S(r). Hence
N.(r,0c: f,g) = S(r). showing that (3.1) holds.

Now assume that ®; = 0. Then (F —1) = d(G — 1), where d # 0. 1. Since I g
share (00. kg), it follows that f, g share (ac.00) which implies N, (r, oo; f0) = Slr].
Also, by Lemma 2.10 for k2 = 0 we have N(r,oc; [) = S(r). Therefore. in this case
also (3.1) holds.

Arguments similar to those applied above can be used to obtain
(3.2) nT(r,g*)) < 2 T(r)+S(r).
Combining (3.1) and (3.2) we get
(3.3) (n—-2)T(r) < 5(r)

which leads to a contradiction for n > 3.

Subcase 1.1.2: Suppose ®3 = 0. Then by integration we obtain
e 4
f{kl
where A # 0. If A = 1 then f® = :—riy”“], which contradicts ®, # 0. So 4 # 0.1.
Since f, g share (oo, k3), it follows that N(r,00:f) = S(r, f®) and N(r.o00;g) =
S(r,g'"™). Now proceeding as in Subcase 1.1.1, we can arrive at a contradiction.
Subcase 1.2: Let ¢, = 0).

“j

1 - W],

= A(1 -

16
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By integration we have f*) = ¢g{*), where ¢ # 0, 1. Since f'*), g'* share (0, k;) and

f. g share (00, kg), it follows that N. (r,{];f(k:’fg{k]'] =0 and N,(r,; f,g) = 0.

Subcase 1.2.1 Suppose $3 # 0.»

If 0 is not an e.v.P. of f® and ¢/*, then by Lemma 2.4 we get ®; # 0. Now

consecutively applying Lemmas 2.17, 2.14 and 2.9 for k; = 0, and Lemma 2.15, we

can write

n—1
n

(34) nT(r,f®) < N(r,00;f) + N(r,-a . f5) 4+ N(r, 00; 9)+

n -1

+N(r,-a . g 4 2N (r, 0; £ + N (5, 0; f®, g*) + N, (r, 01 . 9)-

- n—1 '.
I {h—ﬂ:—:f{HH-
n

N(r,00; f)—(k1—1) N.(r,1;F.G)+

—(k1=1) Nu(r,1;F.,Q) +Np(r,1; F)+S(r. RN 4+ 8(r, g'®)) <
2
k[{n P 2] -1

n-—1

N(r,—a . g +2 N(r, 00; f)+

oy ek
¥+ N(r,—a—
n

+3 N(r,00; f)—(k1—1)N.(r,1; F,G)+ N(r,1; F)+S(r, f*)+5(r, g ) <2T(r)+

e

+NL(r,1; F) + S(r, f*)) + S(r, g'*)) < N(r, —g= 1g'*))+

+% N.(r,1;F,G) — (ky — 1)N.(r,1; F,G) + N (r, 1, F) + S(r, f) + S(r, g™ <
ki(n —2) W o %)Y 1 S(r. o®)
EZT{T)-I'{k1+i][k1(n—2]~“1] N(r,o0;9) + S(r, f*) + S(r,g"") <
; 3k1(n - 2) ) | o
2 (2* g RE s —T) 10+ 50
Therefore
3k][1t—?] ) -
oy (r -2~ e TRe =y T) T <50

Since n > 3, the inequality (3.5) leads to a contradiction.

In the case where 0 is an ex.P. of f(¥) and g¥), we can apply Lemma 2.9 for
ko = 0, to get N(r,00; f) = %f_\fz.(r, 1; F,G). Hence, proceeding as above 1n this case
also we arrive at a contradiction.

Subcase 1.2.2: Suppose ®3 = 0.
Suppose oo is not an e.v.P. of f and g. Since f (k) g(®) ghare (0, k3) and f, g share
(00, k2), it follows from Lemma 2.8 that N.(r,0; f®, ¢®)) = 0 and N.(r,00; f,g) = 0.

Assuming that 0 is not an e.v.P of f*) and ¢'¥), by Lemma 2.4 we get ®, £ 0. Now,

consecutively using Lemmas 2.17 and 2.5 for k3 = 0, and Lemma 2.11 for ko =0, we

can write

(3.6) nT(r,f®) < N(r,00;f) + N(r,—a
17
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N(r, —a 59 1:_-:;“‘]} + 2N(r, 0; f“‘}} + ﬁ.fr,ﬂ;f[k},g[k}) + N.(r, oc; f,9)—
—(ky=1) Nu(r,; F,G)+ N1 (r, 1;F)+5(r, f®) +S(r, g®) < N(r, —a2; f®))4
+?{r. —nﬂ' g ;g“”)—i—?' ?{r oo; f)+2 ﬁ,[r: 1: F G)—(k1—1) ﬁ.(r, 1 6 G}+:"TT-L(T, 1; F)+

n—1
;g{k})_
n

{N(r,0; f¥ +a)+N(r,0; g{k]+u}+

et . f¥) 4+ N(r, —a

+5(r. N 4 S(r, g““}) < N(r,—a

(e =3YN.(r. 1 Np(r,1;
(k1 3}""‘*{?'1=F’G}+hi‘lr’]'F]+nﬂt+n—1

+N.(r,1; £,.G)}+8(r, f*N+8(r,g™) < 2T(r)+ T[T]-t—% Ni(r,1;: F)+

nk+n-—1
o , | 4 2ky(n — 2)
Lo AR 4B s !
+9(r, fY"7) + 5(r,g\") < (2 : nk+n—1+E(k1+])[k1(n—2)—I])T(T)-'-S(TJ'
Therefore
1 i 4 2 2ki(n—2)
ol (” Tk ncd, ek 1]) T(r) < S(r).

Since n > 3. the inequality (3.7) leads to a contradiction.

If0is an e.v.P. of f*) and g¥), then with the help of Lemmas 2.17 and 2.11 for
k2 = 0 and the above arguments, we arrive at a contradiction.

If oc is an e.v.P. of f and g, then proceeding as in Subcase 1.2.1, we can arrive at
a contradiction.

Case 2. Let H = (. In this case the assertion of the theorem follows from Lemma

2.18. Theorem 1.1 is proved.
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