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1. I n t r o d u c t i o n , d e f i n i t i o n s  a n d  r e s u l t s

Let / ,  g  be nonconstant meromorphic functions defined in the open complex plane 

C. For a e C U  {oo} we say that / ,  g share the value a  CM (counting multiplicities) 

if / ,  g  have the same a-poiuts with the same multiplicities, and we say that / ,  g 

share the value a  IM (ignoring multiplicities) if / .  g  have the sam e «-points but the 

multiplicities are not taken into account.

The monograph [7] is a  good source of standard notations and definit ions of the 

value distribution theory. We now introduce some notation and a  definition.

D efin ition  1.1. Given a meromorphic function f ,  a number a  €  С  U {oo} and a 
positive integer k.

(i) N (t(r, a: f )  (N ^(r, a; f ) )  denotes the counting function (reduced counting 

function) of those a-points of f  whose multiplicities are not. less than k;
(ii) N*)(r,a;/) (Nh)(r,a;f) )  denotes the counting function (reduced counting 

function) of those a-points of f  whose multiplicities are not greater than k;

D efin ition  1 .2 . A meromorphic function a =  a(z) is called a small function of a 
meromorphic function f  if T(r, a) =  S(r, f ) .

In |5|, R. Briick considered the uniqueness problem of an entire function when 

it shares a  single value CM with its first derivative, and proposed the following 

conjecture, which inspired a  number of people to work on the topic.

•The work of the second author was supported by DAE (NBIIM fellowship), India.
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B r iic k  C o n je c tu re : Let f  be a nonconstant entire function satisfying i/(f) <  oc. 

anil let u(f )  be not a positive integer, where u(f)  is the hyper-order of f .  If f  and f  
share one finite value a CM, then f  — a — c (f  — a) for some constant c 0.

R. Briick [5] himself proved the following result.

T h e o re m  A  ((5J). Let f  be a nonconstant entire function. If f  and f  share the 
value 1 CM  and N(r ,0;//) =  S(r,f), then f  — 1 = c ( f  — 1), where c is a nonzero 
constant.

Considering entire functions of finite order, L. Z. Yang [9| proved the following 

theorem.

T h e o re m  B ([9j). Let f  be a nonconstant entire function of finite order, and let 

a(^  0) be a finite constant. I f f  and share the value a CM. then f —a =  c(fW~a), 
where c is a nonzero constant and k > l  is an integer.

In 2005, A. H. H. Al-khaladi |2] extended Theorem A to the class of meromorphic 

functions and proved the following result.

T h e o re m  C  (|2)). Let f  be a nonconstant meromorphic function satisfying Ar(r.O; f )  = 

S(r, f ) .  I f  f  and f  share the value 1 CM, then / -  1 = c ( f  -  1) for some nonzero 
constant c.

Also, in |2] were considered the following examples, showing that the value sharing 

cannot be relaxed from CM to IM, and the condition A'(r, 0; f )  =  S(r, f )  is essential.

E x a m p le  1 .1 . Let /  =  1 +  tan z. Then / '  - 1  =  ( /  - 1)2 and N(r, 0; / ' )  =  0. Clearly 

/  and / '  share the value 1 Ifyl but the conclusion of Theorem C  does not hold.

E x a m p le  1 .2 . Let f  =  - — — ;. Then / a n d  /' share the value 1 CM and N(r, 0; f )  ^

S(r, f ) .  It is easy to verify that / '  -  1 = ------- ( /  -  1).
1 1 +  e*

A. H. H. Al-khaladi [lj also observed by the following example that in Theorem A 

the shared value cannot be replaced by a  shared small function.

E x a m p le  1 .3 . Let /  =  1 +  ee and a =  §— -— . Then a  is a  small function of
1 — e~*

f  and /  -  a, f  - a  share the value 0 CM and A '(r,0 ; / ' )  =  0. Also, we see that
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Considering the sharing of small functions, A. H. H. Al-khaladi [1] proved the 

following result.

Theorem D ((lj). Let f  be a nonconstant entire function satisfying N (r, 0; /') =

S (r , /), and let a 0, oo) be a meromorpkic small function of f .  I f  f  — a and f  — a
share the value 0 CM, then f - a  =  ( l  +  - ) (f ' ֊ a ). where 1 +  -  = e p, c i s a  constant

V o /  a
and $ is an entire function.

For higher order derivatives, A. H. H. Al-khaladi [3| proved the following theorem.

T h eo rem  E  (|3|). Let f  be a nonconstant entire function satisfying N(r. 0; /***) — 

S ( r , / )  (k >  1), and let a O.oo) be a meromorphic small function of f .  If  f  -  a 

and fW  — a share the value 0 CM, then f  — a =  f l +  — - j  (/ ^  ~  <*), where Pk-i

is a polynomial of degree at most k — 1 and 1 +  ^ 0-

Recently A. H. H. Al-khaladi |4] extended Theorem E  to meromorphic functions.

A natural extension of a  derivative is a  linear differential polynomial. For a  transcendental 

meromorphic function /  we denote by L =  L ( f ^ )  a linear differential polynomial of 

the form

(1.1) L  =  L(/(fc>) =  a 0/ (fc) +  a i/< fc+1> +  • • ■ +  ap/<fc+p\

where a o ,a i , . . . ,Up( /  0) are constants, and k ( >  1) and p (>  0) are integers such 

that p =  0 if k =  1 and 0 < p < f c - 2 i f f c > 2 .

In the present paper we consider the problem of sharing a  sm all function by a 

meromorphic function and a linear differential polynomial in conformity with Briick 

conjecture. The following theorem is the main result o f the paper.

T h eo rem  1.1. Let f  be a transcendental meromorphic function and let the differential 

polynomial L =  L(/M), given by (1.1), be nonconstant. Suppose that f - a  and L - a  
share 0 CM, where a (^  0, oo) is a small function of f . If  N(r, 0; / ^ )  =  S(r, f ) ,  then

/ - a =  ( £ - „ ) ,

where P/C_ i is a polynomial of degree at most k -  1 and 1 +  =£ o.
a

The following example shows that the condition N(r, 0; /W ) =  S(r, f )  is essential 
in Theorem 1.1.

70



I

pe*
E x a m p le  1 .4 . Let P  be a  nouconstant polynomial, and let /  =  ------- . Then / '  =

1 +  e*
c ' t P  +  P ' +  P 'c * )  and 0. f l )  ^  5 ( r  f )  Also j _ p , and у  _  p , share о

(1 + e ' ) 2

CM but / '  -  P ' =  ——  ( /  -  P ') , where T(r, P ') =  S (r , / ) .
1 +  c.։

2. L e m m a s

In this section we present some necessary lemmas to be used in the proof of 

Theorem 1.1.

L e m m a  2 .1 . Let f  be a  nonconstant inewmorphic function and let L  =  L ( / * ’ ), 

given by (1.1), be nonconstant. If f —a  and L —a  share 0 CM, where a  =  a (c )(^  0, oo) 

is a  sm all function o f f ,  then one of the following assertions holds:

(i) f  — a  — ^1 +  ^ (L  — a ), where. P *_ i is a  polynomial of degree at most

к — 1 and 1 +  ——— =2= 0,

(ii) T (r, /<*>) <  (k + p  +  l)77(r. oo; / )  +  F ( r , 0; /<*>) +  N (r ,0 ;/<*>) +  S (r , / ) .

P r o o f . Let h =  - — —. Then Ii is an entire function and the poles of /  are precisely 
L  — a

the zeros of h. Now differentiating

(2.1) f  - a  =  hL — ah 

/г-times we get

(2.2) /<*> ֊  a (fc) =  (h L)(k) -  (ha)(kK

We now consider the following cases.

C a s e  I. Let ф  0. We put

Ш  Я Ш  B a
(2-3) ՛ | = - K j w  f r s s t r

Since IV =  • ֊ j  I ֊ ֊  we have m (r,lV ) =  S ( r , / ) .

We first suppose that W ^  0. Let го be a  zero of / М  — a ^  and о ^ (г о )  ф  0,oo. 

Then from (2.2) we see that is a  zero of (h L ) ^  — (ha)^kK Hence W(zo) — 0 and 

we have

W (r ,0 ;/ (fc)- a (fc)) <  N (r, 0; W) +  S (r , f )

<  T (r , W) + S ( r , f )

(2.4) =  N (r,W ) +  S ( r , f ) .
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Also

(2.5) AT(r, W) < ( k  +  p )N (r, oo; f )  +  N (r, 0; / (fc)) +  S (r , / ) .

By Nevanlinna’s three small functions theorem (see |7), p. 47), and formulas (2.4) 

and (2.5), we get

T (r ,/<*>) < ( k + p +  l ) N ( r ,oo ;/ )  +  77(r,0; f {k)) +  N ( r ,0 ;/ (fc)) +  5 ( r , / ) ,  

which is (ii).

Now let W  =  0. Then from (2.2) and (2.3) we get

(/<*> -  a < * y fc> =  (Aa)w ( / w  - a (fc))-

Since /W  -4 ® ^  ^  0. we obtain ( h a ) ^  =  a W. Integrating the last equality k-times 

we get ha =  a  +  P k -i(z ), where P k -i(z )  is a  polynomial of degree a t  m ast k — 1. So

h =  1 +  ^>fc՜ 1 and hence f  — a  =  ( 1 4- l ) (L  — a ), which is (i).
a  |  a  /  v

C a s e  II. Let a '* '  =  0. Then a  is a  polynomial of degree a t  most k — 1. From (2.2) 

we get /<*> =  (/iL)W  -  (a/i)(fc), and hence

1 S j K  iSSIl
(2 .6) hfW  hf(k) •

Putting F  =  (7 — . and b — . from (2.6) we get
h fW  h

(2.7) f i = C ~ T
Differentiating (2.7) we obtain

f2 8 ) _ 1  9 L = c ? - t M  I
* /i h F  F  F '

It follows from (2.7) and (2.8) that
4 />'

(2.9) = g '  +  G - t ,
F  |

V  F '
where A =  b- — +  b' — b ■

h |
We first suppose that G  =  0. Then by integration we get hL =  Qk-i, where

Qk~i =  Q k-i(z)  is a  polynomial of degree at most k — 1. Putting h =  —— -  we get
L — a

(2.10) I  U - a ) L  =  (L -a )Q k - i.

Since a  is a  polynomial, from (2.10) we see that /  is an entire function. Hence It 

is an entile function having no zeros. We put h =  eft, where a  is an entire function, 

and so /  =  a  +  h(L — a) =  a  +  Q k-i — and L =  Q k ֊\ e ~ <x. It follows from the
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definition of L  that L  =  R (a ', a ')e a , where R {a', a ')  is a  differential polynomial in a' 
and a '.  Ilence

(2 11 ) *  R ( a \ a ’ )e2n =  Qk. l .

Prom (2.11) we see that T (r, e ° )  =  5 (r ,e “ ). yielding a  contradiction. Therefore

1 1  o.
If h is a  constant, say c, then /  — a  =  c(L  — a), which is (i).

Now we suppose that h is nonconslant and b =  0. Then by integration we get

ah — P /t-i, where P k -i  =  Pk- i( z )  is a  polynomial of degree at most k — 1.

Since h is ail entire function and a  is a  polynomial of degree at most fc — 1. the

equality h =  —-—  implies that a  is a  factor of Pk- i ,  and heuce 
a

(212) h =  Q՝k_t,

where Q ‘k_ t =  Qk_ t(z) is a  polynomial of degree at most k — t (t >  1).

If zq is a  pole of /..th en  zq is a zero o f h with multiphcity fc +  p, which is impossible

by (2.12). So, /  is an entire function, and hence h is an entire function having no

zeros. Therefore from (2.12) we see that h is a  constant, which is impossible.
G' m

Now wc suppose that b £  0. Let A =  0, then from (2.9) we get —  +  — =  0. By
G  h

integration we obtain Gh =  K  and hence

(2.13) (hL)lk) =  AT/W,

where K  is a  nonzero constant.

Again, — =  — +  ------— =  0 implies by integration hb — M F , and so
b h b F

(2.14) {ah )w  =  M / №),

where M  is a  nonzero constant.

Since a  is a  polynomial and h is an entire function, we see from (2.14) that /  is an 

entire function. So. h is an entire function having no zeros and wc can put h =  e °, 

where a  is an entire function.

Integrating (2.13) A-times we get

BRUC-K CONJECTURE FOR A LINEAR ...

(2.15) hL  — K f  +  P k ֊i ,

where Pk^ i — Pk֊i ( z) >s a  polynomial of degree at most k -  1. 

Since h L  =  /  — a  +  ah, from (2.15) we get

(2.16) ( l - K ) f  =  a ( } - e “ ) +  P :_ l .
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P *
If K  =  1, from (216) we see that e °  =  1 +  -  . which is impossible. Hence K  1.

Now from (2.16) we get

a e °  a  +  Pfc*_ !
(2 -w  / = j n :

Therefore from (1.1) we have

(2.18) 1 1  A(<*')ea ,

where /?(« ')  (^  0) is a  differential polynomial in o ' with polynomial coefficients. 

From (2.15) we obtain

_ K a  K u  +  P£_x
(2.19) — K = T e ■

It follows from (2.18) and (2-19) that

/ /v 7,, i i f  n K 0-՝^ Pk-l
-  T T = r  -  ~ K ^ T ‘

This implies T (r, e ")  =  S (r , en), yielding a  contradiction. Therefore A ֊£  0.

(L/ p i  \
— +  — -  —  J  implies m (r, A) =  S (r , f ) .  Also, the poles

S B  I  h՛
of A are contributed by: (i) the poles of b =  — - — . (ii) the poles o f — and (iii) the

f «  / ( * + ! )  | j  
poles of —  =  . Since h is entire and the zeros of h are precisely the poles of

F  f \ k>
f ,  and each zero of h is of multiplicity k +  p. we get

■N(r, A) <  (k +  l)N (r ,  oo: / )  +  N (r, 0; / (fc)) +  5 (r , / ) .

Therefore

(2.20) T (r. .4) <  (fc +  \)N {r , oo; / )  +  N (r, 0; / (fc)) +  5 (r , / ) .

FVom (2.9) and (2.20) we get

m ( r , ֊)  <  m.(r, ֊)  +  m (r: G ' +  G ^ ) <  T (r , A ) +  S (r ,  / )

<  (k +  1 )N (r, oo; / )  +  N (r, 0; / (fc)) +  S (r ,  / ) .

So. by the first fundamental theorem, we obtain

T(r, / (fc>) <  (k +  l)N (r , oo; / )  +  N (r ,0; / (fc)) +  N (r, 0; / (fc>) +  S ( r , / ) ,

which implies (ii). This completes the proof of Lemma 2.1. □
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L e m m a  2 .2  (|2]). Let к be a  positive integer and f  be a  meromorphie function 

such that fW  is not constant. Then either =  с — A  ̂ for some

nonzero constant с or

fv§(r, oo; /) < N(2(r, oo: /) + Nx){r, A; /<*>) + 77(r,0; / (fr+1)) + S(r, /),

where A is a  constant.

L e m m a  2 .3  ([10], p.39). Let f  be a nonconstant meromorphie function in the complex 

plane and let к be a  positive integer. Then

N (r, 0; f lk)) <  N (r, 0; f )  +  kN [r, oo; / )  +  5 (r , / ) .

L e m m a  2 .4  (|8]). Given a  transcendental meromorphie function f  and a constant 

К  >  1. Then there exists a set M (K ) whose upper logarithmic density is at most

5 {K )  =  m iu{(2eK՜ 1 -  I ) ՜ 1, (1 +  e (K  -  l)e x p (e (l -  Л ')))}

such that fo r  every positive integer k.

lim sup — —щ -  <  ЪеК.
r - » o o T ( r , /.)

L e m m a  2 .5 . Let f  be a transcendental meromorphie function such that N (r. 0: f 1-1 ) =  

S (r , / ) .  I f  f —a  and a y f ^ —a share 0 CM, where a  =  а (г)(ф  0, oo) is a small function 

o f f  and  « i  is a  nonzero constant, then

W i) M ;/< 2>) <  7V{2(r ,o o ;/ )  +  S ( r J ) .

P ro o f. I f  a + a '  =  0, then using the method of |4] (pp. 349 - 351), we get JVj)(r. 0; / ® )  =  

S (r , / ) ,  and the result follows. If a  +  а ' ф  0, then again using the method of [4| (pp- 

351 - 354), we get i^i)(r, oo; f \  =  5 (r , / ) .  Now by Lemma 2.3 we obtain

N (r, 0; / (2)) <  N (r, 0; / (1)) +  N (r, oo; / )  +  5 (r, / )

I  ^ ( 2( r , x ; f )  +  S ( r , f ) .

Since iVij(r, 0; / ® )  <  iV(r, 0; the lemma is proved. D

L e m m a  2 .6  ([6]). Let f  be a  transcendental meromorphie function and k be a positive 

integer. Then

kN (r, oo; / )  <  N (r, 0; / (fc)) +  (1 +  <■ )JV(r, oo; / )  +  S (r , / ) ,  

w/iene e w any fixed positive number.
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3. P r o o f  o f  T h e o r e m  1 .1

Proof. First we verify that 

(3 .D  •

where c ^  0 is a constant. Indeed, if (3 .1 ) does not hold, then we get

I. LAHIRI AND B. PAL

f(k fl) fc+1

m  p i  p :  -
Differentiating (3.2) and then using (3.2) we obtain

f j ( k + i ) y 2 i

{ - f i k T )  V / ( * >  )  ~  k  +  1

Integrating twice we get

/ ( * )  =  1
{Cz +  D(k +  l ) } fc+1’ 

where C  #  0 and D are constants. This is impossible because /  is transcendental. 

Let k >  2. We suppose that

T(r. f (k)) < (k  +  p +  1 )7V(r,oo;/)  +  N (r,0; / (fc)) +  N (r,0; / (fc)) +  S (r ,/).

Since Ar(r,0;/^fĉ ) =  S(r, /) , we get from above

(3.3) T(r, f W ) < { k + p +  l)N{r, oo; / )  +  5(r, /).

Also, from Lemma 2.6 we obtain for 0 <  c <  ——— — 1,
p + 1

kN(r, oo; / )  <  (1 +  e)N(r, oo; / )  +  S(r. /) .

Hence from (3.3) we obtain

m(r,/W) +  N(r, oo; / )  <  ^ ( 1  +  e)JV(r,oo; / )  +  5(r, /)  

and so m(r, / ^ )  +  Ar(r,oo: / )  =  5(r, /). Therefore

(3.4) T(r,/<*>) =  S(r,/).

Let M (K) be defined as in Lemma 2.4.13y (3.4) we can choose a  sequence rn —> oo
T ( r nm / ^ )

such that r„ A/(A') and lim ^  =  0. This contradicts Lemma 2.4.n-400 T(rn, / )
Next, let k =  i. We suppose

T(r, /W) < 2JV(r, oo; / )  +  Af(r, 0; / (1)) +  N(r, 0; / (1)) +  S(r, /).

Since N(r,0\ f (1̂ ) =  S(r, /) , we obtain

m(r, / (1)) +  Ar(r, oo; / )  <  ]V(r, oo; / )  +  S(r, / )
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and so

(3.5) m(r, / (1)) +  ЛГ(2(г, oo; / )  =  S(r, /).

By the second fundamental theorem we get in view of (3.5)

T(r, /<а)) <  ■  1; /<’ )) +  N  (г, 0; /<»>) +  JV(r, oo; /)  -  JV(r,0; /<2>) +  S(r, f)

and so

(3.6) m(r, 1; / (1)) +  N(r, 0; /<2>) <  ЛГх)(г, oc; / )  +  S(r, f).

Now by Lemma 2.2 and (3.5) we get for A =  0

(3.7) 7Vi)(r. oo; / )  <  N(r, 0; /<2>) +  S(r, f).

Prom (3.6) and (3.7) we get

(3.8) N(2(r,0 jW ) =  S(r,f).

By (3.5), (3.8) and Lemma 2.5 we obtain

(3.9) N(r,0-jW ) =  S(r,f).

Hence by (3.5), (3.7) and (3.9) we get N(r,oo;f) =  S (r,f), and so by (3.5) we have 
which is (3.4) for k =  1. Similarly using Lemma 2.4 we arrive at 

a contradiction. Therefore by Lemma 2.1 we obtain
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