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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f. g be nonconstant meromarphic functions defined in the open complex plane
C. For ¢ € CU {x} we say that f, g share the value @ CM (counting multiplicities)
if f. g have the same a-points with the samme multiplicities, and we say that f, g
share the value e IM (ignoring multiplicities) if f. g have the sume a-points bul the
nultiplicities are not taken into account.

The monograph (7] is a good source of standard notations and definitions of the

value distribution theory. We now introduce some notation and a definition.

Definition 1.1. Given a meromorphic function f. & number « € CU {a} and a

posttive nteger k.

(i) Nu(roa: f) (Ru(r.a:f)) denotes the counting function (reduced counling
function) of those a-puints of [ whose mulliplicilies are not less than k:
(i) Ny(r.a: f) ('IV,,,)(r‘ a; f)) denotes the counting function (reduced counting

function) of those a-points of f whose muliiplicities are not greater then k;

Definition 1.2. A mcromorphic function a = a(z) is called a small function of a
meromorphic function [ if T'(r.a) = S(r, ).

[u [5], R. Briick considered the uniqueness problem of an entire function when
it shares a single value CAl with its first derivative, and proposed the following

conjecture, which inspired a number of people to work on the topic.

}The work of the aecond author was supported hy DAE (NBIIM fellowship), India.
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Briick Conjecture: Let f be o nonconstant entire funclion salisfying v(f) < .
and let v(f) be nol u positive inleger, where v(f) is the hyper-onder of f. If [ and f°
share one finite value ¢ CM, then f' - a = ¢(f — a) for some constant ¢ # 0.

R. Briick (5] himsell proved the following resuit

Theorem A ([5]). Let [ be a nanconstant entire function. if f and f' sherc the
value 1 CM and N(r,0; f') = S(r, f), then f — 1 = ¢(f' — 1), where ¢ is a nonzero
constant.

Considering entire functions of finite order, L. Z. Yang [9] proved the following

theorem.

Theorem B ([9]). Let [ be a nonconstant entire function of finale order, and let
a{# 0) be a finite constant. If f and f'*) share the value @ CM. then f—a = (%) —a),

where ¢ 15 6 nonzero constant end k > 1 is an integer

In 2005, A. B. H. Al-khaladi [2]| extended Theorem A to the class of meromorphic

Tunctions and proved the following resull,

Theorem C (|2]). Lel f be a nonconstant meromorphic function satisfying N'(r.0; ') =
S(r, f). If f and f' shere the value 1 CM, then f — 1 = ¢(f' — 1) for some nonzero

constant c.

Also, in [2| were considered the following examples, showing that the value sharing

cannot be relaxed from CM to IM. and the condition N (r,0; /) = S(r. f) is essential.

Example 1.1. Let f =1+ tanz. Then f'—1=(f-1)2and N(r.0; f) = 0. Clearly
f and f’ share the value 1 IN but the conclusion of Theorem C does uot hold.

-
-

T8 Then fand f’ share the value 1 CM and N(r, 0: ') #

S(r, f). It is easy to verify that f' —1 = g -:r‘ (f-1).

Examplc 1.2. Let f =

A. H. H. Al-khaladi [1] also observed by the following example that in Theorem A

the shared value cannot be replaced by a shared small function.

Example 1.3. Let f = 1+ ¢ and n = Then a is a small function of

f and f —a, f* — a share the value 0 CM a;(l N(r,0; f') = 0. Also, we see that
L,
Isem=T=e)
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Cousidering the sharing of small functions, A. H. H. Al-khaladi [1] proved the

following result.

Theorem D (|1]). Let f be a nonconstant entire function satisfying N(r,0; ') =

S(r.f), and let a (# 0, ) be a meromorphic small function of f Iff—aand f'-a
\ o ;

share the value 0 CM. then f—a = (1 + ﬁ) (f' —a). where l+; = e”, ¢ is a constant

and 3 v an entire function.
For higher order derivatives. A. H. H. Al-khaladi |3] proved the following theorem.

Theorem E (|3]). Let f be a nonconstant entire function satisfying N(r.0; f*)) =
S(r, /) (k > 1). and let a(# 0.00) be a meromorphic smaIl function of f. If f — «
and f%) — q share the value 0 CM. then f —a = (1 + — )(f(k) a), where P,

is a polynomial of degree at most k — 1 and 1 + ’—““— #0.

Recently A. H. H. Al-khaladi [4] extended Theorem E to meromorphic functions.
A natural extension of a derivative is a linear differential polynomial. For a transcendental

meromorphic function f we denote by L = L{f*}) a linear differential polynomial of

the formm
(11) L=L{f* = apf® 4 g f*+) 4 ... 4 apffkﬂ!)'
where ap,¢1... . ap (# 0) are constants, and k(> 1) and p(> 0) arc integers such

that p=0ifk=1and0<p<k-2if k> 2
In the present paper we consider the problem of sharing a small function by a
meromorphic [unction and a linear differential polynomial in conformity with Briick

conjecture. The following theorem is the main result of the paper.

Theorem 1.1. Let f be a transcendental meromorphic function and let the differential
polynomial L = L(f¥). given by (1.1), be nonconstant. Suppose that f —a and L —a
share 0 CM. where o (# 0,0c) is a small function of . If N(r,0; f*)) = S(r, f), then

f—n=(|+-’l:-)([;—ﬂ),
where Py 13 a polynomial of degree at most k — 1 and | + —— P. : #0.

The following example shows that the condition N(r,0; f (")) = 8(r, f) is csscutinl
in Theorem 1.1,
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Example 1.4. Let £ be a nonconstant polynomial, and let f = lj%: Then f' =
c“(P+ P + P'c?)
(I +e)2
CMbut f' - P/ =

, and hemwee N(r,0: /') # S(r, f) Also. f — P’ and f* — P’ share 0

By (f - P). where T(r. P') = S(r, [).

2. LEMMaAS

In this scction we present somc necessary lemmas to be used in the proof of

Theorem 1.1.

Lemma 2.1. Let [ be ¢ nonconstont meromorphic function end let L = L(f™),
given by (1.1), be nonconstant. If f —a and L —a share 0 CM, where a = a{z)(# 0.20)
i8 a smell function of f, then one of the following assertions holds.
(i) f—a= (l + 5‘-"—) (L — a), where Pi_y is a polynomal of degree al most
k—1 andl+5a;'§u.
(i) T(r, f*) < (k+p+ 1D)N(r,00: f) + N(r,0: f®)) + N(2,0; [} 4 Sz )

'L % Then h is an entire function and the poles of f are precisely

Proof. Let h =
the zeros of h. Now differentiating

(2.1) f—a=hL —ah

k-times we get
(2.2) &~ a®) = (hLY*®) — (ha)!®.

We now consider the following cases.
CasE 1. Let. a™ % 0. We put
L (L™ (ha)®

L (1]
Since W = ‘h:}' . 7“-'5 - ‘A;r— » ;‘:—) we have m(r, W) = S(r, f).

We first suppuse that W # 0. Let zg be a zero of f&) — o®) and o) (2g) # 0.0c.
Then from (2.2) we see that 2g is a zcro of (AL)*) — (ha)®). Hence W(zp) = 0 and

we have
Fir0:/® -a®) < N@o;W)+S0r 1)
S T(W)+S(r/f)
- = N@EW)+S0f)
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Also
(2.5) N(r.W) < (k +p)N(r, 00; f) + N(r,U; f‘k)) + S(r. f).

By Nevanlinna's three small functions theorem (sce |7]. p. 47}, and formulas (2.4)
and (2.5), we get

T(r. f*)) € (k+p+ )N (r.00: f) + N(r, 0: f5) + N 0: f2) + 8(r, f),

which is (ii).

Now let " = 0. Then from (2.2) and (2.3) we get

(f &) — aR)jah) = (ha)(“(f(“ - o).

Since f*) —a¥) £ 0. we obtain (ha)® = o). lntegrating the last equality k-times
we get ha = a + P (z), where Py_(z) is a polynomial of degree at most & — 1. So
Mo and henee f —a = (1 + Ay ) (L — a), which is (i).

h=1+
a
Cask II. Let @** = (. Then e is a polynomial of degree at most k — 1. From (2.2)
we get f5) = (RL)*) — (ah)® and hence

h1)&) 310
(2.6) 1 _ (kD) (ah)

YU YT
i T (hL)'™ fak)™ :
Putting F= ' G = —W and b= W from (2.6) we get
1 b
Differentiating (2.7) we obtain
1 A ¥ b F
2.8) _ 23 ot TR e
(&) R h F'F'F
It follows from (2.7) and (2.8) that
29 Sy
(29 l—:. =G + TL
! 7
where A = b £+b’—b. E.
h F

We first suppose that G = 0. Then by integration we get hL = Qg_,, where

Qi1 = Qi—1(2) is a polynomial of degree at most k — 1. Putting h = {
{2.10) : (f—ao)L = (L - a)Qx-,-

Since ¢ is a polynomial. from (2.10) we see that f is an entire function. Hence h

-0
we get
-a

is an entire funcrion having no zeros. We put h = ¢", where a is an entire function,

andso f=a+h(L—-e)=a+Qr;—at" and L = Q,_ e It follows from the
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definition of L that L = R(a'. a')e", where R{«¢’, o') is a differential polynomial in ¢’

and ', llence
(2.11) . R(a'. o) = Qu_y.

From (2.11) we see that T(r.e”) = S(r,e”). yielding a contradiction. Therefore
G 2o

If 1 is a constanl. say ¢, then f — a = ¢(L ~ a). which is (i).

Now we suppose that 4 is nonconstant and & = 0. Then by integration we wet
ah = P._,, where »_| = P,_(z) is a polynomial of degree at most k — 1

Since h is an entire function and a is a polynomial of degree at most k — 1. the

2
equality h = ——" implies that a is  factor of Pc_;. and heuce
a

(2.12) h=Qp .

where Q7 _, = J%_,(2) is a polynomial of degree at most k —¢ (£ > 1)

If =p is a pole of f. then zy is a zero of & with multiplicity k 4 p. which is impossible
by (2.12). So, f is an entire function, and hence h is an entire function having ne
zeros. Therefore from (2.12) we see that h is a constant, which is impossible.

’

GF
Now we supposce that b 2 0. Let A = 0, then from (2.9) we get C 4 = . By

integration we obtain Gh = R and hence

h

(2.13) (hL)®) = K f8)

where i is a nonzero constz'ml,.

Again, Z = = = () implies by integration hb = MF | and so

h d -3
(2.14) (ah)® = Ars®,
where A{ is 4 nonzero constapt.

Since e is a polynomial and £ is an entire function. we see from (2.14) that [ is an
entire function. So. i is anu entire function Laving no zeros and we can put h = °
where a is en entire function.

Integrating {2.13) A-times we get

(2.15) hL=Kf+P_,,

where Py = P;_(2) 1s a polynomial of degree at inost & — 1.
Since hL = f — a + ah, from (2 15) we get

(2.16) (1-K)f=a(l-e")+ P,
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k=1

If R = 1. from (2.16) we see that ¢® =1+ . which is impossible. Hence K # 1.
Now from (2.16) we get
: ae® a+ Py
- F=%=1" &=
Therefore from {1.1) we have

(2.18) L = R(a")e”,

where R{a’)(# 0) is a differential polynomial in o' with polynomial cocflicients.
From {2.15) we obtain

- [ = Ka Ka+l’k',1e‘"
(2.19) K1 K-1 = °

It follows from (2.18) and (2.19) that
Rio 1™ = Ka , Kae+Pp,
WS SEE K-1
This implies T(r,e”) = §(r,e"), yielding a contradiction Therefore A £ 0.

‘hi,” 'l 1
» + % F) implies m(r, 4) = S(r, f). Also. the paoles

Now observe that A = b(

ah)\k) s
of A are contributed by: (i) the poles of b = . (ii) the poles of n and (iii) the
(k+1)
poles of IF; f e Since 7t is entire and the zeros of h are precisely the poles of

/. and cach zero of h is of multiplicity & + p. we get

‘N(r. 4) < (k + )N, : ) + N(r.0; f¥) + S(r. f).
Therefore
(2.20) T(r. 4) < (k + DN(r.c0: f) + F(r. 0; f*) + 8(r, f).

From (2.9) and (2.20) we get
mir k) $ min k)4 m(n.G + Gh) S T(.A) +56.1)
< tk+ )N(r.00i f) + N(r,0: f¥) + S(r, f).
So. by the first fundamental theorem. we obtain
T(r. f*) < (k + V)N oc: f) + N(r,0; f®) + Nz, 0; f¥) 4 S(r, f).

which implies (ii). This completes the proof of Lemma 2.1. O
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Lemma 2.2 (|2]). Let k be a positive integer and [ bc a meromorphic function
(oY) NIT

such that f*) is nat constant. Then cither ([""’) = C(f'. )\) for som«

nonzero constant ¢ or

kNyy(r,oc; f) < N g(r,00: f) + Nyy(ro A f9) + N(r.0; 440 + S(r, f).

where X is a constant.

Lemma 2.3 ([10], p.39). Let f be a nonconstant meromorphic function in the comples

plane and let k be a positive integer. Then
N(r.0; fR)) < N(r.0; f) + kN(r,00; f) + S(=. f).

Lemma 2.4 ([8]). Given a transcendentul meromorphic function f and a constant

K > 1. Then there exists a set M(I) whose upper logarithmic density 1s al most
O(K) = min{(2e" 1~ 1)7L, (1 + e(K - 1) exple(l — K)))}

such that for every positive integer k.

gl ., .
lim sup ;-—-‘L-lb— < 3ek.
racosdMIK) [(r-ﬂ ))

Lemma 2.5. Let f be a transcendental meromorphic function such that N(r.0: f(!') =
S(r, f). If f~a and a) f1V —a share 0 CM, where ¢ = a(z)( 0. %) is a small function

of f and a; is @ nonzero constan!, then

Nyy(r,0; %) € Wia(r.00: f) + S(r, f)

Proof. If a+¢’ & 0, then using the method of |4] (pp. 349 - 351). we get N)y(r. 0: =
S(r, f). and the resuit follows. If @ + o' # 0, then again using the metliod of M| (pp.
351 - 354), we get Nyy(r,00: f} = S(r, f). Now by Lemma 2.3 we obtain

NE0: /@) < N@R0; O+ N(r.x: ) + S(r. f)
Na(r,x: )+ S(r. f).

it

Since Nyy(7, 0; @) < N(r,0; f%), the lemma. is proved. O

Lemma 2.6 ([6]). Let f be a transcendental meromaorphic function and k be a positive
integer. Then

kN (r,00; f) S N2, 0: f5) + Q + &)N(r. 00 f) + S, ),

where € 15 any fired positive number
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3. Puoor oF Turonren 1.1

Proof. First we verify that

ksl K42
(3.1) (1) e (™)
where ¢ # 0 is a constant. Indeed, if (3.1) does not lold, then we gel
yao A1
o Y i (k)

Differentiating (3.2) and then using (3.2) we obtain

(f(k+n))‘2 {f(lﬂ)\' o
fuc) o

\7@ ) TEeT

Integrating twice we get
1

f(k) o )
(Cz+ Dk + 1)}

where € # 0 and D are constants. This is impossible because f is transcendental.

Let & > 2. We suppose that
T f%) < (k+p+ 1)R(r, 00 f) + B(r, 0; fB) 4 N(r, 0; fF) + S(r., f).

Since N(r,0; f*)) = S(r, f), we get from above

(3.3) T(r.fM) < (k+p+ )(r 0. f) + 57, f).
Also, from Lemma 2.6 we obtain for 0 < ¢ < L -1,
p+1

kN(r.00: f) < (1 4+ €)N(r, 00; f) + S(r. f).
Heuce from (3.3) we obtain
m(r, [9) + N(r,20: ) & 2o (1 4 €)N(r,00: ) + S(0. f)
and so m(r, f&) + N(r.ac: f) = S(r, f). Therefore
(3.4) T(r, f*) = 8(r. f).

Let A(K) he defined as in Lemma 2.4. By (3.4) we can choose a sequence v, — 00

(k)
such that r,, & M(A) and Jim Tira. ')
n 0 T(Tmf)
Next, let k = 1. We suppose

= 0. This contradicts Lemma 2.4.

T(r. %) < 2N(r.00; f) + F(r,0: fV) + N(r,0; F1) + S(r. f).
Since N(r,0: fV) = §(r. f). we obtain

m{r. [ ) + N(r,0; f) < N(r, 00, f) + S(r. f)
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and so
(3.5) m{r. f) + Na(r,o: f) = S(r, f).
By the second fundamental theoremn we get in view of (3.5)

T(r,f(”) < Nir.1: £ 4+ N(r, 0: f(l)) +T\’(1iw:f] -~ N(#0: %) 4 S(r. f)

and so

(3.6) mir, b; f) + N(r,0: 1) € Nyy(r,oc: f) + S(r, ).
Now by Leinma 2.2 and (3.5) we get for A=0

(37) Ny(r.o0; f) < F(r,0: @) + S(r. 1)
From (3.6) and (3.7) we get

(3.8) Np(r.0; f2)) = S(r. f).
By (3.5). (3.8) and Lemma 2.5 we obtain

(3.9) N(r.0; f@) = S(r, f).

Hence by (3.5), (3.7) and (3.9) we get N{(r,oc; f) = S{r, f), and s0 by (3.5) we have
Tir, f'') = S(r, ), which is (3.4) for k = 1. Similarly using Lemmna 2.4 we arrive at

a contradiction. Therelore by Lemma 2.1 we obtain

3]
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