Пзвестия НАП Арменши, Математика, том 52, п. 1. 2017. стр. 68-77, BRUCK CONJECTURE FOR A LINEAR DIFFERENTIAL POLYNOMIAL

1. LAHIRI AND B. PAL

University of Kalyani. India¹ E-mails: ilahiri@botmail.com, palbipul86@gmail.com

Abstract. In the paper we study the Brück Conjecture for a linear differential polynomial.

MSC2010 numbers: 30D35.

Keywords: Meromorphic function. differential polynomial, sharing small function.

1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f, g be nonconstant meromorphic functions defined in the open complex plane \mathbb{C} . For $a \in \mathbb{C} \cup \{\infty\}$ we say that f, g share the value a CM (counting multiplicities) if f, g have the same *a*-points with the same multiplicities, and we say that f, g share the value a IM (ignoring multiplicities) if f, g have the same *a*-points but the multiplicities are not taken into account.

The monograph [7] is a good source of standard notations and definitions of the value distribution theory. We now introduce some notation and a definition.

Definition 1.1. Given a meromorphic function f, a number $a \in \mathbb{C} \cup \{\infty\}$ and a positive integer k.

- (i) $N_{(k}(r, a; f)$ ($N_{(k}(r, a; f)$) denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than k:
- (ii) $N_{k}(r, a; f)$ $(\overline{N}_{k}(r, a; f))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than k;

Definition 1.2. A meromorphic function a = a(z) is called a small function of a meromorphic function f if T(r, a) = S(r, f).

In [5], R. Brück considered the uniqueness problem of an entire function when it shares a single value CM with its first derivative, and proposed the following conjecture, which inspired a number of people to work on the topic.

¹The work of the second author was supported by DAE (NBHM fellowship), India.

Brück Conjecture: Let f be a nonconstant entire function satisfying $\nu(f) < \infty$, and let $\nu(f)$ be not a positive integer, where $\nu(f)$ is the hyper-order of f. If f and f'share one finite value σ CM, then f' - a = c(f - a) for some constant c = 0. R. Brück [5] himself proved the following result.

Theorem A ([5]). Let f be a nonconstant entire function. If f and f' share the value 1 CM and $N(\tau, 0; f') = S(r, f)$, then f - 1 = c(f' - 1), where c is a nonzero constant.

Considering entire functions of finite order, L. Z. Yang [9] proved the following theorem.

Theorem B ([9]). Let f be a nonconstant entire function of finite order, and let $a(\neq 0)$ be a finite constant. If f and $f^{(k)}$ share the value $a \ CM$, then $f-a = c(f^{(k)}-a)$, where c is a nonzero constant and $k \ge 1$ is an integer.

In 2005, A. H. H. Al-khaladi [2] extended Theorem A to the class of meromorphic functions and proved the following result.

Theorem C ([2]). Let f be a nonconstant meromorphic function satisfying N(r, 0; f') = S(r, f). If f and f' share the value 1 CM, then f - 1 = c(f' - 1) for some nonzero constant c.

Also, in [2] were considered the following examples, showing that the value sharing cannot be relaxed from CM to IM, and the condition N(r, 0; f') = S(r, f) is essential.

Example 1.1. Let $f = 1 + \tan z$. Then $f' - 1 = (f - 1)^2$ and $N(r, 0; f') \equiv 0$. Clearly f and f' share the value 1 IM but the conclusion of Theorem C does not hold.

Example 1.2. Let $f = \frac{1}{1+r^2}$. Then f and f' share the value 1 CM and $N(r, 0; f') \neq S(r, f)$. It is easy to verify that $f' - 1 = \frac{1}{1+r^2}(f-1)$.

A. H. H. Al-khaladi [1] also observed by the following example that in Theorem A the shared value cannot be replaced by a shared small function.

Example 1.3. Let $f = 1 + e^{e^{t}}$ and $a = \frac{1}{1 - e^{-z}}$. Then *a* is a small function of *f* and f - a, f - a share the value 0 CM and $N(r, 0; f') \equiv 0$. Also, we see that $f - a = \frac{1}{e^{t}}(f - a)$.

Considering the sharing of small functions, A. H. H. Al-khaladi [1] proved the following result.

Theorem D ([1]). Let f be a nonconstant entire function satisfying N(r, 0; f') = S(r, f), and let $a = 0, \infty$ be a meromorphic small function of f. If f - a and f' - a share the value 0 CM, then $f - a = \left(1 + \frac{c}{a}\right)(f' - a)$, where $1 + \frac{c}{a} = e^{\beta}$, c is a constant and β is an entire function.

For higher order derivatives. A. H. H. Al-khaladi [3] proved the following theorem.

Theorem E ([3]). Let f be a nonconstant entire function satisfying $\overline{N}(r, 0; f^{(k)}) = S(r, f)$ (k > 1). and let $a \equiv 0, \infty$) be a meromorphic small function of f. If f - a and $f^{(k)} - a$ share the value 0 CM, then $f - a = \left(1 + \frac{P_{k-1}}{a}\right)(f^{(k)} - a)$, where P_{k-1} is a polynomial of degree at most k - 1 and $1 + \frac{P_{k-1}}{a} \neq 0$.

Recently A. H. H. Al-khaladi [4] extended Theorem E to meromorphic functions. A natural extension of a derivative is a linear differential polynomial. For a transcendental meromorphic function f we denote by $L = L(f^{(k)})$ a linear differential polynomial of the form

(1.1)
$$L = L(f^{(k)}) = a_0 f^{(k)} + a_1 f^{(k+1)} + \dots + a_p f^{(k+p)},$$

where $a_0, a_1, \ldots, a_p \neq 0$ are constants, and $k \geq 1$ and $p \geq 0$ are integers such that p = 0 if k = 1 and $0 \leq p \leq k - 2$ if $k \geq 2$.

In the present paper we consider the problem of sharing a small function by a meromorphic function and a linear differential polynomial in conformity with Brück conjecture. The following theorem is the main result of the paper.

Theorem 1.1. Let f be a transcendental meromorphic function and let the differential polynomial $L = L(f^{(k)})$, given by (1.1), be nonconstant. Suppose that f - a and L - a share 0 CM, where $a (\neq 0, \infty)$ is a small function of f. If $N(r, 0; f^{(k)}) = S(r, f)$, then

$$f-a=\left(1+\frac{P_{k-1}}{a}\right)(L-a),$$

where P_{k-1} is a polynomial of degree at most k-1 and $1+\frac{P_{k-1}}{a}\neq 0$.

The following example shows that the condition $N(r, 0; f^{(k)}) = S(r, f)$ is essential in Theorem 1.1.

Example 1.4. Let P be a nonconstant polynomial, and let $f = \frac{Pe^z}{1+e^z}$. Then $f' = \frac{e^z(P+P'+P'e^z)}{(1+e^z)^2}$ and hence $N(r,0;f') \neq S(r,f)$ Also f-P' and f'-P' share 0 CM but $f'-P' = \frac{1}{1+e^z}(f-P')$, where T(r,P') = S(r,f).

2. LEMMAS

In this section we present some necessary lemmas to be used in the proof of Theorem 1.1.

Lemma 2.1. Let f be a nonconstant meromorphic function and let $L = L(f^{(k)})$, given by (1.1), be nonconstant. If f - a and L - a share 0 CM, where $a = a(z) (\not\equiv 0, \infty)$ is a small function of f, then one of the following assertions holds:

- (i) $f a = \left(1 + \frac{P_{k-1}}{a}\right)(L-a)$, where P_{k-1} is a polynomial of degree at most k-1 and $1 + \frac{P_{k-1}}{a} \neq 0$,
- (ii) $T(r, f^{(k)}) \le (k+p+1)\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(k)}) + N(r, 0; f^{(k)}) + S(r, f).$

Proof. Let $h = \frac{f-a}{L-a}$. Then h is an entire function and the poles of f are precisely the zeros of h. Now differentiating

$$(2.1) f - a = hL - ah$$

k-times we get

(2.2)
$$f^{(k)} - a^{(k)} = (hL)^{(k)} - (ha)^{(k)}$$

We now consider the following cases. CASE I. Let $a^{(k)} \not\equiv 0$. We put

(2.3)
$$W = \frac{(hL)^{(k)}}{hf^{(k)}} - \frac{(ha)^{(k)}}{ha^{(k)}}.$$

Since $W' = \frac{(hL)^{(k)}}{hL} \cdot \frac{L}{f^{(k)}} - \frac{(ha)^{(k)}}{ha} \cdot \frac{a}{n^{(k)}}$, we have m(r, W) = S(r, f).

We first suppose that $W \neq 0$. Let z_0 be a zero of $f^{(k)} - a^{(k)}$ and $a^{(k)}(z_0) \neq 0, \infty$. Then from (2.2) we see that z_0 is a zero of $(hL)^{(k)} - (ha)^{(k)}$. Hence $W(z_0) = 0$ and we have

$$\frac{N(r,0;f^{(k)} - a^{(k)})}{\leq} \frac{N(r,0;W) + S(r,f)}{\leq} \frac{T(r,W) + S(r,f)}{=} \frac{N(r,W) + S(r,f)}{=}$$

(2.4)

Also

(2.5)
$$N(r,W) \le (k+p)N(r,\infty;f) + N(r,0;f^{(k)}) + S(r,f)$$

By Nevanlinna's three small functions theorem (see [7], p. 47), and formulas (2.4) and (2.5), we get

$$T(r, f^{(k)}) \le (k + p + 1)\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(k)}) + N(r, 0; f^{(k)}) + S(r, f),$$

which is (ii).

Now let $W \equiv 0$. Then from (2.2) and (2.3) we get

$$(f^{(k)} - a^{(k)})a^{(k)} \equiv (ha)^{(k)}(f^{(k)} - a^{(k)}).$$

Since $f^{(k)} - a^{(k)} \neq 0$, we obtain $(ha)^{(k)} \equiv a^{(k)}$. Integrating the last equality k-times we get $ha = a + P_{k-1}(z)$, where $P_{k-1}(z)$ is a polynomial of degree at most k - 1. So $h = 1 + \frac{P_{k-1}}{a}$ and hence $f - a = \left(1 + \frac{P_{k-1}}{a}\right)(L - a)$, which is (i).

CASE II. Let $a^{(k)} \equiv 0$. Then *a* is a polynomial of degree at most k - 1. From (2.2) we get $f^{(k)} = (hL)^{(k)} - (ah)^{(k)}$, and hence

(2.6)
$$\frac{1}{h} = \frac{(hL)^{(k)}}{hf^{(k)}} - \frac{(ah)^{(k)}}{hf^{(k)}}.$$

Putting
$$F = f^{(k)}$$
, $G = \frac{(hL)^{(k)}}{hf^{(k)}}$ and $b = \frac{(ah)^{(k)}}{h}$, from (2.6) we get
(2.7) $\frac{1}{h} = G - \frac{b}{F}$.

Differentiating (2.7) we obtain

(2.8)
$$-\frac{1}{h} \cdot \frac{h'}{h} = G' - \frac{b'}{F} + \frac{b}{F} \cdot \frac{F'}{F}$$

It follows from (2.7) and (2.8) that

(2.9)
$$\frac{A}{F} = G' + G \cdot \frac{h'}{h}$$

where $A = b \cdot \frac{h'}{h} + b' - b \cdot \frac{F'}{F}$.

We first suppose that $\hat{G} \equiv 0$. Then by integration we get $hL = Q_{k-1}$, where $Q_{k-1} = Q_{k-1}(z)$ is a polynomial of degree at most k-1. Putting $h = \frac{f-a}{L-a}$ we get (2.10) $(f-a)L = (L-a)Q_{k-1}$.

Since a is a polynomial, from (2.10) we see that f is an entire function. Hence h is an entire function having no zeros. We put $h = c^{\alpha}$, where α is an entire function, and so $f = a + h(L - a) = a + Q_{k-1} - a e^{\alpha}$ and $L = Q_{k-1}e^{-\alpha}$. It follows from the

definition of L that $L = R(a', \alpha')e^{\alpha}$, where $R(a', \alpha')$ is a differential polynomial in a'and α' . Hence

$$(2.11) R(a', \alpha')e^{2\alpha} = Q_{k-1}.$$

From (2.11) we see that $T(r, e^{\alpha}) = S(r, e^{\alpha})$, yielding a contradiction. Therefore $G \not\equiv 0.$

If h is a constant, say c, then f - a = c(L - a), which is (i).

Now we suppose that h is nonconstant and $b \equiv 0$. Then by integration we get $ah = P_{k-1}$, where $P_{k-1} = P_{k-1}(z)$ is a polynomial of degree at most k-1

Since h is an entire function and a is a polynomial of degree at most k = 1, the equality $h = \frac{P_{k-1}}{a}$ implies that a is a factor of P_{k-1} , and hence

(2.12)
$$h = Q_{k-t}^*$$

where $Q_{k-t}^* = Q_{k-t}(z)$ is a polynomial of degree at most k - t $(t \ge 1)$

If z_0 is a pole of f, then z_0 is a zero of h with multiplicity k + p, which is impossible by (2.12). So, f is an entire function, and hence h is an entire function having no zeros. Therefore from (2.12) we see that h is a constant, which is impossible.

Now we suppose that $b \not\equiv 0$. Let $A \equiv 0$, then from (2.9) we get $\frac{G'}{C} + \frac{h'}{h} \equiv 0$. By integration we obtain Gh = K and hence

$$(2.13) (hL)^{(k)} = Kf^{(k)},$$

where K is a nonzero constant. Again, $\frac{1}{h} = \frac{h}{h} + \frac{h}{h} - \frac{F}{F} = 0$ implies by integration hb = MF, and so $(ah)^{(k)} = Mf^{(k)},$ (2.14)

where M is a nonzero constant.

Since a is a polynomial and h is an entire function, we see from (2.14) that f is an entire function. So, h is an entire function having no zeros and we can put $h = e^{\alpha}$, where α is an entire function.

Integrating (2.13) k-times we get

(2.15)
$$hL = Kf + P_{k-1},$$

where $P_{k-1} = P_{k-1}(z)$ is a polynomial of degree at most k-1Since hL = f - a + ah, from (2.15) we get

(2.16)
$$(1-K)f = a(1-e^{\alpha}) + P_{k-1}^*.$$

If K = 1, from (2.16) we see that $e^{\alpha} = 1 + \frac{P_{k-1}^{*}}{n}$, which is impossible. Hence $K \neq 1$. Now from (2.16) we get

(2.17)
$$f = \frac{ae^{\alpha}}{K-1} - \frac{a+P_{k-1}^*}{K-1}.$$

Therefore from (1.1) we have

(2.18)
$$L = R(\alpha')e^{\alpha},$$

where $R(\alpha') \neq 0$ is a differential polynomial in α' with polynomial coefficients.

From (2.15) we obtain

(2.19)
$$L = \frac{Ka}{K-1} - \frac{Ka + P_{k-1}^*}{K-1}e^{-\alpha}$$

It follows from (2.18) and (2.19) that

$$R(\alpha')e^{2i*} = \frac{Ka}{K-1}c^{\alpha} - \frac{Ka + P_{k-1}}{K-1}.$$

This implies $T(r, e^{\alpha}) = S(r, e^{\alpha})$, yielding a contradiction. Therefore $A \neq 0$.

Now observe that $A = b\left(\frac{h'}{h} + \frac{h}{h} - \frac{F'}{F}\right)$ implies m(r, A) = S(r, f). Also, the poles of A are contributed by: (i) the poles of $b = \frac{(ah)^{(k)}}{h}$. (ii) the poles of $\frac{h'}{h}$ and (iii) the poles of $\frac{F'}{F} = \frac{f^{(k+1)}}{f^{(k)}}$. Since h is entire and the zeros of h are precisely the poles of f, and each zero of h is of multiplicity k + p, we get

$$N(r, A) \leq (k+1)\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(k)}) + S(r, f).$$

Therefore

(2.20)
$$T(r,A) \le (k+1)\overline{N}(r,\infty;f) + \overline{N}(r,0;f^{(k)}) + S(r,f).$$

From (2.9) and (2.20) we get

$$m(r, \frac{1}{F}) \leq m(r, \frac{1}{A}) + m(r, G' + G\frac{h'}{h}) \leq T(r, A) + S(r, f)$$

$$\leq (k+1)N(r, \infty; f) + N(r, 0; f^{(k)}) + S(r, f).$$

So, by the first fundamental theorem, we obtain

$$T(r, f^{(k)}) \le (k+1)\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(k)}) + N(r, 0; f^{(k)}) + S(r, f).$$

which implies (ii). This completes the proof of Lemma 2.1.

Lemma 2.2 ([2]). Let k be a positive integer and f be a meromorphic function such that $f^{(k)}$ is not constant. Then either $\begin{pmatrix} f \\ f \end{pmatrix} = c \begin{pmatrix} f \\ -\lambda \end{pmatrix}$ for some nonzero constant c or

$$kN_{1}(r,\infty;f) \le \overline{N}_{(2}(r,\infty;f) + N_{1})(r,\lambda;f^{(k)}) + \overline{N}(r,0;f^{(k+1)}) + S(r,f),$$

where λ is a constant.

Lemma 2.3 ([10], p.39). Let f be a nonconstant meromorphic function in the complex plane and let k be a positive integer. Then

$$N(r, 0; f^{(k)}) \le N(r, 0; f) + k\overline{N}(r, \infty; f) + S(r, f).$$

Lemma 2.4 ([8]). Given a transcendental meromorphic function f and a constant K > 1. Then there exists a set M(K) whose upper logarithmic density is at most

$$\delta(K) = \min\{(2e^{K-1} - 1)^{-1}, (1 + e(K - 1)\exp(e(1 - K)))\}$$

such that for every positive integer k.

$$\limsup_{r \to \infty} \quad \frac{T(r, f(k))}{T(r, f(k))} \le 3eK.$$

Lemma 2.5. Let f be a transcendental meromorphic function such that $N(r, 0; f^{(1)}) = S(r, f)$. If f - a and $a_1 f^{(1)} - a$ share 0 CM, where $a = a(z) (\neq 0, \infty)$ is a small function of f and a_1 is a nonzero constant, then

$$N_{1}(r,0;f^{(2)}) \le \overline{N}_{2}(r,\infty;f) + S(r,f).$$

Proof. If $a+a' \equiv 0$, then using the method of [4] (pp. 349 - 351), we get $N_{11}(r, 0; f^{(2)}) = S(r, f)$, and the result follows. If $a + a' \neq 0$, then again using the method of [4] (pp. 351 - 354), we get $N_{11}(r, \infty; f) = S(r, f)$. Now by Lemma 2.3 we obtain

$$N(r, 0; f^{(2)}) \leq N(r, 0; f^{(1)}) + \overline{N}(r, \infty; f) + S(r, f)$$

= $\overline{N}_{(2)}(r, \infty; f) + S(r, f).$

Since $N_{1}(r, 0; f^{(2)}) \le N(r, 0; f^{(2)})$ the lemma is proved.

Lemma 2.6 ([6]). Let f be a transcendental meromorphic function and k be a positive integer. Then

$$k\overline{N}(r,\infty;f) \le N(r,0;f^{(k)}) + (1+\varepsilon)N(r,\infty;f) + S(r,f),$$

where ϵ is any fixed positive number

3. PROOF OF THEOREM 1.1

Proof. First we verify that

(3.1)
$$\left(f^{(k+1)}\right)^{k+1} \neq c\left(f^{(k)}\right)^{k+2},$$

where $c \neq 0$ is a constant. Indeed, if (3.1) does not hold, then we get

(3.2)
$$\left(\frac{f^{(k+1)}}{f^{(k)}}\right)^{k+1} = cf^{(k)}.$$

Differentiating (3.2) and then using (3.2) we obtain

$$\left(\frac{f^{(k+1)}}{f^{(k)}}\right)^{-2} \left(\frac{f^{(k+1)}}{f^{(k)}}\right)' = \frac{1}{k+1}$$

Integrating twice we get

$$f^{(k)} = \frac{1}{\{Cz + D(k+1)\}^{k+1}},$$

where $C \neq 0$ and D are constants. This is impossible because f is transcendental. Let $k \geq 2$. We suppose that

$$T(r, f^{(k)}) \le (k + p + 1)\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(k)}) + N(r, 0; f^{(k)}) + S(r, f).$$

Since $N(r, 0; f^{(k)}) = S(r, f)$, we get from above

(3.3)
$$T(r, f^{(k)}) \le (k+p+1)\overline{N}(r, \infty; f) + S(r, f).$$

Also, from Lemma 2.6 we obtain for $0 < \varepsilon < \frac{k}{p+1} - 1$,

$$kN(\tau,\infty;f) \le (1+\varepsilon)N(\tau,\infty;f) + S(\tau,f).$$

Hence from (3.3) we obtain

$$m(\tau, f^{(k)}) + N(r, \infty; f) \le \frac{p+1}{k} (1+\varepsilon) N(\tau, \infty; f) + S(r, f)$$

and so $m(r, f^{(k)}) + N(r, \infty; f) = S(r, f)$. Therefore

(3.4)
$$T(r, f^{(k)}) = S(r, f).$$

Let M(K) be defined as in Lemma 2.4. By (3.4) we can choose a sequence $r_n \to \infty$ such that $r_n \neq M(K)$ and $\lim_{n\to\infty} \frac{T(r_n, f^{(k)})}{T(r_n, f)} = 0$. This contradicts Lemma 2.4. Next, let k = 1. We suppose

$$T(r, f^{(1)}) \le 2\overline{N}(r, \infty; f) + \overline{N}(r, 0; f^{(1)}) + N(r, 0; f^{(1)}) + S(r, f^{(1)}) + S($$

Since $N(r, 0; f^{(1)}) = S(r, f)$, we obtain

$$m(r, f^{(1)}) + N(r, \infty; f) \le \overline{N}(r, \infty; f) + S(r, f)$$
76

and so

(3.5)
$$m(r, f^{(1)}) + N_{(2}(r, \infty; f) = S(r, f).$$

By the second fundamental theorem we get in view of (3.5)

$$T(r, f^{(1)}) \le N(r, 1; f^{(1)}) + N(r, 0; f^{(1)}) + N(r, \infty; f) - N(r, 0; f^{(2)}) + S(r, f)$$

and so

(3.6)
$$m(r, 1; f^{(1)}) + N(r, 0; f^{(2)}) \le N_{1}(r, \infty; f) + S(r, f).$$

Now by Lemma 2.2 and (3.5) we get for $\lambda = 0$

(3.7)
$$N_{1}(r,\infty;f) \le \overline{N}(r,0,f^{(2)}) + S(r,f).$$

From (3.6) and (3.7) we get

(3.8)
$$N_{(2}(r,0;f^{(2)}) = S(r,f)$$

By (3.5), (3.8) and Lemma 2.5 we obtain

(3.9)
$$N(r,0;f^{(2)}) = S(r,f).$$

Hence by (3.5), (3.7) and (3.9) we get $N(r, \infty; f) = S(r, f)$, and so by (3.5) we have $T(r, f^{(1)}) = S(r, f)$, which is (3.4) for k = 1. Similarly using Lemma 2.4 we arrive at a contradiction. Therefore by Lemma 2.1 we obtain

$$f - a = \left(1 + \frac{P_{k-1}}{a}\right)(L - a).$$

- Список литературы

- A. H. H. Al-khaladi. "On entire functions which share one small function CM with their first derivative", Kodai Math. J., 27, 201 – 205 (2004).
- A. H. H. Al-khaladi. "On meromorphic functions that share one value with their derivative". Analysis, 25, 131 - 140 (2005).
- A. H. H. Al-khaladi, "On entire functions which share one small function CM with their kth derivative", Results Math., 47, 1 5 (2005).
- A. H. H. Al-khaladi, "Meromorphic functions that share one small function with their kth derivative", Analysis. 31, 341 – 354 (2011).
- R. Bruck, "On entire functions share one value CM with their first derivative", Results Math., 30, 21 – 24 (1996).
- G. Frang and G. Weissenborn, "On the zeros of linear differential polynomials of meromorphic functions", Complex Variables, 12, 77 – 81 (1989).
- 7. W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
- W. K. Hayman and J. Miles, "On the growth of a meromorphic function and its derivatives", Complex Variables, 12, 245 - 260 (1989).
- I. Z. Yang, "Solution of a differential equation and its applications", Kodai Math. J., 22(3), 458
 – 464 (1999).
- C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press and Kluwer Academic Publishers (2003).

Поступила 27 марта 2015