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1. INTRODUCTION

We consider an n-dimensional Finsler space F™ = (Af". L), that is, a pair consisting
of an n-dimensional differentiable manifold M™ equipped with a Fundamental function
L. The concept of an (a.f) metric. denoted by L{a.3). was introduced by M.
Matsumoto (3], and later on has been studied by many authors (sec [1 - 5, 8 - 9] and
references therein). Well-known examples of (a. 8) metrics are the Rander’s metric

(a+ 3). the Kropina metric “_7' and the generalized Kropina metric “:,:' (m#0 -1}

Recall that a Fiusler metric L{z.y) is called an («, 3) metric if L is a positively
homogeneous function of @ and 3 of degree oue, where a? = a,,(2)y'y’ is a Riemannian
metric and B = b;(z)y" is an 1—forni on M™.

We consider a special Finsler Space F" = {M", L(a, 8)} with the metric L{a. 8)
given by

11 Lo.8) = a+ 8+ —2

() (0,)—0'[" +(—:ﬁ—).
Differentiating equation (2.1) partially with respect to & and 3. we get

2, a7 el | A2
f"’_ 2a® 4+ 87 Jaf Lﬂ_ 2a° 1 3 -2::8,

- lo-3)* L ol o—

o 'l
f - Fida o 2 200 —2a8
ao = LS LAap = —'|-|~HD B L,,ﬂ - =BT

where
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A al, . - S8 _ oL
Lo=@ Ly=%% Loa=2%2 Lys=%F L=

In the Finsler space E" = {M". L(a. )} the normalized element of the support
I, = 8,L aud the angular metric tensor Ay are given by the following formulas (sce
f5):

L=o 1LY, + Lgb;.
hiy = pai; + qobib; + q_ (LY, + 1,Y:) + q_oVY,

where Y, = a,;37. For the fundumental function (2.1) the constants p, go. g_, and
g2 in the last equation are given by the following formulas:
dat - 8% - 8a’A + 4033

1.2 =LL,a"'= :
(1.2) p a o BF

25% - 10”8
(a — B)*
da® — 20233 + 803+ aft — P

a*(a - p)* '

4o — 2042

gy 9 T Lhesa™

go=LLgs =

g-2=La ¥(Log — Loa?) = =

The fundamental metric tensor g;; = 18;8; L2 for L = L(a, f) is given by the following
formule (see [4. 5]}:

(1.3) $j = paj + pobib; + po1(bY; + 0,)Y) + p oYY,
where
4 292 o349 _ 193
(1.4) ,Do=qo+L2=80 +,’$4+0Fx;3 8a"4d -md7
(o= 34
E 208 — 40%8 + (202 + 32 - 2a1)?
Py =g P 3l a*3 (04/1 afd)
afa — J)
231 + 8a28% — 6u® + L
_ 01— ‘ 5
e adln - 4) '

The reciprocal tensor g*7 of g,, is given by the following formula (see [4. 5]):
(1.5) g7 =p e — gW'b — s_ (b'y +Vy) — s’y
where &' = aVhy, % = a0 and
: ! 3
(1.6) so = ;{ppo + (pop—2 — 12} )a’}.
1
s_1 = —{pp-1 + (pop—2 — 7-,)8},
TII
| . o
S.o=—{pp_2+ (Pop-2 -7 1)52]-
TP

7 = p(p + pob” + p_1 B) + (pop—2 — p2,)(a?6* — 7).
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The hr-torsion tensor Cyyx = %iﬂkg.-, is given by formula (see {10]):

(]7) 2])(70‘. = ]),i(hu e + hjk"'x + ’lk,‘lﬂj) + YT TR M,
where

(1.8) = pa— —3paqe. ™, =b, —a 2By,

(1. 1 aﬁ \ 1

Here m; is a non-vanshing covariant vector orthogonal to the element of support y'.
Let {", } be the component of the Christoffel symbol of the associated Riemannian

space ", and lel Tk be the covariant derivative with respect Lo z* relative to this

Christoffel symbol. Define

(1.9) 2E,; = b;j + by, 2K yabiy — by

where b,; = 7;b;
Let CT = ([};.T5i- ) be the Cartan connection of F". The difference vensor
Di, =T — {ix} of the special Finsler space F* is given by
(1.10) Ve = B'Eje + FiB; + F} Bi. + Blbox + Bibo; — bomg'™ Bjx
—Cln AR = CimA} + Cikm AV 9" + M(C;mCok +
CimCi3 = CiiCrusl:
where
(1.11) By =pobx + p_1Yx, B'=g¢"B, FF=g"Fy,
B.‘J=%{P=|(ﬂi;’ 2YY)+dp m;m;}, BF =¢" B,
Al' = Bl'Ego + B’ "Ekn + BiF" + ByF)",
™ = B"Ew+2BoFy",  Bo = Biy',

and ‘0’ denotes the contraction with 3* except for the quantities py.gp and s,.

2. INpDUCED CARIAN CONNECTION

Let F"~' be a hypersurface of F” given by the equation z' = 2*(u”), where
a=1.23.(n~1). The clement of the support ' of F™ is taken Lo be tangential to
F7~1, that is, it is given by formula (see [6]):

(2.1) y= B, (1)n".
The etric Lensor o5 and the hu-tensor Cuy., of £~ are giveu hy
oy = gijB:_.B}y C{.ﬂ-’ - «’i]kB;Bé'm,'
and at each point () of F*~!, a unit normal vector N'(u.v) is defined by
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gy {2(u,v) y(uw )} BN =0, g {a(w, v), y(u, v)}N'N7 = |
The angulur metric tensor hap of the hypersurface is determined by formulas
(2.2) hap = hy By,  hyBLN? =0.  h,N'N! =1.
The inverse (B, N;) of (B}, N*) is given by
Bj = *'g;B). ByB{ =¢), BINi=0. BiN,=0,
N; =g,N?, Bf=¢¥B,. B.,Bf+N'N;=4
The induced econucction ICI' = (150, G, C4. ) of F*~! from the Cartan’s counection
CT = (T35 Tk, C3i) is given by fornwlas (see |6]):
U3t = BBy, + U B, BY) + ML,
Gy = BBy, + T BY).  C5, = BeC:, BBt
wliere
Myy = NCBLBY, M3 = g™ My, Hy=N(B,, +T 8,
and
By, w5k,  Blyw By
The quantities M. aud I3 are called the second fundamental v-tensor and the
normal curvature vector, respectively (see [6]}. The second fundamental 2-tensor /5

is defined as lollows (see [6]):

(2.3) Hpy = Ni(Bj, + U3 By BY) + MaH,,
where
(24) . b",‘) = -\'- ';‘ B;.\.‘

The relative A— and v—covariant derivatives of the projection factor B, with respect
to ICT are given by i
Blys = HapN', B,ls = Al,aN'
1t easily follows forin equation (3.3) that Mg, penerally is not symmetric and satisfics

the equation

(2.5) Hpy — I3 = MpIL, — My 15
implving that

(2.6) Moy = 1, Hyp=11, + M1

The following lemmnas, due to Matsumoto [6]. will be used in Section 4
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Lemma 2.1. The normal curveture Hy = Hgv? vanishes of and only if the nornal

curvnlure vector Hg vanishes.

Lemma 2.2. 4 hypersurface F'"~ ' is a hyperplane of the first kind with respect to
the connection C'1 if and only if H, = 0.

Lemma 2.3. A hypersurfoce FU'~1) is g hyperplane of the second kind with respect
to the connection CL if and only if 1, =0 and lap = 0.

Lemma 2.4. A hypersurface F\*~4) g q hyperplane of the third kind with respect to
the connection CT if and only 1f H, =0 and Hag = Mas = 0.

3. A HYPERSURFACE F("~1(c) OF A SPECIAL FINSLER SPACE

‘]
Let us consider a Finsler space with the metric L = a + 8 + 5. where the
vector field b,(r) = ;;‘1 is o pradient of some sealar function b(x). Now we consider
a hypersurface F1"~Y(¢) given by the equation b{z) = ¢. where ¢ is a constant (sec

[10]). From the parametric equation z* = '{u”) of F”'(c) we get
q { g

e} _ o

T =

I} e . 0
Jz' Dur

b8 =0,
showing that b;(x) is a covariant component of a normal vector field of the hypersurface

F"*(c). Further. we have

(3.1) b,B. =0 and by' ~0. that is. 3=0,
and the induced matgic L{n. v) of F”~(¢) is given by

(3.2) L{u.v) = a,.,gt:“v",aad = a.JB:,B;g,

which is a Riemannian metric.

Taking 3 = 0 in the cquations (2.2), (2.3) and (2.5) we get

(33) p=4, =4, g1 =0, g2=-4a72
po=8. p_y=4da !, p_,=0, 7T=16(1+8).
1 1 —b?

Titrry T aeie) TP m1+5)

From (2.4) we get

o 1 ! ”? i
(3.4) Y=gt ‘- P 4 Py 4+ ——————— 1
IR et T deae Y Y G

Thus, from (4.1) and (4.4). along F"~!(c) we obtain
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yijble = T'-IA:TT—
Therefore we have
(3.5) W) = E N, 5 =ahb
1+ "1

where b is the length of the vector b'.

Next. f[rom (4.4) and (4.5) we get

(3.6) V= aft; =y S
: Ny

{1+82%(] — a?)}2 1+ 83(1 - a?)

Thus. we have the following result.

Theorem 3.1. In a special Finsler hypersurface FU" =V (c). the induced Riemannian

metric s gwen by (4.2) and the scalar function b{z) is given by (4.5) and (4.6).

Now, observe that the angular metric tensor hy; and the metric teusor g,, of F

are given by formulas:
: 4 4
(37) h,‘,J = 4(1"]' + 4b,‘,bj - EZ_Y'YJ and 9i; = 40.._, + Sb,b) + —(b,-} + b,Y,.
Q

From cquations (4.1). (1.7) and (3.2) it follows that i[hi‘"g denotes the angular metuic
w-1

)

F'(':)" we have % = & and hence from equation (2.6) we get

) . (o)
tensor of the Riemannian a,,(2), then along F) we have b, g h‘f" Thus. along

Y, =48 m; =b;.

o

Therefore, in the special Finsler hypersurface F(((',; "1 the hu-torsion tensor becomes

| [
(3.8) Cigte = g Uhushi + hyibi + hinby) + fb.b]-bk.
Next, it follows from {3.2), (3.3). (3.5). (4.1) and (4.8) that
L
Mog = — 1 ——has M, =0.
(3.9) Mos 2"\,‘“‘“)! s and Al

Therefore, it follows from equation (3.6) that Hyg is symmetric. Thus, we have the

following result.

Theorem 3.2. The second fundamental v-tensor of the sperial Finsler hypersurface

~(n-1})

Py 8 ginen by (4.9) and the second fundewmental h-tensor Hyy is symmetric

Now, from {4.1) we have b, B}, = 0, and hence

b8, + 6B, ), = 0.
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Therefore, using the equality byg = b, B} + b.|; NIiHg, from (3.5) we oblain

(3.10) by B}, B + by, BON Hy + billagN' = 0.
Since b,|, = —b;.C";,q we get b,; BL N = 0. Therefore. taking into account that b;); is
symimetric. from equation (4.1()] we have
(3.11) \/4(] +,2)11(,u+b,l,l),',l}; =0
Next. contracting (4.11) with ¢ and using (3.1), we get
.-
(312 \ WH + b, By
Again contracling by ¢® the equation (1.12) and using (3.1). we have

» 120 B Ho YR = 0.
313J‘ v‘ i1 +f)2)Hl] & vy

It follows from Lennas 3.1 and 3.2 that the hypersuface F‘ ; Yis a Lyperplane of
first kiud if and only if Hy = 0. Thus. in view of (4.13), it is obvious that P(") ' s
a hyperplane of first kind if and only if by,5°%’ = 0. On the other hand, by, bemg
the covariant derivative with respect to CLI' of £ is defined on 3, but by; = 9,6y

the covariant derivative with respect to Riemannian connection {',k} constructed
from a,;(x). llence by, does not depend on .

Below we consider the difference by, — by;. where b;;, = 7,b,. The difference tensor
D =I5 — {5} is given by (2.10), and since b, is a gradient veetor, then from (2.9)

wehave E;y=b;5, F, =0 and F]= 0. Thus, (2.10) reduces o the following

1J
(3.14) D = B'by + B'vbuk + Bpby, — bomg™™" ik — C;,,,A
( Moy A" +C]’”“ 4rnJls + A.( (‘x + Ck,"C;I; = m "m)’
wher
: 1
(3.15 B, = 8, + 1o~ 'Y, b ;
! i 'loll)] +u(l+(i")“
4 2 Y, 12
= me(m, Bij - a—(ft,‘_,' = 02" ) aF Zbib;,
i 5
1‘. = el - i Q" » =
Rl Il LR i Py
(1 + 65)

202(1 + bz)"byl- AL = B"%o + B"ino.

In view of (4.3) and (4.4). the relation in (2.11) becomes to by virtue of (4.15) we
have B} = 0. B,y = () which leads Af = B™hy.
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Now contracting (4.14) by y* we get

D.;U T B'bjo + B;bOU - B"C,, buo

2

Again contracting the above equation witl respect to g’ we obtain
i« L
Doy = Bty = (!,i-fp)b' -—1l__y Hoaw,

wilein

In view of (4.1), along F'((L:Y e get

[ (1 + 6b%) 1
n b.D' B o + ST e LT I
(3.16) = et eyt b b

Now we contract (4.16) by 3’ to obtain
1
(3.17) b; Dy = (I—H;Tf;bmo
From (3.3). {4.5), (4.6), (4.9) and A, = 0 we obtain
b,b™C: Bl = 4°A, = 0.

jm*~o
Thus. the relation by, = b,; — b. D}, and the equations (4.16), (4.17) give

b.‘uy'y“ = bny — br'D:m = l;h'l

Consequently. the equations (4.12) and (4.13) can be writien as follows

I
el

|
: e ——boB, =0
(3-18) Vir+v?) Ty P Pa

! b2 1
\(4(1+b2)H"+ T+ 02

b'»iﬂ =0.

Thus, the condition ffy = 0 is equivalent to byp = 0. Using the fact that 3 =by" =0
the condition bgg = 0 can be written us b, y'y’ = biy'd;y’ for some ¢; (). Therefore
we can write

!

(3]9) | 2[),] = b.'Cj + 4.

Now from (4.1) and (4.19) we get
boo =0, b;ByB, =0, b,B.y’ =0
It follows from (4.18) that H, = 0. and hence in view of (4.15) and (4.19) we get
bob' = W, Am = 0, 435 = 0 and B, B} B} = Zhos
Next, we use the equations (3.3), (4.4) (4.6). (4.9) and {4.14) to obtain

= b (4 + 3¢)
(3:20) WO BLBY = ~ T s o
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Thus. the equation (4.11) reduces to the following

[ b2(4 4 30%) |

LA R R
Vi +6 ™ " e + 027

(321)
and hence the hypersurface I"(""' " is nmbilic. Thus, we have the following result.

\ L -1
Theorem 3.3. A nccessary and sufficient condition for F'""\ " to be a hyperplane of
first kind is {(4.19). In this case the second fundamental tensor of F("' ; ' 15 proportional

to its angular metric tensor.

Now. taking into account that by Lemmna 3.3, F(ll,",' Vs a hyperplane of second
kind if and ouly if Hy, = 0 and H,y = 0, from (1.20) we get ¢g = o(z)y* = 0.
Therefore. there exists a function w(z) such that ¢;(z) = ¥(x)b;(z), and, in view of
(1.19). we get 2b,, bi(z)w(x)bi(xr) + b, (£)v(x)h(.e). The last cquation can also be

written as follows b,; = y:(z)}b;b,. Thus. we have the following result.

Theorem 3.4. A necessary and sufficient condition for a hypersurface F;:;_" to be

a hyperplune of second kind is (4.21).

Putting together Lenmna 3.4 and fornmla (4.9), we conclnde that F(L)—" is not a

hyperplanc of third kind. Thus. we have the following result.

Theorem 3.5. The hypersurface Fi\ ' is not « hyperplane of the third kind.
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