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Abstract. In the frunework of von Neuniann's description of measurements of
discrete quantum observable we establish a onc-to-one correspondence hetween
symmetric slatistical operators W of quantum mechanical systems and clussical
point procexses xyy, thereby giving a particle picture of indistinguishable guantum
particles. This holds true under irreducibility assumnptions if we fix the underlying
complete orthonormal system_ The method of the Campbell measure in developed
for such statistical operators: it is shown that the Campbell measure of a statistical
operator W coincides with the Cainphell mcasure of the corresponding point process
sy Moreover, again uuder irreducibility sssumptions. a symmetric siatistical ope-
rator is conpletely determined by its Caunipbell measure. The method of the Campbell
measure then ig used to characterize Bose-Einstein and Fermi-Dirac statistical ope-
rators. This is an elementary introduction into the work of Fichtner and Freudenberg
[10, 11] combined with the quantum mechanical investigations of [2] and the corres-
ponding point process approunch of [30]. 1t 18 based on the classical work of von Neu-
wmann [22], Segal, Cook and Chaiken |28, 8, 7] us well as Moyal [13].
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1. INTRODUCTION

We consider guantum statistical states and ask for a precise particle picture of
them. Under irreducibility assumptions we develop a one-to-one correspondence between
symmetric statistical operators W of finite quantun mechanical systems and point
processes aw, Lhereby giving a particle picture of indistinguishable guantum pacticles.
This is done by developing a disintegration theory for such statistical operators in
complete analogy to the decoraposition of classical into conditional probabilities.

We also need the method of the Campbell measure. which is well known for point
processes. and which is developed here for statistical operators. (This is inspired by
the work of Fichtner, sce for instance [12), and Lichscher [16].) We show that the

Campbell measure of a symmetric statistical operator W coincidex with the usual
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Campbell measure of its law xyy, morcover, under irreductbility essumnptions, W is
then completely determined by its Campbell mcasure.

We then present the point processes which correspond to the quantum statistical
operaturs of Maxwell-Boltzinann, Bose-Einstein and Fermi-Dirac in the case of a fxed
number of particles. Surprisingly. only the point process belonging to the Maxwell-
Boltzmann statistical operator is really known and has been considered in probability
theory until now.

We then extend our considera® «<ms to systemns with a random number of particles
and therefore work on Fock spaces. lu this framework the Poisson point process
belongs to the Maxwell-Boltzmann statistical operator. Next the symmetric Bose-
Einstein and Fermi-Dirac stalistical operators are coustructed togethier with their
associated point processes. Since these statistical operators are determined by their
Campbell measures, and since the Campbel] measnres coincide for statistical operators
and their pomt processes, we shall investigate the Campbell mcasure of these point
processes.

As a result of the application of the nethod of Campbell nieasures we find that
the point processes belonging 1o Bose-Emstein and Fermi-Dirac statistical operators
respectively are given by Papangelou processes with explicitly given conditional intensity
kernels. They are called here Polya sum and Polyn difference processes respectively.
The corresponding random fields are of first order and have independent increients.
The distribution of the field variubles, which represent the number of particles in a
given region, are explicitly known, These results have been shown in {20]. Thus these
processes have all characteristic properties of an ideal gas. In this way we obtain
detailed informations about the poiut processes und thereby about the correponding
statistical operators.

We stress liere the point of view that for the developement of a full interacting
theory of quantum gases ane should start with the coriesponding ideal gas and then
modify this by neans of a Boltzmann factor to include an interaction between the
particles, (First steps in this direction can he lownd in [20].)

Historically the first attempts to unify quantum mechanics with point process
theory can be found in the work of Fock [13), Segal [28], Couk [8] and Chaiken |7| and
thewn, more systematically, in the work of Moyal [18]. For a more recent contribution
to the construction of Bose and Fermi processes [rum the point of view of quantum

mechanics we refer to Tamura and Ito |29).
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Note added in February 2015. Unpubtished versions of this work exist since 2008.
We did not intend to publish it. But in the meantime several publications (see 20,

19, 26, 27| e.g.) referred to it 50 that it might be useflul to make it available to the
public.

2. DISINTEGRATION OF STATISTICAL OPERATORY

We consider von Neumann's description of the measuring process of discrete quantum
observables (cf. |22, 23]) and use it for n representation of statistical operators in termis
of their conditional statistical operators aud their laws.

Counsider a countable set Y # 0 together with an equivalence relation ~ in Y
Represent (Y,~) by means of (I',r) in such a way that |' is a countable set and
r:Y = T asurjective mapping satisfying

(2.1) (x ~y = r(z) =r(y).

Given v € [’ we set Y, = {r = v} for the associated equivalence class. In the sequel
we assutne slways that

(2.2) 1<cdY, <+ foranyy

Let H be a complex separable Hilbert space of countable dimension |Y|. We identify
the set Y with the complete othonormal system (cons) ¥ = {¢yly € ¥} chosen in
H. Furthermore, we set ¥, = {e;ly € Y,}. The cquivalence relation ~ induces an
cquivalence relation in Y by means of {e; ~ ¢, & 1 ~ y) with ¥, a5 equivalence
classes.

The set of events of the system described by the Hilbert space X can be identified
with the collection of all orthogonal projections resp. all (closed) subspaces. The state
space 8(H) of the system is the collection of (self-adjomnt) bounded linear operutors
W on H which are positive and have fruce one, ie. tr W = 1. Such W are called
statistical operators. I'hey form a convex set whose extremal points, the socatled pure

stafes, are defined by
hoh=(h,) h he 3 jjh) =L

By the spectral theorem every state W admits a representation

W= ip" ~hpohy,

tym]
where (p)n is & probability on N and (Ay)a some cons in H. (For more details we
refer to [9].)

[
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Our problem is how to associate to a given statistical operator W € §(!H), admitting
aspectral resolution with respect to a given cons Y, a law, and, in particular situations,
A point process &, aud viee versa.

In the above situation we are given a complex separable Hilbert space H with fixed
basis Y. indexed by Y. We consider

5, = spleyly € ¥},

the smallest subspace of H containing {e,|ly € Y,}. The collection (H,)e1 is an
orthugonal decomposition of H; and H is the direct sumn ol it. We have

1 <dim X, = [Y;]| =cd¥] < .
Here cd denotes cardinaelity. Finally we write
P'\' = Pa{w

for the orthogonal projection onto H,.
We start with a statistical operator W € §(H) which admits the speetral resolution

(2.3) W=3" Pol)
yey

for some law o on Y with respect to the chosen cons Y. Here P, = e, ¢ ¢, with

ey0e, = (e, ) -e,. Thus W is diagonalized by the given cuns Y. Set
(2.4) W, =" Py
v )

This defines self-adjoint linear operators on H. leaving H., invariant s.th.
W, =P,WP, W, %! =0}

Decomposition (2.4) is unique. If 1t Wy = tr(P, W) is strictly positive, we can
vormalize W, to obtain the following statistical operator on H:

P,WP,

(2.5) W(|y) = WY

This is called the conditional statistical operator of W ginen P.. The notiou of
conditional statistical operators has been studied systematically by Cassinelli. Zanghi
and Ozawa (cf. [6, 23] and the literaturc cited there).

Theorem 2.1. Given an equivalence relation in'Y whick can be represented by means
of (T'.r) in such a way thet conditions (2.1) and (2.2) are satisfied, any statistical
6
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operator W € 8(H), admitiing a spectral resolution (2.3) with respect o Y, can be
represented as

(2.6) W=3" W) swiv),

~€T
where W(.|y) € 8(H), leating H, muariant with W(.|[y)H; = {0}. and where xy is
a probability on U having the following properties:

(2.7 sw(y) =tr(P,W). ~€er.

This decomposition is unique.

In formula (2.6) and also later we use the convention that Wiiinl - wywls) =01l
Kw(7) = 0. We call kg the law of the statistical operator W It is some kind of partial
trace of W with respect to «, and we also write xyw(7y) = ¢r,(W). This means that
iry(W) = 3y (&) Wey). We observe that for the calculation of the law mw we
can use the cons which is most convenient. because a trace does uot depend ou the
choice of a cons. Decomposition (2.6) is completely analogous to the decoposition
of classical probabhilitics into conditional probabilities; and it is the starting point for

the solution of our problem.

3. DISINTEGRATION OF SYMMETRIC STATISTICAL OPERATORS

Consider uext a finite group § acting on Y together with the equivalence relation
~ induced by G in ¥ by means of x ~ y < 3g € G-y = g.x. All orbits are finite,
and G acts transitively on each of them. We assume also that (Y, ~) is represented
by (T.r). As above H denotes a complex separable Hilbert space with a cons given

by Y. We consider then the unitary representation U = (tg)seq induced by GSouH

UA=S"0 ey hmY Moy
Y y

It is obvious that U acts.on H as well as on cach H,. Thus each K., as well as

by mcans of

!H::- remains invariant under Y. The collection U, of restrictions of U, g€ G, to the
subspaces H.. is called an irreducible system, if any closed subspuce S of H., which
remains muvariant under 1L, is either {0} or M. This is equivalent to the condition
that it does not commute with no non-trivial (self-adjoint) projection (|1]. Exercise

1.3.D.) A statistical uperator W is called symmetric (with respect to §)if
(3.1) U,WU, = Wiorany g€ S.

I the sequel we consider symmetric W admitting a spectral resolution for cons Y.
7
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Lemma 3.1. W is symmetric if and only if each W, is symmeinic.

Proof. By (3.1) combined with decomposition (2.6) W is symmetric iff
ZW‘ = Zu,w,u, \ forany g € S.
¥ 0

The uniqueness of the decomposition combined with the fact that each 3., vesp. H3
remains invariant under U immediately implies the result. 0

We need also the following result which in our context is Schur's lemmna ([4], Satz
7.1b.):

Lemuma 3.2. Let W be symmeetric. [f the collection U, 13 trveducible then W, 15 of
the form W., = k(1) - P,. Here 3, are non-negative functions on I, deternined by
the equation x5, () = (ey. Wey), 7= o

The positivity of x}, follows from the positivity of the statistical operator W. Thus

we obtain the following disintegration of a synunetric statistical opcrator W.

Corollary 3.1, If W is symmetric and if cach 1, is :meducible then

W= Z Kw(v) Py and Z aw(y)dmH, = 1.
€T el

To summarize we have the following result.

Theorem 3.1. {nder the assumption that each U.,. v € T, is iwrreducible the equation
1
i = — P .x
(3.2) w=3" Tmoe P )
~€r

induces o one-lo-onc corvespondence belween symmeliic stalistical operators W oon

H, admatting a spectral resolution with respect to Y. and probebilities x on T.
This correspondence will be the main device in the sequel.

Corollary 3.2. If W is a symmelric statistical operator on M, admilting o speciral
resolution with respect ta Y, and if U, is irreducible then the conditional stalistical
operator W{.|~). if well defined, coimcides with the normalized projection onte H, :
(33) W) = goegr Py

Morcover, sw(y) = dimH,, - w3 {9). 5 € T, the law of W, deternines the operator W
comnpletely.
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From now on the underlying group § is given by a finite symmetric group §(E)
of all perinutations ¢ of some finite set E. In this case we consider the following
operators:

1
1 = Ef Z sgna(o) - U,.
. a€B(E)

Here sgn(o) € {1, +1} denotes the sign of o where sgn , is the identity and sgn =

sgn. Both operators are orthogonal projections onto subspaces H, and H_ of 3 and
satisfy

(3.4) U ITy = IOy UglT_ =syn(o)- - for any o € 8(F).

In particular the operators fI; and f1_ arc symmetric. The elements of K, are also
called symmetric; the elements of H_ antisymmetric

4. EXAMPLES

We consider the following standard finite setting (cf. [2. 24]). X is a finite, non-
cmpty sct of cardinality d: and Y = X According to the convention of quantum
mechanics the 1-particle space of a particle in X is given by CVY. whereas the n-
particle systein is described by the complex [Hilbert space H = ®" CY, ie. the neth
tensor power of the 1-particle space. Note that H coincides with C¥ and if n = 0
then ‘K is the one-dimeusional complex plane. In CX we choose some cons (e)zex
conveniently. Y = {e, = @64,y = (z:....,7a) € ¥} then is a cons in H indexed
by Y. If m = 0 then Y is a singleton consisting of sowne unit vector 1 in € fixed once
and for all. The underlying symmetric group is given by the collection §,, of bijections

aon E=[n]={}...,n}. 8, acts on ¥ by means of
o {(Z1secea @) = (Ta-101)1- - Ta-t()))

It operates on H by means of the collection of unitary representations consisting of
Usie, @ Qe 1y 3 @er_,

and is then extended by linearity. We shall be interested in statistical operators
which are symmetric, i.e. commute with the above representation of §,. and which
admit a spectral resolution with respect to ¥. Every observation W of a system of
identical particles has this property. The Hilbert spaces Hy . H_ | appropriate for the
description of particles obeying quantu statistics. are constructed by means of the
projeetions T, JT_ induced by the group §,,.

9
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A representation (', 7) of the equivalence relation induced by §,, on Y is given by

F=MuX) = {8, + - + 6 [(z1eer.2n) € Y],

L € TR N e R SRR o

4.1. The Maxwell-Boltzmann statistical operator. In H we choose a cons indexed
by Y in the following way: We are given a statistical operator w on the 1-particle space
%, = CX. Denote by g the probability on .\ appearing in the spectral resolution of
w. which al the same time gives a cons (€, )ze x in Hy. This basis will be fixed also in
the following examples and enables one to define the cons Y in M as above. Moreaver,
we always assume that p is not 2 Dirac ineasure. This implies that d = cd X 2 2.
The Mazwell-Boltzmann statistical operator for w is defined by the tensor product of
w: M = «™. Here uw™ denotes the n—fold tensor product of u. Using proposition
16.3. in 24| this statistical operator can be expressed explicitly by
4.1) ML =3 B e

= N
where P, = ¢y oe,,, und ¢" is the product law p® -~ ® g on Y. (4.1) is nothing else
than the spectral resolution of MI with respect to Y. M7, is symmetric with respect
to §,.. By Theorem 2.1 there is associated the following law on M, (X). which thus
is a point process in X, namely

(4.2) ,\-(w)=(:') Il e, veM.(x).

T7€X

Here -

n n! i
()= ey 7SN

{4.2) follows from the fact that dimHD? = (2) and that. for y = (z;,...,2,) € ¥,
and thereby ¥ = 8., + -+ + 4, . by formula (4.1),

n
R(Y)=(er, B B er, .M} er, ®11B6e;,) = n o(x;).
J=1
‘The point process k is called Mazwell-Boltzinann process for the parameters (g, n),
and will be denoted by P.

1.2. The Bosc-Einstein statistical operator. We start with the following obscrvations:

We are piven a particle number n > 0. One can construet by means of Y, as chosen
10
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above. a cons Y. in My and Y_ in H_ respectively as follows:

" 2(a) 2
Ya = {“ ) = |‘J" _},) A1y Raemuppy €77y € M (X J}u
H_ = {f _("T) = V‘;;" TIE Ene,"m‘n €a|Y € M"(X)}
Here the tensor product is taken along a fixed nmuneration of X', and
M, (X) = {6,.l fese b, (1. .z) EY }

Y is the collection of all y € Y with pairwise distinct comnponents
We work separately in each of the spaces #. with these cons. In terms of Ya

the projections {13 can be written as 14 = Y Q. where the one-dimensional

€l g
projections are given by Qf = eoe, ¢ € Y4 Since there is a bijection between M_ (X))

and Yy resp. M, (X) and Y we sce immediately that (recall that 4 = trX)

‘d+n~ 1
n

A
:-d‘;’+=k : edy_:(f) if n<d: edY_=0. if n>d.

The Bose-Einstein statistical operator for w is given by the conditional Maxwell-
Boltzinann statistical operator given the projection f1_. This is an operator on H

defined by EZ = W} IT M. Note that
(i M) = Y ] el >0

PEM_ | XjaeX
because the g is assumed not to be a Dirac measuie,

We chouse a cons in H, for which E? can be diagonalized. namely Y, which is
indexed by the finite set M, (X). The symmetric gronp now acts on the basis ¥, and
is trivial. i.e. a singleton consisting of the identity. Thus the associated equivalence
relation ~ is given by the identity of elements in Y4 ; and the representation of (Y, .~}
is given by ' = M, (X) with r : ¢;(3) — 7. Theorem 3.1 then implies that the
point process belonging to E2 is given by the following point process in X: For any
7 € My(X)

'(/1.3) E:("] = . H y(m?(“ﬂ

2 e, ) Llex olay @ L5
Morcover. the Bose-Einstein statistical operator admits the representation
+
Ez= Y E0) QL
FEM, (X)

We call E} the Bose-Einstein point process in X for the paremeters (n.0)
11
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If o is the uniform distribution on X, and thereby w = -g,t'rl, where 7 denotes the

identity uperator on €, then
1
Ef - ———
B d+n-—1
n

and the Bose-Einstein process is then given by the uniform distribution on M (X):

By

-1,

1
Elg)e —m———— e M,(X).
‘! d+n-1 e {4
n

4.3. The Fermi-Dirac statistical operator. For n < d = cd X the Fermi-Dirue
statistical operator for w is given by the conditional Maxwell-Boltzmann statistical
operator given the projection 4/_. This is a symmetric statistical operator on H_
defined by

1

1.4) DL = g -Me

This operator admits a spectral resolution with respect to the cons Y_ in H{_., where
again the basis (e;);ex i8 coming from the spectral resolution of w and p is the
corresponding law not being a Dirac measwre. By Theorem 3.1 we then obtain as
before the particle picture of the Fermi-Dirac statistical operator: It is given by the
following simple point process, called Fermi-Dirac process for {n. p) in X:

! .
(4.5) Di(7) = 3tr I] ete)™, 7€M, (X). and 0 otherwise .

< ag X
The partition function now is given by 7 = E”( M. (X) D= e p{a)"®) Thus Dj is
the couditional law of E} given M, (X), 1.e. given that the realization v of the particle
process is simple. We again have a repiesentation of the Fermi-Dirac statistical
operator which is parallel to the one for the Bose-Einstein statistical operator, namely

Di= ) Dpm-Qy
FEM_LX)

Note that in the special case where w = 5 - I, thus p being the nniform distribution

on X. the Fermi-Dirac statistical operator is given by

.,
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and the simple point process by the Fermi-Dirac process in X for the parameters
{n,d). (Recall that d = | X|.)
|
(=)
n

5. THE METHOD OF THE CAMPBELL MEASURE

Ofly) = TEMLX)

In the situation of the last section we introduce the occupation number vperator
and the Campbell operator respectively Campbell measure of a statistical state.

The situation is the same as in the examples: 3, = CX for some finite X (c;)ze x
is a cons in H;. Recall that T = M (X}, and r : (z;,.. .. 2,) —
Or, +:--+0,,. Note that r = M o¢. where ¢: (z),....z,)— €, & - B e, and
Meg, ®  ®er,) =0, +- +6;,.

We definc for z € X the occupation number operator in r on H = HP?" as follows

If I is the identity operator on H,, let

"
“"l) :\.,-Zl'n Re,00,° ¥4
’-‘ ?

(In the case n = 0 we set No = 0-I.) And. more generally. Ng = 2z Ns the
occupation number operator in B C X. It is cvident that Ng = (g{M)/". where for

Zy,..., Ty € X we set
B0z, +- - +8z.) = (0, + -+ 6, )(B).

Extend Ny ) linearly to an operatar-valued measure on X x M, (X)) by Ny, = (,,(AM)
I, h € Fi(X x M (X)). Here (y(p) = [h{x,u)p(dz). and F, denotes the
collection of non-negative, measurable functions on the underlying domain. Thus in
particular Ngyxe = (p{M)-10(M)-I®". This shows: Any element e, = ¢, % &«
of the basis is an eigenvector of Npyc with eigenvalue (5(A/(e,)) - 1o(M(e,)).

We are now in the position to define the Campbell measure for statistical operators
on H. Given a statistical operator W we call WN, | on ' the Campbell opcraior
mensure of W. Iis trace Cw(.) = tr{WN, ) is called the Campbell measure of W on
X x M, (X). Recall that the Campbell measure of the law xw of W is defined by

er (a7) - ')‘(G)I’C‘W(')'), a€ X,v€ Mw(x)
It is obvious that such a Campbell measure is supported by the set
{(a,7) : v(a) > 1}. Moreover, we sec that the law xw of W is determined by its
Campbell measure.
13
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Proposition 5.1. For any stetistical operator W on the space M its Campbell tnrasure
coincedes with the Camphell measure of its law, r.e. Cop = €. The law of W s
completely determined by Cyw. If W is also symmelric then, under the additional
iveducibility assumptions of Theorem 2. even W is completely determined by its

Campbell measure.

Proof.
RN = 3 ey Wn(es)) = 3 Gnr(@) e Wiew)h = 32 6u3) 3 (e Wiey)).
v y ¥ vy,
The assertion now follows {rom the definition (2.7) of kw. The remaining statement
follows innnediately from Theorem 3.1. (]
We remark for later nse that Proposition 5.1 renains true for statistical operators
W acting on subspaces of H because the occupation number operators Ny act on

them by restriction
G. STATES ON FOCK SPACES AND TIEIR CAMPBELL MEASURES

The above picture is now extended to svstems with a random particle number.

Let X be a fimite set of cardinality d > 1 and 2, = @™ C¥.m > 0, with H, = C.
The cons in € consists of somne unit vector. denoted by 1 The direet sum of these
Hilbert spaces is the Fock space over €*. denoted by H. For esch m the symmetric
group §,, acts on X' aud the corresponding unitary representation on H,, is denoted
by U, This family of representations gives rise to a unitary operator U on H, defined
by the direct sum U = Y .. Thus U(g)h = U, (g)h. if g € S h € H,,,. Given
statstical operators W, on Hy, and scalars p,, > 0,27 2 0. sunnning up to 1. then
the direct ~um

oc
(6.1) : W= puW.
m=0

a statistical operator on the Fock space H. W is svnunetric if and only if each W,,,

has this property. It is obvious that the point process belonging to this statistical

opcerator is given by

22C
(6.2) Kw = Z Pm KW, -
m=0
The simplest examples are obtained if W,,, = w' for somne given statistical operalor w

on H; = CY. Only themn will be considered in the sequel in detail. In this framework

the oecupation number operator is given by the direet sum operator N, = 3> M"’

on the Fuck space over C¥. Here Ny™' is the occupation number operator on %,
14
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as defined above. And again Ng = (p(M) -/, B C X, wheic [ now denotes the
identity operator ou H. Extending N to an operator valued measure on X x M (X)
as above by N, = ¢, (A) - I, h€ F (X x M (X)), we are now in the position
to define the Campbell measure for statistical operators on H as we did already in a
special situation. Recall that £y ()) = [ h(r. 1) p(d x).

Given a statistical operator W on H we call WN( | the Campbell operalor measure
of W. By Theorem 2.1 we know that WX, — E-,c_r(h*f‘”l"w{' ) -W( ). h € F,
Define Cy(.) = i7(WN( ). This object is called 1he Campbell measure of W . Arguing
as above we obtain

Theorem 6.1. For any statistical operator W on the Fock space H onc has Gy =
Civ - Thus the law of W is completely determined by Cw. If W is also symmetiic then,
under the additional iveducibility essumplions of Theovem 3.1, even W s complelely

determined by its Compbell measure.

Consider now the direct sums 7y =

*
o 1T

. where 1" is the orthogonal
projection onto the BE- resp. FD symmetric subspace of H,,,. 114 is then the orthogonal
projection onto the BE- resp. FD symmelric subspace Hy of H. 1t follows (sce [2])
that Ty satisfy
(6.3) UMy = sgns(o)Ty, 0 €8x := | Sn

m20
We are mainly interested in statistical operators W living on the symmetric subspaces
Hz. By this we mean that W satisfies the conditions W = [T WIT, . In case + this is
cquivalent to say that W is Bose-Einstein symmetric. i.e. U, W ="W. g € §: and iu
case — that W is Fermi-Dirac symmetric, i.e. Uy W = sgn(o)W. 7 € §.. Moreover.
these conditions imply the symmetry of the statistical operator. (All this can be found
in |2|)

Theorem 6.1 remains true for statistical operators acting on Lhe Fock spaces Hy
because the Ng act on Hy by restriction. Note also that one obtains by means of a
basis in H; a basis in the Féckspaces H. Ha by taking unions U, o, W™ 1,2, Vi
angmented in cach case by the basis in Hp. which consists of 1. Considered as an
clement of the Fock spaces 1 is called ground state and corvesponds to the empty

particle configuration.
7. STATES WITH RANDOM PARTICLE NUMBLRS

The method of second quantization is recalled which pennits to lift an operator

on a l-particle space to a Fock space.
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71. The method of second quantization. We recall the method of the so-called
second quantization. The idea behind is to lift operators H on 3 to one of the Fock
spaces. The method goes back to the work of Fock [13], Cook (8] and Berezin [3] (cf.
also [5]). If H is a statistical operator on H. one can define a operator Hy, on the

tensor product H,, by setting Hpl = 0 and

m
Hoy(€a, - R¢€q,)= Zem R Req, ®-- Reg,,. ay,.--.am € X.
=l

Denoting by 4,; the Kronecker symbol,

m

Hn=SN H% & -.@ Ho.

2

i

The direct sum of the /{,, is denoted by
=
dT (H s T,
m=0

Note that we used this method already for the operator e, oe, and obtained in chapter

6 for the operatur dI'(e, ¢ €.) the occupation number operator N; on the Fock space
ver CY¥

If w is a statistical operator on H. the second quantization of w then is deflned by

-

I'(w) = Z ;%iw’".

m=0 1
This is an operator vn the full Fock space H having finite trace c.

An important observation is given in terms of such trace class operators These are
multiples of statistical operators. i.e. operators of the form w = z&™, where = > 0
and w is some statistical operator. In this case

O
T(w)=Y = &™ withtrT(w) =c*.

m!
m=0

Lemma 7.1. Let Il be o bounded, self adjoint operator such that w = exp(—BH) is

a trace class operator with f € Ry. Then

"

cxp (-8 H)™ =exp —.12 H @... @ Hb~

=1

Recall here that the left hand side of this cquation is given by ¢ #*# ... g 8
For a proof of the lemma we refer to Cook [8].
16
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Lemma 7.2, Let II be a sclf adjoint operator such that w = exp(—3H) is a trace
class operator with 3 € R. Defining the associated Gibbs state

I
7.1 e S L
(.1 tr onp(-ain) P(~BH)
and z = ¢d exp(—BIH) we obtuin
=
:
(7.2) I (exp(-3H)) = E_u ;!-(.""

T (exp(—AH)) is trace class unth trace c* .

As a consequence we sec that M. := ¢™* I' (exp(—B8H)) is a statistical operator
on the Fock space.

According to Lemmas 7.1 and 7.2 there are two representations of this operator:

N o 1 -
p—— —~ . s — - Yo 5 e,.
M,c=¢ E _m'.G =e — P 3 E H"g . @&H
e ot =1

To suminarize in a slightly modified way: Given some trace class operator w = 2w
with corresponding spectral measure g = :g, then w™ has trace tr u™ = z™. In this

casc Lhe associated scecond quantization of w is given by

1 o= tru™ o™ 1 o= 2™

Z,, is the normnalizing constant. In this way the trace class operator w is lifted to
some symmetric statistical operator on the full Fock space H.

The construction principle behind the method of second guantization is: Given
m, the trace class operator w™ is nortalized to some statistical operator w™ then

ed w™

weighted by the factor “““— and summed up: finally it is normalized so that the

resulting operator becomes statistical.
One also uses this quantization method in a sligthly generalized form to lift the

underlying w on the subspaces Hy and obtain the statistical operators

. 1 :’.t (™ o™ e~
=S r =
3] ,,‘L_’n . er(f1Y ]w'")

1 a0 ) n"_"‘)u.m
D, = — tr(T ™) ———.
YT E, ,,,Z.:u el 1™ )

. = T -
Note here that the normalizing constants =% = Z:'=O'r(ll: M) are termwise

strictly positive and convergent on account of the assumption that g is not a Dirac
measure. E,, is called the Bose-Einstein operator for w, D, the Fermi-Dirac operator
17
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forwand p¥ :mv— 2 -ir(ﬂ;"')M’_") the particle number distribution of E,. or E,,
respecitvely. Thus the operators M,,.. E,, and D, are the sccond quantizations of w for
the different Fock spaces H. H4. One question then is to calculate the correponding

laws and ro characterize them.

7.2. Maxwecll-Boltzmann statistical opcrators with Poissonian random particle
number. The Maxwell-Boltzmaun statistical operator is described as a solution of
an integration-by-parts formula.

We are in the framework of section 4: @ is a statistical operator on CX. X being
a finite set of cardinality d. As above we choose & cons e..z € X, the one coming
from the spectral decomposition of w with law 0. We are interested in the symmetric

statistical operator given by the sccond quantization of the trace class operator w =

A S0P g

(7.4) My =¢™ — .M
m!

This is the Marwell-Boltzmann statistical operator for z,w. We remark that, instead

of the Poisson law, any law (., )m can be tuken to get some statistical operator. By

formula (6.2) the corresponding point process is the Poisson process P, with intensity

0 = z9. Thus ngg, = P,. where
X m
,.. v = *‘4_lv'fc-:z’;—!r Z ,."6' ‘F""F&r.,.) @('tl)' 'é(zm)'

m=l) (xL. T.-.)Ex"‘

P, is supported by M (X} = |22 M, (X). Note that this formula is completely
parallel to (7.4). namely
Ky =g"? Z E-?(L,)"‘, whete L= Z 8 o),
mal X

and = denotes convolution of laws.
It is well-known hy Mecke's characterization of the Poisson process (see [17]) that

I, is characterized as the unique solution Q of the equation

75) Colh) = }: Z ki, v +6,) o(2)Qld5), heF,
rEX YEM

To say it in another way. Q is the unique solution of the equation €q(z. +) = o(x)Q(y -
6.), T € X, v €M (X), y(z) > 1. Another very useful view to equation (7.6) is

(7.6) Cq=0CL +Q.

(Note that the operation + differs fromn the convolution operation #.) To summarize:

The first part of Theorem 6.1 inplies
18
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Corollary 7.1. Let & be a statstical operator on CX wnth spectral law  and z > 0

a paramcter. Then M, is ¢ solution W of the equation Cy = CL.,*~nw.

This result is a version of Lemma 4.12 of Liehscher [16].

7.3. Bosc-Einstein statistical operators with random particle number. We
consider the Bose-Einstein statistical operator on the Fock space H, unth one-particle
Statistical operator w. It is clear that Ey; is symmetric and thereby also BE-synimetric.

By the results obtained in Bad. E,, is given by the following direct sum

= s N
(7.7) Eu=z3 ) 0Ul"MY) - 3 ERO) QLY
m=—">0 YEM_{X)

Here we denote now the dependence on the particle number e in Q:jfﬂ)_

Example 7.1. Consider a statistical operator w unth g being the uniform distribution

on X, i.c. p= 5. Recall thet d 2 2. In this casc
Mipgray o [ d+m=11)\ 1
(VM) = ( - )=

andi=it ==4(d) = “_"TF Thus the particle number distribution is given by the
follounng ncgative binomial distribution
“ 1

(7.8) pJ(:n):( d+m=1 ) f 3) 1

m ™

We want tu calculate the Campbell measure Cg_ . Thus we first calculale its law:

formulas (6.1) and (6.2) immediately imply that

1S prp™vmy . g
(7.9) re, = E, = :+(d)§:¢r(n3, ™M) - Ej
e m=0

This point process is called here the Bose-Einstein process and denoted by E,. This
cnables us to represent K, as
. = Z Eo() QF, (-
YEM (X)
The Campbell measure of the Bose-Einstein statistical operator E,, is given by the
usual Campbell measure of the Bose-Einstein process. Moreover. E,. is completely
determined by the Campbell neasure of its law E,. So we have to study the Camipbell

measure Cg, which will be done in the Bin3.
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7.4. Fermi-Dirac statistical operators with random particle numbecr. Consider
now the Fermi-Dirne statistical operator on H_ with one-particle statistical operetor

w. Analogousty to the case of the Bose-Einstein operator it is FD-symmetric and can

Le represented as

1 L
(7.10) i Z "(”I 7M‘ y Z Dm( ) Q. {4y
= =0 yEM, {X)

Example 7.2. Consider a statist: +( operator w with p being the uniform distribution

on X,ie p= ;'; withd > 2. Then

1
tr(1"MMT) = ( % ) ey

gLl iy
and =7 = Z(d) = (1 + §)%. Thus the particle number distribution is given by the

following binomial distribution

(7.11 ;v..'m'=(,(f,)'(d il)m'(]_xh)d-m'

Observe here the symmetry between Bose-Einstein and Fermi- Dirac statistical operators:

2;(d) = SH(~d).

We want to calculate its Campbell measure €5 . Again we calculate first its law:

This is given by

lllj__,

oc
(712} KD“ = z' ‘Il““' .-., Dlu

This point process is called the Fermi-Dirac process and is denoted by D,. Again we
have a representation of the form
Dy, = Z Du(7}Q; oy
TEM (X)
Now we have the problem to study €p, and to analyze D,. This problem will be
solved in Bun8 by using again the method of the Campbell measure.

8. CHARACTERIZATIONS OF BOSE-EINSTEIN AND FERMI-DIRAC PROCESSES

The questiou is, what are the properties of the Boson resp. Fermion point processes.
The answer is given by means of the method of the Campbell measure. For this aim we
derive integration-by-parts formulas for E,, resp. D, in terins of its Campbell measures.
The arguments are only sketched. For the details we refer to [15, 20, 21, 25].

20
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8.1. Bosons. Recall that the law ¢ ou X is uot a Dirac weasure. Recall that for a
given p € M (X)
1
Eul) = = [T elar .
W oaex
Il £(X) = n, this can be wrilten as

. 1 1
Ey(l-‘) === =

e

In terms of the Poisson process in X with intensity measure p. which is defined by

Po{s).

X m
o) = =X 80 )

we obtain a representation of E, in terms of P,

1 1 m'

B el . ol X
w =g oy

—
N
Now we start to calculate the Campbell measure of E,. i.e.

Ce,(a,u) = p(a)Ep(p — &a), ple) 21

Using representation (8.1) in combination with Mecke's characterization (7.5) of the

latter yields a recurrence which immediately leads to

Lemma 8.1. For (e,p) € C = {(a, 1) : pla) > 1}

#(a)

82) Cepla.p) = Y ela) -E,lu - jdy).

J=1
Observe that (8.2) is an equation for E,. To solve this equation we ook at it in
the following way:

Proposition 8.1. For any h € F,
(8.3) Ce, (M =3 Y. 3 h(av+jba)e(ayMa)E().

AEX 7€M (X) 21
Here A denotes the counting measure on X .

Equation (8.3) has the same structure as equiation (7.6):
(z.:) Ce, = €ys4E,,

where the operation = is a version of a convolution operation defined by the right
hand side of (8.3); and L} is given by the following positive measure on M, (X)

L) = XY Tetibel), veFi.
7>1aex 7
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This implies that E, is the so called random KMM measure in X for L} in the sense
of |21).

As Mathias Rafler [25) bas shown in full generality E, then coineides with the
Polya suin process Sg a for (o, A). This process is by definition & Papungelou process

unth the kernel 7% defined by

(8.4) 7*(u.a) = p(a) - (Ma) + u(a)), a€EX.ueM (X)
And this means that S, 5 1s the unique solution S of the following iutegration by parts
formula:
(8.5) Cs(h) = Z Z h{a, e+ 8,)m* (2, @)S(1), heF,.
y a

This process has been called in [20] the Pdlya sum process for the parameters {p. A).
Thus we see that the characteristic properties of the Bose-Einstein process are twofold:
It is a KMM process as well as a Pélya sum process.

The argument for the equality of E, and S = S, 5 is us follows: If vue iterates the

last equation (8.5) one obtains for any N € N

Cs(h) =33 hla.p+da)e(a)(t + u(a)S()

N
= Z Z Z oleP hla. u + §6,)S(u) +

3=l p a

+ 373 o(a) ¥ hia. p + Nda)u(a)S(n)
—nrn 30 Y ela)h(a.u + j6a)S(u).

J2l g a
Here we used again that p is not a Dirac measure and also that S is of first order.
This shows that S solves equation (8.3) or cquivalently (EL:)' One can show that

this equation has only onc solution. {Cf. |21]) To summarize we obtained the

Proposition 8.2, Given a probability p on X which is not a Dirac messure then the
Boge-Einstein process E, coincides with the randorn KMM measure in X for L: as
well as the Polya sum process S, for the parameters (p. 2). Moreover. this process
s infinitely dunsible and uniquely determined as a solution of the integration-by-parts
formula (8.3).

We kunow also from [20] that the property of E, being a Papangelon process for
7" allows to calculate explicitly its particle number distribution. In the case where

g is the uniform distribution on X this coincides with p: which we caleulated nbove
22
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by completely different quantum mechanical methods. This implies that the point
process in this case is of first order. i.e. the mean particle number is finite. (All thus
enn be found in [20].) This shows thut €, hus all propertics of an ideal ghs.

Mureover. equation (Z ,';) iniplies that E, is a socalled permanental process. This
means that its reduced density matrix has a permancotal structure. A proof hased
on (SL:) can be found in {21. 19] and the references therein.

Finally. using the above developed method of the Camphbell measure. in particular
Theorem 4, we obtain immediately characterizations of the Bose-Einstein statistical

operator for u: The fact that kg, = E, solves equation (E‘ ¢) immediately implies

Theorem 8.1. Let w be a statistical operator on C* wath spectral law ¢ which v not a
Dirac measure. A symmetric statistical operator W on the Fock space H, |, admiiting a
spectral resolution with respect to Y., comncides unth E,, iff it s a solution of equation

Cw =C,+ #xw.
-
Moreover, xg, = E, being also a solution to equation (8.5). implies

Theorem 8.2. Under the assumptions of Theorem 8.1, W coincides with B, off it
is the solution of the equation
(8.6) Cwh = Z h(e,y+8;)n¥(y. r)sw(v), he F,.

(E ]

Statistical operators W which solve equation {8.6) can be called Pélya sum statistical

operators specified by 7y

8.2. Fermions. The Campbell ineasure of D, is concentrated on C and given there
by
Cp,(a. ) = ola) - Dolpt = 8a), wla) =1
This unplies that D, is & Papangelou process for the kernel
7 (a, 1) = oa) - (Ma) - p(a)).  pla) <1
(and 7~ = Qelse.) Recall here that A denotes the counting measure. In the terminology
of [20]. D, is u Pdlya differcnce: process for (A, @). As for Busons the distribution of
the particle munber is explicitly known, aud the process is of first order. Again D,
is completely determined by its kernel 7. D, is a simple prucess, i.e. concentrated on
M-(X }, and thus respects Pauli's exclusion principle. Furtherwore, D, has independeat
increments. Thus it has all properties of an ideal gas. (For more details we refer to
[20].) We observe here that the same reasoning we did above [or the Papangelou
process E, yields that
23
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Proposition 8.3. The Papangelou process D, s the unigue solution of the following

equation for simple pont processes Q.

+ o0
(8.7) €ah) = (=1 3 ela)’hla,pu+ jda) Qu), h € Fi.
J=1 au.gi

(The proof is exactly the same s» above.) Again equation (8.10). which has D, as a
unique solution. is of the form
(}:L:\’ CQ:CL;*Q‘
but now for the signed measure
o (=1p?
L0} =) ) ——wlid)ela), pe€F,.
i21aex 7

[n this case one can show (see |21. 15]) that (21 ) implies that D, is a so called
determinantal process.

As above for Bosons we obtain a characterization of symmetric statistical operators
for Fermions: A symmetric statistical operator W. admitting a spectral resolution
with respect to Y_, coincides with D, iff it is the uuique solution of the cquation

Cw=2~C L *Kwior equivalently, iff it is the solution of the equation

Cwh= > h(y+8&)r (y.2)xw(7), heF;.

{r.7)
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