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A bstract. In the framework of von Neumann's description of measurements of 
discrete quant uni observable we establish a  one-to-one correspondence between 
sym m etric statistical operators W o f quantum mechanical systems and classical 

point processes Kw. thereby giving a  particle picture o f indistinguishable quantum 
particles. T h is holds true under irreducibility assumptions if we fix the underlying 
complete orthononnal system . The method of the Campbell measure is developed 
for such statistical operators; it is shown that the Campbell measure of a  statistical 

operator W coincides with the Campbell measure of the corresponding point process 

k w - Moreover, again under irreducibility assumptions, a  symmetric statistical ope­
rator is  completely determined by its Campbell measure. The method of the Campbell 

m easure (hen is used to  characterize Bose-Einstein and Fermi-Dirac statistical ope­
rators. T h is is an elementary introduction into the work of Fichtner and Freudenberg 
110, 11] combined with the quantum mechanical investigations of |2| and the corres­
ponding point process approach of [30). It is based on the classical work of von Neu­
mann [22|, Segal, Cook and Chaiken |28, 8, 7] as well as Moyat [18].
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1. I n t r o d u c t i o n

We consider quantum  statistical sta tes and ask for a  precise particle picture of 

them . Under irreducibility assum ptions we develop a  one-to-one correspondence between 

sym m etric sta tistica l operators W o f finite quantum mechanical system s and point 

processes k \v > thereby giving a  particle picture o f indistinguishable quantum particles. 

T h is is done by developing a  disintegration theory for such statistical operators in 

com plete analogy  to  the decomposition o f classical into conditional probabilities.

We also  need the method o f the Campbell measure, which is well known for point 

processes, and which is developed here for statistical operators. (This is inspired by 

the work o f  Fichtner, see for instance (12), and Liebscher (16].) We show that the 

Cam pbell m easure o f a  sym m etric statistical operator W coincides with the usual
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Campbell measure of its law kw \ moreover, under irreducibility assumptions, W is 

then completely determined by its Campbell measure.

Wo then present the point processes which correspond to the quantum statistical 

operators of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac in the case of a  fixed 

number of particles. Surprisingly, only the point process belonging to the Maxwell- 

Boltzmann statistical operator is really known and has been considered in probability 
theory until now.

We then extend our considerations to systems with a  random number o f particles 

and therefore work on Fock spaces. In this framework the Poisson point process 

belongs to the Maxwell-Boltzmann statistical operator. Next the symmetric Bosc- 

Einstein and Fermi-Dirac statistical operators are constructed together with their 

associated point processes. Since these statistical operators are determined by their 

Campbell measures, and since the Campbell measures coincide for statistical operators 

and their point processes, we shall investigate the Campbell measure of these point 

processes.

As a result of the application of the method of Cam pbell measures we find that 

the point processes belonging to Bose-Einstein and Fermi-Dirac statistical operators 

respectively are given by Papangelou processes with explicitly given conditional intensity 

kernels. They are called here Polya sum and Pdlya difference processes respectively. 

The corresponding random fields are of first order and have independent increments. 

The distribution of the field variables, wliich represent the number of particles in a  

given region, are explicitly known. These results have been shown in (20). Thus these 

processes have all characteristic properties of an ideal gas. In this way we obtain 

detailed informations about the point processes and thereby about the correponding 

statistical operators.
We stress here the point of view that for the developement of a  full interacting 

theory of quantum gases one should start with the corresponding ideal gas and then 

modify this by means o f a  Boltzmann factor to include an interaction between the 

particles. (First steps in this direction can be found in [20].)
Historically the first attem pts to unify quantum mechanics with point process 

theory can be found in the work of Fock [13], Segal [28], Cook [8] and Cliaiken [7] and 

then, more systematically, in the work of Moyal |18|. For a  more recent contribution 

to the construction of Bose and Fermi processes from the point of view of quantum 

mechanics we refer to  Tam ura and Ito [29].
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Note added in February 2015. Unpublished versions of this work exist since 2008. 

We did not intend to publish it. But in the meantime several publications (see |20, 

19, 26, 27] e.g.) referred to it so that it might be useful to make it available to the 
public.

2. D is in t e g r a t io n  o f  s t a t is t ic a l  o p e r a t o r s

We consider von Neumann’s description of the measuring process of discrete quantum 

observables (cf. [22,23]) and use it for a  representation of statistical operators in terms 

of their conditional statistical operators and their laws.

Consider a  countable set Y ^  0 together with an equivalence relation ~  in Y. 

Represent (Y ,~ )  by means of ( I \r )  in such a  way that F is a  countable set and 

r  : Y  —» r  a  surjective mapping satisfying

(2 .1) (at ~  y <=>  r(x) =  r(y)).

Given 7  €  r  we set Y-, =  { r  =  7 } for the associated equivalence class. In the sequel 

we assum e always that

(2.2) 1 <  cd Yy <  +00  for any 7 . ,

Let. IK be a  complex separable Hilbert space of countable dimension |V|. We identify' 

the set Y with the coinplcte othonormal system (corw) y =  {ev\y €  Y ] chosen in 

"K. Furthermore, we set =  {ev|y €  Y-t) . The equivalence relation ~  induces an 

equivalence relation in y by means of (e * ~  ev <=> x ~  y) with y7 as equivalence 

classes.
The set of events o f the system described by the Hilbert space IK can be identified 

with the collection of all orthogonal projections resp. all (closed) subspaces. The state 

space S(IK) of the system is the collection of (self-adjoint)  bounded linear operators 

W on !K which are positive and have trace one, i.e. tr W =  1. Such W are called 

statistical operators. They form a  convex set whose extremal poiuts, the socalled pure 

states, are defined by

h o h  =  (h ,.)-h , h € X , ||/i|| =  1.

B y the spectral theorem every state W admits a representation
00

W =  Pn ՛ hn O hn >
I1>1

where (pM)„ is a  probability on N and (/»«)„ some cons in IK. (For more details we 

refer to |9|.)

1
THE PARTICLE STRUCTURE OF THE QUANTUM ...
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Our problem is how to associate to a given statistical operator W e  S(IK), admitting 

a  spectral resolution with respect to a  given cons y , a  law, and, in particular situations, 
a  point process k , and vice versa.

In the above situation we are given a  complex separable Hilbert space IK with fixed 

basis y. indexed by Y . We consider

H  I  sp{ey\y € y }̂,

the smallest subspace of IK containing {ev\y €  Y^}. The collection (lK7 )76r  is an 

orthogonal decomposition of IK; and IK is the direct sum o f it. We have

1 <  dim IK7 =  |>r7 | =  cdKy <  00.

Here cd denotes cardinality. Finally we write

P7 =  P * '

for the orthogonal projection onto IK7.

We start with a  statistical operator W €  S(IK) which adm its the spectral resolution

(2.3) W =  £  P„ g(y)
vev

for some law o on Y with respect to the chosen cons y. Here P y =  ey o  ey with

ey o e y =  (e „ ,.) • ey. Thus W is diagonalized by the given cons y. Set

(2-4) W7 =  £  Ptff?(y).

This defines self-adjoint linear operators on IK, leaving IK7 invariant s.th.

W7 =  P7 W P7 , W7 IK^ =  {0 } .

Decomposition (2.4) is unique. If tr W7 =  tr (P y W) is strictly positive, we can

normalize W7 to obtain the following statistical operator on IK:

f | 8 S S 1
This is called the conditional statistical operator of W given P7 . The notion of

conditional statistical operators has been studied systematically by Cassinelli. Zanghi

and Ozawa (cf. [6, 23] and the literature cited there).

T h eo rem  2 .1 . Given an equivalence relation in Y  which can be represented by means 
of ( r ,r )  in such a way that conditions (2. 1)  and (2.2)  are satisfied, any statistical
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operator W 6 S(IK), admitting a spectral resolution (2-3) with respect to y, can be 
represented as

(2.6) W =  X > ( - |7 ) - k w ( 7 ) ,
g F ;

where W (.|7 ) 6  S(IK), leading !K7 invariant with W(.|7 )IK7 =  {0 }. and where nyj is 
a  probability on T having the. following properties:

(2.7) « w ( 7 ) - > ( P rW )l 7  €  T.

This decomposition is unique.

In formula (2.6) and also later we use the convention that Wfflm ■ =  0 if

»w (7 ) =  0. We call «w  the law of the statistical operator W. It is some kind of partial 

trace o f W with respect to 7 , and we also write kw(7 ) =  tr7(W). This means that 

ir 7(W) =  52v€y (ev,W etf). We observe that for the calculation of the law k \v we 

can use the cons which is most convenient, because a  trace does not depend on the 

choice of a  cons. Decomposition (2.6) is completely analogous to the decomposition 

o f classical probabilities into conditional probabilities; and it is the starting point for 

the solution of our problem.

3 . D i s i n t e g r a t i o n  o f  s y m m e t r ic  s t a t i s t i c a l  o p e r a t o r s

Consider next a  finite group S acting on Y  together with the equivalence relation 

~  induced by S in Y  by means of x  ~  y <=>  3 g 6 S  : y — 9 X- All orbits are finite, 
and S  acts transitively on each of them. We assume also that (F ,~ )  is represented 
by ( r .  r ) . A s above IK denotes a  complex separable Hilbert space with a  cons given 

by y. We consider then the unitary representation U =  (Uj).j€r* induced by S on IK 

by means of

=  )  1K  ՛ eov- ^ ] \ ey
v v

It is obvious that U acts?on IK as well as on each IK7. Thus each IK7 as well as 
■  remains invariant under U. The collection ILy of restrictions of Ug<g & S< to the 
subspaces IK7 is called an irreducible system, if any closed subspace S  of IKy which 

remains invariant under ILy is either {0 }  or IKy. This is equivalent to the condition 

that it does not commute with no non-trivial (self-adjoint) projection (|1), Exercise

I.3.D .) A statistical operator W is called symmetric (with respect to 9) if

(3.1) UgWU^-i =  W for any g  €  S-

In the sequel we consider symmetric W admitting a spectral resolution for cons V.
7
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Lem m a 3.1. W is symmetric if  and only if  each W7 is symmetric.

Proof. By (3.1) combined with decomposition (2.6) W is symmetric iff

i for any g  € S-
7 у

The uniqueness of the decomposition combined with the fact that each 9C, reap. 
remains invariant under U immediately implies the result. □

We need also the following result which in our context is Schur’s lemma ([4], Satz 

7.1 b.):

Lem m a 3.2. Let W be symmetric. I f  the collection XL, is irreducible then “W-, is  of 
the form W7 =  « ^ ( 7) • P7. Here are non-negative functions on Г, determined by

the equation « ^ ( 7) =  (ey,Wey), у 6  Yy.

The positivity of follows from the positivity of the statistical operator W. Thus 

we obtain the following disintegration of a  symmetric statistical operator W.

C orollary  3.1. IfW  is symmetric and if  each 1Ц is irreducible then 

W =  «w (7 )^ r and *w (7 ) dim №r  =  1.
7 € Г  т е г

To summarize we have the following result.

Theorem  3.1. Under the assumption that each ILy, 7  € Г, is irreducible the equation

<з -2> ШВШШТг€Г ^

induces a one-to-one correspondence between symmetric statistical operators W on 

J i ,  admitting a  spectral resolution with respect to У , and probabilities к on Г.

This correspondence will be the main device in the sequel.

C orollary  3.2. If  W is a symmetric statistical operator on 'K, admitting a  spectral 
resolution with respect to У, and i f  U7 is irreducible then the conditional statistical 
operator W(.|7-), if  well defined, coincides with the normalized pivjection onto !КУ:

м ЗШ Н Е
Moreover, k\v(7 ) =  dim CK7 • €  Г, the law of W, detennines the operator W
completely.
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From now on the underlying group S is given by a  finite symmetric group 8(E) 
of all permutations a  of some finite set E . In this case we consider the following 
operators:

n ± = \E\j.' 5 1  s9n± ( ° )  ■ u °-
1 1 » € * (E )

Here 8gn (a) €  { —1, + 1 }  denotes the sign of a  where sgn+ is the identity and sgn- =  
sgn. Both operators arc orthogonal projections onto subspaccs IK+ and IK_ of IK and 
satisfy

(3.4) tl,riT+ — iT+, UffTI- =  agn(p) • 77_ for any a  €  8(E).

In particular the operators 77+ and 77_ are symmetric. The elements of IK+ are also 
called symmetric; the elements of IK_ antisymmetric.

4. E x a m p l e s

We consider the following standard finite setting (cf. [2, 24]). X  is a  finite, non­
empty set of cardinality d; and Y =  X n. According to the convention of quantum 
mechanics the 1-particle space of a  particle in X  is given by C .  whereas the n- 
particle system is described by the complex Hilbert space IK =  (£)n C "՝, i.e. the n-th 

tensor power of the 1-particle space. Note that IK coincides with CY: and if n =  0 
then IK is the one-dimensional complex plane. In C *  we choose some cons (e*)*gx 
conveniently, y =  {ev =  y =  (®i,. . . ,x n) €  then is a  cons in IK indexed

by y. If n =  0 then ^ is a  singleton consisting of some unit vector 1 in C fixed ouce 
and for all. The underlying symmetric group is given by the collection Sn of bijections 
a  on E  =  [n] =  {1 , . . . ,  n }. S „ acts on Y by means of

a »—> ( ( * i  i—> (xff->(i ) , . . . , * » - • ( » ) ) ) •

It operates on IK by means of the collection of unitary representations consisting of

: e *, <g> ■ • • ® ex„ •—» $  • • • ® e* „ - i (n) >

and is then extended by linearity. We shall be interested in statistical operators 
which are symmetric, i.e. commute with the above representation of §n, and which 

admit a  spectral resolution with rcspect to <1- Every observation W of a system of 
identical particles has this property. The Hilbert spaces IK+,IK_, appropriate for the 
description of particles obeying quantum statistics, are constructed by means of the 
projections 77+, /7- induced by the group S„.

9



A. BACH AND H. ZESSIN

A representation (I \  r ) of the equivalence relation induced by S „ on Y  is given by

r = := {($*, + • • •+sXn| ( z i ,xn) € y},
| : ( * 1 . . • • *— 1 g - • *  +  6Xn.

4.1. T h e M axw ell-B o ltzn ian n  s ta t is t ic a l  o p e ra to r . In !K we choose a  cons indexed 

by Y  in the following way: We are given a  statistical operator w on the 1-particle space 

IKi :=  C x . Denote by g the probability on X  appearing in the spectral resolution of 

w. which at the same time gives a  cons (ex)x€x  in 0<i. This basis will be fixed also in 

the following examples and enables one to define the cons V in as above. Moreover, 

we always assume that g is not a Dirac measure. This implies that d =  cd X  >  2.

The Maxwell-Boltzmann statistical operator fo r  w is defined by the tensor product of 

tu: M " =  wn. .Here wn denotes the n —fold tensor product o f w. Using proposition

16.3. in [24] this statistical operator can be expressed explicitly by

(4-1) =
»€V \

where Py =  ey o e v, and gu is the product law g<8> - - ® g  on Y . (4.1) is nothing else 

than the spectral resolution of M ՞ with respect to V. M£, is sym metric with respect 

to S „. By Theorem 2.1 there is associated the following law on M n(.X), which thus 
is a  point process in X , namely

(4.2) « ( 7 ) =  ( n)  • I !  ^(x У (X)՝ 1  e  M n W -
*€■*

Here '

■ O-cSw 3H
(4.2) follows from the fact that dim J f "  =  (" )  and that, for y =  ( x i , . . . ,  i n) 6  K, 

and thereby 7  =  6Xt +  • ■ • +  6Tn: by formula (4.1),

71
« * ( 7 ) =  <Cx, ® • • • 8  cXn, M£,eXl ® ® eXn) =  g (x j).

j = 1

The point process k  is called Maxwell-Boltzmann process for the param eters (gy n), 

and will be denoted by P” .

4.2. T h e  B o se-E in ste in  s ta t is t ic a l  o p e ra to r . We start with the following observations: 

We are given a  particle number n  >  0. One can construct by means o f V, as chosen
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above, a  cons y+  in and y_ in IK_ respectively as follows:

y +  =  { c'+ (7) =  J Q  ■ n +  ®»€~pp-rer ,(n,h  €  M ;;(A )j,

y ֊ =  { e - ( 7 )  =  Vn! • 77_ e aen№ 7 c„|7 €  M n( X ) } .

Herr the tensor product is taken along a  fixed numeration of A՜, and

M ;,(X ) =  |d Xl +  +<$Xli| ( x , , . . . , x n) €  V ՛} .

Y  is the collection of all y 6  Y  with pairwise distinct components.

We work separately in each of the spaces with these cons. In terms of y± 

the projections i7± can be written as I7± =  £ t,6 i)± Q f , where the one-dimensional 
projections are given by Q f  =  eoe, e € V±. Since there is a  bijection between M„(A') 

and y+ resp. M „(A ) and y_ wc see immediately that (recall that d =  trX ) 

fd  +  n — 1\  H  /  d)
cd y +  =  ^ ^ J ;  cr fy . =  if n <  d; cdy_ = 0, if n  >  d.

The Bose-Einstein statistical operator for ic is given bv the conditional Maxwell- 

Boltzmann statistical operator given the projection /7_. This is an operator on !K+ 

defined by E "  =  tr(/7^M„^ • i7+M ",. Note that

t r ( J7 + H C )=  £  I I e ( " ) ' ,(“> > 0 ’
« € *

because the g is assumed not to be a Dirac measure.

We choose a cons in !K+ for which E ”  can be diagonalized, namely y+, which is 

indexed by the finite set M „(A ). The symmetric group now acts on the basis y+ and 

is trivial, i.e. a  singleton consisting of the identity. Thus the associated equivalence 

relation ~  is given by the identity of elements in y+ ; and the representation of (y+. ~ )  

is given by T =  M „(A ) with r  : e+ (7 ) — > 7 . Theorem 3.1 then implies that the 

point process belonging to E ”  is given by the following point process in X : For any 11 M^(A-)

H  -----------n  rfaV'W • n M Mm)-2-#ie:Mn(X) I laex  6W  aeX 

Moreover, the Bose-Einstein statistical operator admits the representation

k =  E  E: w  ՛ < ( , ) ■
7€M„(X)

We call E“  the Bose-Einstein point process in X  for the parameters (n, g).
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If 0 is the uniform distribution on X , and thereby w =  \ t r l ,  where I  denotes the 
identity operator on <C , then

E":=E::=r H " +՛
and the Bose-Einstein process is then given by the uniform distribution on M "(X ) :

4.3. T h e F erm i-D irac  s ta t is t ic a l  o p e ra to r . For n  <  d =  cd X  the Fermi-Dirac 

statistical operator for w is given by the conditional Maxwell-Boltzmann statistical 

operator given Jhe projection / /_ . This is a  symmetric statistical operator on !K_ 

defined by

(4.4) B ”  = ---------I---------- 77 M ”
1 ’  w *r(77_M £)

This operator adm its a spectral resolution with respect to the cons V_ in !K _ , where

again the basis (e *) l 6 x  is coming from the spectral resolution o f w and g  is the

corresponding law not being a  Dirac measure. B y  Theorem 3.1 we then obtain as 

before the particle picture of the Fermi-Dirac statistical operator: It is given by the 

following simple point process, called Fermi-Dirac process fo r  (n, g) in X :

(4.5) (7 ) =  — tr  J J  g (a)yta\  7  €  M'n(X ), and 0 otherwise .
a € X

The partition function now is given by Z  =  (A ) F L e x  Thus D£ is

the conditional law of given M n(A ), i.e. given that the realization 7  o f the particle 

process is simple. We again have a  representation o f the Fermi-Dirac statistical 

operator which is parallel to the one for the Bose-Einstein statistical operator, namely

» ; , =  § 1  ° 2 ( 7 )

Note that in the special case where w =  3 • I ,  thus g being the uniform distribution 

on X , the Fermi-Dirac statistical operator is given by



and the simple point process by the Fermi-Dirac process in X  for the parameters 
(n, d). (Recall that d =  p f|.)

|  C)
5 . T h e  m e t h o d  o f  t h e  C a m p b e l l  m e a s u r e

In the situation of the last section we introduce the occupation number operator 
and the Cam pbell operator respectively Campbell measure of a  statistical state.

The situation is the same as in the examples: IKi =  C x  for some finite X \ (ez )l6 .v 
is a  cons in JKi. Recall that Г  =  M "(X ), and r  : ( x i , . . .  ,x „ )  ■— ►

Sxt +  • • • +  SXn. Note that r = M o i ,  where t : ( x j , . . .  ,x n) ՛— » e*, & • • • ® eXn and

M (eXx ® ® eXn) =  SXl 4------ 1- 6X„ .

We define for x  G X  the occupation number operator in x  on IK =  IK^n as follows: 

If  /  is the identity operator on IKj, let

I
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П

(In the case n =  0 we set N±°* = 0 - 7 . )  And, more generally, X o  — £ i€B  X *  the 

occupation number operator in B  C X . It is evident that N g =  Qb {M )Iu, where for 

x i , . . . , x n G X  we set

Cs($C1 H------1՜ $r„) =  (<J*1 +  • • • +  SX„)(B ).

Extend ) linearly to an operator-valued measure on X  x M " (X ) by K;, =  ^;,(M) ■ 

7M, h G F + (X  x M "(A §). Here ( /»(a*) — f  h (x ,n) n (d x). and F+ denotes the 
collection o f  non-negative, measurable functions on the underlying domain. Thus in 

particular “N b x C =  7®” . This shows: Any element ey =

of the basis is an eigenvector of ‘N b x C with eigenvalue Cb(AI(ev)) ■ lc {M ( t v)).

We are now in the position to define the Campbell measure for statistical operators 

on !K. Given a  statistical operator W we call on ‘X  the Campbell operator

measure of W. Its trace Cw(-) =  trfW X /») is called the Campbell measure ofW  on 

X  x Recall that the Campbell measure of the law k\v of W is defined by

C*w(°> 7) = 7(o)«w(7). °  G X , 7  G M"(X).

It is obvious that such a  Campbell measure is supported by the set

{ (a , 7 ) : 7 (0 ) > 1 } .  Moreover, we see that the law «w  of W is determined by its
Cam pbell measure.

13
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P ro p o sitio n  5 .1 . For any statistical operator W on the space IK its Campbell measure 

coincides with the Campbell measure o f its law, i.e. Cw =  C *w. The law of W is 

completely detennint-d by Giv. I f  W is also symmetric then, under the additional 

irreducibility assumptions o f Theorem 2. even W is completely determined by its 
Campbell measure.

Proof.

frOW *) =  £ < e , ,  W»f»(*,)> =  ^ & (r (» )) (e „ W (« ,) )  =  £ > ( ֊)  £  <e„, W(ev)).
v |  7 » e v ,

The assertion now follows from the definition (2.7) of % ՝ . The remaining statement 

follows immediately from Theorem 3.1. □

We remark for later use that Proposition 5.1 remains true for statistical operators 

W acting on subspaces of IK because the occupation number operators N #  act on 

them by restriction.

6. S t a t k s  o n  F o c k  s p a c e s  a n d  t h e i r  C a m p b e l l  m e a s u r e s

The above picture is now extended to systems with a  random particle number.

Let X  be a  finite set o f cardinality d >  1 and =  (££)” ՛ C x ,m  >  0, with IKo =  C. 

The cons in C  consists of some unit vector, denoted by 1. The direct sum o f these 

Hilbert spaces is the Fock space over C x , denoted by H. For each tn the symmetric 

group S m acts on X m, and the corresponding unitary representation on IKm is denoted 

by l lm- This family of representations gives rise to a  unitary operator It on H, defined 

by the dircct sum 11 =  £ m = o lt ,„ . Thus U (g)h =  U,n(g)h, if g  6  8m,h  €  IKm. Given 

statistical operators W„, on IKm and scalars pm >  0, 7»  >  0, summing up to 1, then 

the direct sum
OO

(6.1) w = 2 > mwm
m= 0

is a  statistical operator on the Fock space H. W is symmetric if aud only if each W,„ 

has this property. It is obvious that the point process belonging to this statistical 

operator is given by
30

(6.2) K-W = ® P m - « w m.
m =0

The simplest examples are obtained if W,„ =  u ։'" for some given statistical operator w 

on .'Kj =  C ֊Y. Only them will be considered in the sequel in detail. In this framework 

the occupation number operator is given by the direct sum operator N ;1. =  ]Cm=o W* 
on the Fock space over C'Y. Here is the occupation number operator on IK,„

14



as defined above. And again N/j =  £b(M ) ■ 1, B  C -Y, where I  now denotes the 
identity operator on M. Extending N  to an operator valued measure on X  x M ( A ' )  

a s  above by Mh =  Qt(M ) ■ I ,  It. €  F + (X  x M(A՜ ) ) ,  we are now iu the position 

to define the Campbell measure for statistical operators on H as we did already in a 
special situation. Recall that =  f  h (x ,/j)fi(d x ).

Given a  statistical operator W on H we call WN(.) the Campbell operator measure 

of W. By Theorem 2.1 we know that WN/, =  ]C76r Ch(7 )«w (7 ) • 'W( b'), h €  F+. 

Define C \v(-).=  /r(W!K( )). This object is called I he Campbell measure of W . Arguing 
as above we obtain

T h e o re m  6 .1 . For any statistical operator W on the. Fock space H one has C\v =  

e Mv. Thus the law o fW is  completely determined by Cw. If  "Vi is also symmetric then, 

under the additional iireduaibilily assumptions of Theorem 3.1, even W is completely 

determined by its Campbell measure.

Consider now the direct sums J7± =  I I±  , where is the orthogonal

projection onto the BE- resp. FD  symmetric subspace o/IK,,,. Fl± is then the orthogonal 

projection onto the BE- resp. FD  symmetric subspace H ± of H. It follows (sec |2|) 

that I J±  satisfy

(6.3) =  sg n ± (a )II± , a  G §<* :=  [ J  S m.
m >0

We are mainly interested in statistical operators W living on the symmetric subspaces 

H ±. B y  this we mean that W satisfies the conditions W =  IJ±W II±. In case +  this is 

equivalent to say that W is Bose-Einstein symmetric, i.e. 11,7W =  W. a  €  Soo? and iu 

case — that W is Fermi-Dirac symmetric, i.e. =  5<ttj(ct)'VV. a  e  S<x>- Moreover, 

these conditions imply the symmetry of the statistical operator. (All this can be found 

in [21)
Theorem 6.1 remains true for statistical operators acting on the Fock spaces H± 

because the "Hb act on IHI± by restriction. Note also that one obtains by means of a 

basis in 3Ci a  basis in the Fdckspaces H, H ± by taking unions Um>i Um>i > 

augmented in each case by the basis in IKo, which consists of 1. Considered as an 

element of the Fock spaces 1 is called ground state and corresponds to the empty 

particle configuration.

7. S t a t e s  w it h  r a n d o m  p a r t ic l e  n u m b e r s

The method of second quantization is recalled which permits to lift an operator 

on a  1-particle space to a Fock space.

9
THE PARTICLE STRUCTURE OF THE QUANTUM ...
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7.1. T h e m eth od  o f  seco n d  q u an tiza tio n . We recall the method of the so-called 

second quantization. The idea behind is to lift operators H  on IK to one of the Fock 
spaccs. The method goes back to the work of Fock [13], Cook (8] and Berezin [3] (cf. 

also |5|). If H  is a  statistical operator on IK. one can define a  operator Hm on the 

tensor product !Km by setting H o i =  0 and
m • • ••

Hm(e,„  ® ® e*,,,) =  ^ e a, ■ • • <8> H e aj <» ■ • ■ ® e«m, Oi , . . . ,  a rn €  X .
j = l

Denoting by Sjk the Kronecker symbol,
m

Hm -  ® ®  H *in՝ i 
i = 1

The direct sum of the II  m is denoted by
OO

dT(H) |  I g  Hm.
m=0

Note that we used this method already for the operator exoex and obtained in chapter 

6 for the operator rfr(e.x ©ex) the occupation number operator on the Fock space 

over Cx .

If w is a  statistical operator on IK, the second quantization o f w then is defined by

rw = E^-'"‘
m =0

This is an operator on the full Fock space IHI having finite trace e.

An important observation is given in terms of such trace class operators. These are 

multiples of statistical operators, i.e. operators of the form w =  zwm, where z >  0 

and ui is some statistical operator. In this case
OO

m=0
r(u.՛) =  2 ^  —  • wm with tr  r(iy ) =  e * .

L e m m a 7 .1 . Let I I  be a  bounded, self adjoint operator such that w =  c x p (- f)H ) is 
a trace class operator with ft €  R + . Then

exp ( - 0  H )m =  exp H s*։  ® • • ■ ®

Recall here that the left hand side of this equation is given by e ® • • • <8> e " .  
For a proof of the lemma we refer to Cook [8].

16



L e m m a  7 .2 . Let II  be a  self adjoint operator such that w =  exp( ֊P H )  is a trace
class operator with & €  E . Defining the associated Gibbs state

H ' G = trexP(֊fl//)“ p(- № )

and z =  cd exp (—p H ) we obtain

(7.2) | ( o x p ( - / 3 f f ) ) =
mim =0

r  (cxp(—p H )) is  trace class with trace, c* .

A s a  consequence we see that M sc  :=  e~* T (exp(- p H ))  is a  statistical operator 
on the Fock space.

According to Lemmas 7.1 and 7.2 there are two representations of this operator:

THE PARTICLE STRUCTURE OF THE QUANTUM ...

j =  i

To summarize in a  sUghtly modified way: Given some trace class operator tu =  zw 

with corresponding spectral measure e =  then uim has trace tr u,m =  zm. In this 

case the associated second quantization of w is given by

1 trw m wm 1 ^  s m

m s(J m=U

E i s  the normalizing constant. In this way the trace class operator w is lifted to 

some symmetric statistical operator on the full Fock space H.

The construction principle behind the method of second quantization is: Given 

7» ,  the trace class operator wm is normalized to some statistical operator wm, then 

weighted by the factor ctft̂ -  and summed up; finally it is normalized so that the 

resulting operator becomes statistical.

One also uses this quantization method in a  sligthly generalized form to lift the 

underlying w on the subspaces and obtain the statistical operators

i  00

E «" =  = 7  2 -  *r(/7+ w >' 77M m ). t T ( n ± ’wm) 

Du, =  ^  t r (n [m)wm) • —IHI ■

Note here that the normalizing constants E *  =  £m = o  ) arc termwise

strictly positive and convergent on account of the assumption that e  is not a  Dirac 

measure. E w is called the Bose-Einstein operator for w, B>IU the Fermi-Dirac operator
17
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for w and p f  : m ՛— > =rr •fr(77±m)M "‘ ) the particle number distribution o /E u. or E„,
respectively. Thus the operators M u., E iy and Dw are the second quantizations of w for 

the different Fock spaces W, H ±. One question then is to calculate the correponding 
laws and to characterize them.

7.2. M axw ell-B o ltzm an n  s ta t is t ic a l  o p e ra to r s  w ith  P o is so n ian  ra n d o m  p ar tic le  

num ber. The Maxwell-Boltzmann statistical operator is described a s  a  solution of 
an integration-by-parts formula.

We are in the framework of section 4: tv is a  statistical operator on C ՜*, X  being 

a  finite set of cardinality d. As above we choose a  cons ex ,x  €  X , the one coming 

from the spectral decomposition of w with law o. We are interested in the symmetric 

statistical operator given by the second quantization o f the trace class operator w =

This is the Maxwell-Boltzmann statistical operator fo r  z ,w . We remark that, instead 

of the Poisson law, any law (pm)m can be taken to get some statistical operator. By 

formula (6.2) the corresponding point process is the Poisson process P 0 with intensity 

g  =  zq. Thus — Pq, where

=  =  e * 5 3  7 7  5 Z +  ■ ■ ■ +  8Tnt) e (x \)  ■ ■ ■ e(xm ).
m= 0 (xl ...,xm)e X ”'

PL, is supported by M "(X )  =  U ^ 0 3Vt"(X). Note that this formula is completely 

parallel to (7.4), namely

and *  denotes convolution of laws.

It is well-known by Mecke’s characterization of the Poisson process (see (17]) that 

Pg is characterized as the unique solution Q of the equation

x6X-r€M
To say it in another way. Q is the unique solution of the equation Qq(x , 7 ) =  p (i)Q (7 ֊  

Sx), x  €  X , 7  € M  '(X ), 'y(x) >  1. Another very useful view to equation (7.6) is

(Note that the operation *  differs from the convolution operation * .)  To summarize: 

The first part of Theorem 6.1 implies

(7.4)

00 -m

(7.6) Cq  =  G lv *  Q.

18



C o ro lla ry  7 .1 . Let w be a  statistical operator on Cx  with spectral law g and z >  0 

a  parameter. Then is a  solution W of the equation C\v =  CLzi ★ Kyj.

This result is a  version of Lemma 4.12 of Liehscher [10).

7.3. B o se -E in ste in  s ta t is t ic a l o p era to rs w ith ran dom  p artic le  num ber. We 

consider the Bose-Einstein statistical operatoi• on the Fock space H+ with one-particle 

statistical operator w. It is clear that E„, is symmetric and thereby also BE-symmetric. 

By the results obtained in Bji>4. E w is given by the following direct sum

(7.7) E ^ ^ f ;  f r ( n < " > » c )  • E Er w  • <£;<">■
~ W m՜ 0 _7G M -(X )

Here we denote now the dependence on the particle number m in Qt+£,y

E x a m p le  7 .1 . Consider a statistical operator w with g being the uniform distribution 

on X ,  i.e. g  =  g . Recall that d  >  2. In this case

and E +  =  E||](d) =  • Thus the particle number distribution is given by the

following negative binomial distribution

We want to calculate the Campbell measure Ce„ • Thus we first calculate its law: 

formulas (6.1) and (6.2) immediately imply that

(7.9) K E . = E t : = ^ f > ( f f ? ' )M r ) E ? .
“ • W  m=0

This point process is called here the Bose-Einstein process and denoted by Ee. This 

enables us to represent E u. as

j j f l  E E.(T  ) ■ < ( , ) •
76M (X)

The Campbell measure of the Bose-Einstein statistical operator E„, is given by the 

usual Campbell measure of the Bose-Einstein process. Moreover, E tt. is completely 

determined by the Campbell measure of its law Ee. So we have to study the Campbell 

measure 6 ee which will be done in the B jl 8.

19
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7.4. F erm i-D irac  s ta t is t ic a l  o p e ra to r s  w ith  ra n d o m  p a r tic le  n u m b er. Consider 

now the Fermi-Dirac statistical operator on H -  with one-particle statistical operator 

w. Analogously to the case of the Bose-Einstein operator it is FD-symmetric and can 

be represented as

(7.10) £  D " (7 )
m~ 0 7€M^(X)

E x am p le  7 .2 . Consider a  statistic-> I operator w with g being the uniform distribution 

on X ,  i.e. e  =  3 with d >  2. Then

ig iS  1111H
and E~ =  E ~(d) =  (1 +  j ) d . Thus the particle number distribution is given by the 

following binomial distribution

(7.11) = ( * . ) •  ( ? T l ) ”  • j -  d T l ) d “  ̂

Observe here the symmeti'y between Bose-Einstein and Fermi-Dirac statistical operators:

S J d ) = 3 + ( - < i ) .

We want to calculate its Campbell measure Cd,„ • Again we calculate first its law: 

This is given by

(7-12) kDv = O e : = ^ j t  • D™.
i = 0

Tliis point process is called the Fermi-Dirac process and is denoted by D0. Again we 
have a  representation of the form

i l  1  0 .(7 )
-reM(x)

Now we have the problem to study e D„ and to analyze De. This problem will be 

solved in Bjb8 by using again the method of the Cam pbell measure.

8. C h a r a c t e r iz a t io n s  o f  B o s e - E i n s t e in  a n d  F e r m i- D i r a c  p r o c e s s e s

The question is, what are the properties of the Boson resp. Fermion point processes. 

The answer is given by means of the method of the Campbell measure. For this aim we 

derive integration-by-parts formulas for Ee resp. De in terms of its  Cam pbell measures. 

The arguments are only sketched. For the details we refer to [15, 20, 21, 25].
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8.1. B o so n s . Recall that the law g on X  is uot a  Dirac measure. Recall that for a 

given n G M' (X )

i  n  «*>)'*•> .
w “  o€X

If n (X ) =  m , tliis can be written as

՝  e  m = | S § | H g i M .

In terms of the Poisson process in X  with intensity measure q, which is defined by

p ' w = t ՝ ' ( ,n ^ P p< w '
we obtain a  representation of Et, in terms of Pe:

(8'1) E«w  = ^ 7 V j 5 F " ,Jt,p«w -

Now we start to calculate the Campbell measure of Ep, i.e.

Ce# (a. fJ֊) =  M a )EeO* -  <*°)> M  >  1.

Using representation (8.1) in combination with Mecke’s  characterization (7.5) of the 

latter yields a  recurrence which immediately leads to

L e m m a  8 .1 . For (a ,/*)  G C  =  { ( a , / t ) : /*(a) >  1}

/*(«)
(8 .2) e Ee(a, /t) =  e{a Y  • E<?(m -  M -

i= i

Observe that (8.2) is an equation for E? . To solve this equation we look at it in 

the following way:

P r o p o s it io n  8 .1 . For any h G F+

(8.3) e E»  J  p  £  E f t ( o , T + A ) e ( « ) J A(a)EB(7 ).
o6A'7eM  ( X ) j> l  

Here X denotes the counting measure on X .

Equation (8.3) has the same structure as cqtf&tion (7.6):

(%) « .  =

where the operation *  is a  version of a  convolution operation defined by the right 

hand side of (8.3); and L *  is given by the following positive measure on M 'j(X ).

=  r f f t J e W ' .  9  6 F + .
i £ i o e x  3

THE PARTICLE STRUCTURE OF THE QUANTUM ...
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This implies that Ev is the so called random KMM measure in X  fo r  L +  in the sense 

of [211.
As Mathias Raflor [25] has shown in full generality Ee then coincides with the 

Polya sum process Se,\  for (g, A). Tliis process is by definition a  Papangelou process 

with the kernel rr+ defined by

(8.4) ir+ (/i,a) =  g(a) • (A (a )+  /i(a )), a  €  X ,n  €  M  (X ).

And this means that S0,\  is the unique solution S  of the following integration by parts 

formula:

(8.5) Cs{h) =  5 ^ ^ / i ( a , / i  +  <5a)»r+ (/i»a)S(/i), h € F+.
n A

This process has been called in [20] the P 6lya sum process fo r  the parameters (g, A). 

Thus we see that the cliaracteristic properties of the Bose-Einstein process are twofold: 

It is a  KMM process as well as a  P6lya sum process.

The argumeut for the equality of E*, and S =  S e \  is as follows: If  one iterates the 

last equation (8.5) one obtains for any N  €  N

Gs(h) = 53 53 /l("’ **+ <J»)^(°)(1 + M(«))S(/i)
H a 
N

= e{ayh(a. n + j6a )S(/t) +
jm  1 n a

+ 51 e(a)'V/i(«: V + N6u)p(a)S(ii)
fi |

--KV-H-oo 53 53 53 S(aYhfa  M + jSa)S(n).
j > l  p  a

Here we used again that g  is not a  Dirac measure and also that S  is of first order. 

This shows that S solves equation (8.3) or equivalently (E i + ). One can show that 

this equation has only one solution. (Cf. [21]) To summarize we obtained the

P ro p o sitio n  8 .2 . Given a probability g  on X  which is not a Dirac measure then the 

Bose-Einstein process Eff coincides with the random KM M  measure in X  fo r  L +  as 

well as the Polya sum process S e,x fo r  the parameters (g, A). Moreover, this process 

is infinitely divisible and uniquely determined as a  solution o f the integration-by-par Is 
formula (8-3).

We know also from [20| that the property of Ee being a  Papangelou process for 

7rJ allows to calculate explicitly its particle number distribution. In the case where 

g is the uniform distribution on X  this coincides with p t  which we calculated above
22



by completely different quantum mechanical methods. This implies that the point 
process in this case is of first order, i.e. the mean particle number is finite. (All this 
can be found in (20).) This shows that Eff has all properties of an ideal gas.

Moreover, equation ^E /#+^ implies that Ee is a socalled permanental process. This 

means that its reduced density matrix has a permanental structure. A proof based 
on )  CRn be found in (21, 15] and the references therein.

Finally, using the above developed method of the Campbell measure, in particular 

Theorem 4, we obtain immediately characterizations of the Bose-Einstein statistical 

operator for ui: The fact that ke„. =  Ee solves equat ion ^E j + \  immediately implies

T h e o re m  8 .1 . Let w be a statistical ope ra l or on C x with spectral law g which us not a 

Dirac measure. A symmetric statistical operator W on the Fock space H+> admitting a 

spectral resolution with respect to y + . coincides with E lu iff it ts a  solution of equation 

C w  =  CL + * k \v .

Moreover, ke„. =  Etf being also a  solution to equation (8.5), implies

T h eo rem  8 .2 . Under the. assumptions of Theorem 8.1, W coincides with Eu. iff it 

is the solution o f the equation

(8 .6 ) Cw h =  ^  /»(x ,7  + 6 r )jr+ (7.x)K\v(7). h 6 F+.

Statistical operators W which solve equation (8 .6) can be called P6lya sum statistical 

operators specified by ir+ .

8.2. F c rm io n s. The Campbell measure of Dp is concentrated on C  and given there 

by

Cd, (a. M) =  e(a) ՛ Dff(/i -  6a), p(a) =  1.

This implies that Dp is a  Papangelou process for the kernel

ir~ (a ,n ) =  o(a) ■ (A(a) ֊  /x (a)), /i(a) <  1;

(and ir~ =  0 else.) Recall here that A denotes the counting measure. In the terminology 

of (20], De is a  Polya difference process fin (A, g). As for Bosons the distribution of 

the particle number is explicitly known, and the process is of first order. Again D„ 

is completely determined by its kernel 7r_. De is a  simple process, i.e. concentrated on 

M՛(AT), and thus respects Pauli’s  exclusion principle. Furthermore, D„ has independent 

increments. Thus it has all properties of an ideal gas. (For more details we refer to 

[20].) We observe here that the same reasoning we did above for the Papangelou 

process Ee yields that

THE PARTICLE STRUCTURE OF THE QUANTUM ... «
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Proposition 8.3. The Papungelou pivcess D„ 13 the unique solution of the following 
equation for simple point processes Q. 

j-00
(8.7) Cq(/i) =  5"1(-1)J~1 g(a)^(o,ц +  jSa) Q(n), h e F+. 

i *  1 u.ti

(The proof is exactly the same as above.) Again equation (8.10), which has Dff as a 
unique solution, is of the form

( E t - )  C q  =  Cl - + Q ,

but now for the signed measure

L7M = E £
j £ i aex J

In this case one can show (see (21, 15)) that ^  - j  implies that De is a so called 
determinantal process.

As above for Bosons we obtain a characterization of symmetric statistical operators 
for Fermions: A symmetric statistical operator W, admitting a spectral resolution 
with rcspect to y_, coincidcs with Dw iff it is the unique solution of the equation 
Cw =  C/,- *  kw; or equivalently, iff it is the solution of the; equation

Cw h =  5 3  M l +  <U я--(7.s)kw(7 ), Л G F+.
(*.t)
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