I1svecrnst HAH Apmennn, Maressruka, rom 51, 1. 6. 2016, cTp. 3-22.
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Abstract. Let X be ninetric measure space satistying the doubling condition of order
4 > 0. For a function f € L? (X), p > 0 and a hall B X by [g"j we denole the
best approximation by constants in the space L"(B) In this paper, for functions f
from Hajlnez-Soboley classes ME(X), p > 0, @ > U, we investigate the size of the set
F of pointy for which the following limit exists: lin, , 4g f'," gy = f°(z). We prove

that the complement of tho set £ has zero outer measure for some general class of

outer measures (in particular, it has zero capacity). A sharp estimate of the Hausdorff

ditnenxion of this complement is given. Besides, it is shown that for z € £ lim f,,
r

|f = f(z)|9dn = 0. 1/¢ = 1/p — a/4. Similar results are also proved for the sots where
the “means” lg); E____f converge with a specified rate.
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1. INTRODUCTION

The classical Lebesgue theorem (see |1, Chapter 1. §1|) states that for any function
f € L _(R™). p 2 1, almost all points are Lebesque points. that 1s. for p-almost
cverywhere x € R" the limit

(11) 'llaumu“ . / Fdu=1°(z)
Bls.r)

exists and the function f* is equivalent to f. where u is the Lebesgne measure on R™.

For more regular functions. the sizes of the Lebesgue exceptional sel (that is.
the set of points for which the liniit (1.1) does not exist). can be estimated more
precisely. For instance, for functions from Sobolev space WE(R") with | < p < n/k,
this exceptional set has vanishing W} -capacity. and its Hansdortf dimension is at most
n — kp. Such type questions first were considered in [2], and then were generalized in
[3] [5]- A detailed history of similar results on R" can be found in [6, Chapter 6.2].
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Recently similar problems in more general situation. for Hajlash Sobolev classes
MP(X). p > 1. a > 0. on metric spaces with measure (see definition below) have
heen studied by a number of authors (see [7]  [14]. and references therein).

Ini the present paper. we also study estimates of the size of the Lebesguc exceptional
set for functions from Hajlasz Sobolev classes MP?(X), but for p > 0, in which case
the functions from AM2(X) can be non-summable. To this end, we first introduce

a generalization of the notion of Lebesgue points, which does not use the integral

averages over balls.

2. THE BASIC NOTIONS AND NOTATION

Let (X.d.u) be a2 metric space with a regular Borel measurc 4 and a metric d.
We assume that the measure y satisfies the doubling condition, that is, there exists

a number g, > 0. such that
(2.1) w(B(r,2r)) < auu{B(x,r)), z€e X, r>0.

Note that the condition (2.1) can be given the following quantitative form: under

(2.1) for some 7 > 0 (can be taken v = log, a,,) the following inequality holds:

\

22) wBe ) <a,(2) wB@r), sex.0<r<h

The constant v plays the role of the dimension of the space X.
For a Lell B € X. by rg and g we denote the radius and center of B, respectively,
and by AB we denote the concentric with B ball of radius Arp.

Throughout the paper we will use the notation

”"zzfd’mﬂf]B—)!“”

for the average of & functiou f € L}, (X) over the ball B C X.

By letter ¢ will be denoted various positive constants. possibly depending on some
parameters, but these dependence will not be essential for us. Besides, the notation
A< B will mean A € ¢B

It is easy to check (see, e.g.. [L5, Lemma 3]) that for any nunber p > 0, a ball
B C X and a function f € L? (B) there exists a number lg’)f to satisty

: \r L

(f!lw'li,"/v'dum = Inf fum—n"du(u)
N7 n
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FINE PROPERTIES OF FUNCTIONS FROM HAILASZ SOBOLEV CLASSES

Note that the number 73" f generally is not uniquely defined. In this case we take
any of the possible values of Ig" f- The numbers I‘é‘) § we play the role of integral
averages [g for nonsummable functions.

For a function f € LP(X) by D,[f] we denote the class of all nonnegative ;
measurable functions g, for each of which there exists a set £ © X with p(£) =0,
such that

/(@) - 1| < [dlz. )] l9(2) + glw)], z.p€ X\ E
The elements of D,[f] are called generalized a-gradients of function f. We list some
simple properties of the generalized c-gradients D, [ that will be used below without

additional comments and references:
Dﬂ[fl < Do[[fl] D,[f + const| = D.[f]
97 € Daf] and gy € Dafv] = gy + g € Dalf + 1],

91 € Dolf] = c¢gs € Dafcf], ¢>0,

if gi € Do[fi] and sup, f; < +oc p-almost everywhere. then
(2.3) supg; € D, [sup f.].
1EN 1€N
We introduce the scale of Hajlasz Sobolev classes A{2(X) = {f € LP1X) D
L¥(X) # 3}. 0 < p < oc, a > 0. These spaces are normed as follows:

(2.4) 11l agzixy = IS llLsxy + inf {”_‘JIILP(xy 19 € Do[f)n LA(X)}

(notice that for 0 < p < 1 the expression (2.4) is only a pre-norm). For a = 1
these spaces were introduced in the paper by P. Hajlasz [7]. where it was shown that
M (R™) coincides with the classical Sobolev space W[ (R"). For ¢v > 0 Lhese sprces
first were appeared in {16, 17).
For a > 0 define the Holder classes:
A
Ho(X) = {¢ € C(X) : 16l w,(x) ‘su]:l—"%—m < +oc}«

Observe that in contrast to the classical cases X = [0.1]" and X = R”. the class
H,(X) can be nonempty for some a > 1. Notice also that the class H,(X) is
everywhere deuse in MP(X) for p > O and 0 < a < | (see {7. Theorem 5| for
p>1and a = 1), in the case p > 0 and 0 < a < 1 the proof is similar.

The classes M% generate the capacities:

Cap, ,(F) = inf {Ilf Wogmexy : £ € ME(X). f 2 lin the neighborhood of - C .\'}
5
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The capacities. together with the measure, the content snd the ITausdorff dimension
will play the role of “measuring instruments” of the sizes of exceptional sets.

Now we consider another way of estimating the complement of an exceptional set.
which is based on the use of the so-called modified Hausdorff contents (sec |19} and
122])

Let b« (0.1] — (0.1] be a given increasing function with h(40) = 0. which will
be called a gauge function. The modified Hausdorff R-content of codimension % for a

set E C X is defined to be

Kl E] .uf[:'M L’:Ulil:..r.), r.<.R}.
el

1 hir,)

where the infimum is taken over all possible coverings of the set E by countable

=)

collections of balls, while the quantity H*(E) = limg_, ;0 H%(E) is called the mudified
Hausglorff measure of codimension /i for E.
Recall that for a gauge function i and 0 < R < 1 the classical Hausdorfl' (h. R)-

content of a set E © X is dehned as follows:

oC o
HYE) = {Zn(m:EcUB(z,,r,a, ri < n}.
=]

i=1
where the mfimum is taken over all possible coverings of the set E by countable
collections of balls. while the quantity HM E) = limp » o HR(£) is called the Hausdorff
h-measure for E. For A(t) = t®. o > 0. we writc H instead of " . The Hausdorff

dimension is defined as follows:

dimpgE = inf {s: H{(E) =0}.

3. THE MAIN RESULLS

In the definition of Lebesgue points of a function f € LP(X). p > 0. instead of
the integral averages fy. we use the best approximations l};" J. The next theorem
shows that the results. proved for averages fg. remain valid for such delined Lebesgue

points.

Theorem 3.1. Let o € (0. 1], 0 < p < v/ and f € MP(X). Then there exists o set
E © X such that Cap,, ,(E) =0 and for any x € X \ E the following Fimil exists:

(3.1) lim BV o i s AR

r—40 Hirr)/
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Desides. we have

(3.2) litn f M = £7(@0)| % dpe = 0,

r =40
O(c.r)

| -

T'he result of Theorem 3.1 for elassical Lebesgue points is well-known. Tn the case
X =R".p>1.a=1it was proved in |2]. for p > 1, a = | Theorem 3.1, without
]

relation (3.2), was established in [3], for thecase p > 1, a=1and 1/g > L/p - o/
it was proved in [9]. for p> 1. a > 0in [10] [12), and for p=1.a =1 in |13

Remark 3.1. In addition to the result of Theorem 3.1. for anv z € X ' E the
following assertions hold:
1) if 0 <6< q. then

: e ey
Jimy f 151 pP =0,
e
2)if0 < # < ¢. then
) ey
MAm T of = £7(@).
3) if p 2 =F= (in this case g > 1}, then

f !f 7 ler.r)qu# =0.

B{r.r)

lim
r—+U

in particular, we have lim, 1o fpz.r) = f(2)

When preparing the present paper. the preprint [18] was published, where a different
approach to the definition of Lebesgue points was proposed. This approach is hased
on the use of the quantitics
(3.3) m}(E) =if{u €R: p({r € E: f(z) >a}) <dp(E)}. 0<§<1/2,
which are cilled d-medians of a measurable function f over the set £ C X of finite

measure.
The main result of [18] concerning the spaces MP(X) {in [18] also was considercd

Besov and ‘Iyiebel-Lizorkin type spaces) is that the result of Theoremn 3.1 holds when

the best approximations lg'(’, o/ are replaced by medians m]’;\’B(L r)) for any 0

& < 1/2, that is. in Theorem 3.1 the relation (3.1) can be replaced by
: S(B(r v)) = f(
(3.4) "1_1‘11_*1‘, m$(B(x.7)) = f*(z).

We show that in a sense these two approaches are equivalent. and hence the above

cited result from |18] can easily be deduced from our Theoren 3.1
7
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Corollary 3.1. Leta € (0.1]. 0 < p < v/a and f € ME(X). Then there crists a sct
E C X. such that Cap, ,(E) = 0 and for any r € X \ E and any 0 < 6 < 1/2 the
relation (3.4) holds.

A nonnegative function v, defiued on the ¢ algebra of Borel sets from X, 1s called
an outer measure if it 1s monotone (that is, E, C Eg implies 1(E3) < v(E)) and is
subadditive with some constant e,, meaning that for any sequence of Borel sots Ej,
the following inequality holds: v (U, Fi) € @, 3, v{Fx).

Let A be a given gauge function. We will use the following consition that connect
the underlying measure 2 and the outer measure v: there exists a constant ¢, such

that
W E)
(3.5) u#(B) <e, ;” — forallballs BC X, rg<1.

\TB)

In the theorem that follows. in terms of the above condition. we give an estimate of
the complement of the set of points at which the relation (3.1) is satisfied for functions
from the classes ME(.X) for all p > 0 and a > 0. We will consider gauge functions h
of the following form:

’ !lp »
(3.6) hit) = (——) 2

2l t)

where ¢ : (0.1] = (0.1] is a positive increasing function for which @(t}t * decreases.

Theorem 3.2. Let o >0, 0<p < v/a and f € MP(X). Let v be an outer measure
satisfying condition (3.5) with a gauge function h of the fortn (3.6). such that

-

(3.7) Z;(?"]- x

Then there exists a set E C X such thal v(E) = 0 and for any € X \ E the limat
in (3.1) ezists and the relation (3.2) is satisfied.

ap Satixfies the condition (3.5) for ¢ = 1. for which (3.7)

is not satisfied. Hence Theoremm 3.1 cannot be deduced from Theorem 3.2. As an

Observe that v = Cap

example of outer measure v satisfying conditions of the theorem can be counsidered

the modified Hausdorff measure 3", from which we obtain the following result.

Corollary 3.2. Leta > 0.0 < p < 4/a and f € ME(X ), and lct e gauge function
given by (3.6) satisfy the condition (3.7). Then there erists a set E C X such that
H"(E) = 0 and for any z € X \ E the limit in (3.1) exists and the relation (3.2) is
satisfied.
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A similar result can be stated in terms of wedians mf.(B(z, r)). instead of the best
approximations Ig'(’: S 17
Corollary 3.3. Leta >0, 0 < p < v/ and f € ME(X). and let a gauge function
given by (3.6) satisfy the condition (3.7). Then there erists a st E ¢ X such that
H"(E) = 0 and for any = € X \ E the limit in (3.4) exists and the relation (3.2) is
salisfied.

Note that this result, without relation (3.2). for a € (0, 1] and p € (0. 1) was proved
in [22|.
The classical conlent Hiq satisfies the condition (3.5) with function h(t) = 7 7

at least locally. Indeed, we fix the ball By = B(zg, Rg) and let B be a ball that is

contained in By. then by doubling condition we have ;(B) > plBs)

r i3 Therefore
)

Ilf(B)(f;-r;“rz,f' R" ) .‘, B

u(Bu‘»r"

Henee taking into account the subadditivity of the content 11,” we can state the

following result.

Corollary 3.4. Let o > 0, 0 < p < v/a and f € ME(X). Then there ezists a sel
E C X, such that dimy(E) < v — ap end for any 2 € X \ E the limit in (3.1) ezusts
and the relation (3.2) is satisfied.

Our next result cstimates the sizes of the complement of a set on which the

“avernges” I l;.(): o converge with n specified rate.
Theorem 3.3, Let 0 < o, 0 < p < y/a be given, and let v be an outer measure
satisfying the condition (3.5) with h of the form (3.6) and a function © satisfying
(3.7). Then for any function f € ME(X) there exists o sel EcCX,suchthatv(E) =0
and for ell T € X \ E the following relations hold:

(3.8) .-E."Eo [v(,-)rl (f*(z) - ng_);-..-)f] =0,
(3.9) lim [io(r)] L mé(B(a,r) - f*(#)} =0, 0<8<1/2
1/e
1l .o
(3.10) 'll":owun.‘ f \f - I'(J‘)I'dﬂ =0, whore q = ;’ :
er)

9
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Notice that the set E in Theorem 3.3 satisfies the condition
g{(fn=ﬂ)p(5m - H'»=u;n~3)p(E) =0
for 0 < 4 < a (see [14, Theorem 2| in the case p > 1 and @(t) = t5).

Remark 3.2. All above stated resulis remain valid for the homogeneous versions

MI(X) of Hajlasz-Sobolev spaces. which are defined to be the sets of measurable
functions f satistying D, [f] N LF(X) # @.

4. AUXILIARY NOTIONS AND RESULTS

We first examine the bebavior of the best approximations I:;J:.-s f

Lemma 4.1. If f € C(X), 1 € X and p > 0. then limnl‘"’?”)j = f(z). If [ €

LP(X). then the bt Hus, IBP()I r)f erists p-alinost everywhere, n

The first assertion is obvious, while the second was proved in |15, Lemma 7| (sce
also |24. Theorem 2| and |25, Lemma 2|). Lemmna 4.1 shows that for nonsummable
functions, in the definition of Lebesgue points the integral averages fp(;,) can be
replaced by the best approximations IB"’,): f.

The hasic tools in the proofs of the main results play the LP- oscillations:

I/p

A5 B) = (1 - 1117
L
where B C X is a ball. and the corresponding maximal operators:
A [(x) = sup r” Ap(/, B).
BOz

where Lhe supremnum 15 taken over all balls B containing the point . and o > 0,

feLl (X).p>0

Lemma 1.2, Let a, p. # > 0. The following assertious hold:
1) if B,. By € X arc two balls such that B, C B and ) < ry, < ry,, then

v's
(4.1) DS~ I3 1) < AF. B.)+( o~ ) Ap(f. B);
2) for any ball B C X we have
V/p
(4.2) Au(f.B) < 1§ (/pl"' g

ll)
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if. in addition. p < 4/a. then

Ie »

(4.3) ({I[-I"’]'dp) <1 (f{ﬂf.“’ﬂ“du) . where f;;%:'

oY)
Proof. The inequality (4.1) was proved in {15. Lemma 5]. The inequality {(4.2) cau
he obtained by averaging over y € B of the abvious inequalhity

Ao(f.B) < AL f(y) for pe B,

while (4.3) is proved in |15, Theorem 2|.
T'he next lemma fotlows from the so-called seli-improvement property of the Poincaré

incquality (see [15. ‘Thearem 6]).

Lemma 4.3. Let 1/6 < 1/p+ a/y. Then for f ¢ UPtX) and g € D,|[f]

a1 <5 (f o i)

Next, we present results containing descriptions of classes n terms of maxinal

functions A (see |23. Corollary 3.1]. and also [15. Theoren 4]).

Lemima 4.4. Ifa,p > 0 and f € LP(X), then
1) from ALY [ € LP(X) for some B > 0 follows f € MU(X),
2) from [ € MY(X) follows A\ [ € LP(X) for 1/8 > max {1/p

Lemma 4.5. Let a.p > 0. If f € MIP(X), ¢ € Ha(X) and is bounded. then fo e
AIL(X). Besides, if ¢(x) = 0 for £ € X\ E, then for ang funclion g € D, [[| 1 L7(X)

we have

(9 16l + L1 101, x,) x5 € Dalf] 0 17(X)

The result. of Lemma 4.5 is kuown for p > 1 (see [8. Lemma 5.20] and [9. Lomoy
2.5)). The proof is similar in the case p > 0 The next classical lemina can be found
in [26] (sce also [27. Lenuna 1.6)).

Lemma 4.6. From cach covering of the set E C X by balis of bounded diamneters ca
be sclected at most countable set of mutually disjownt bulls { B} satisfying E U; 58,

For a measurable function 4 we introduce the i-"fractional” maxinal function

y Wk

My pg(x) = gup hiry) ][ i dn)
o

i1
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In the special case k(t) = 1 we obtain the usual modified Hardy-Littlewood maximal

function: i
M,g(z) = su (f & :

i) = 3| £ lof* du
for which for 0 < 8 < p the following standard estimates hold (see. e.g.. [1, §1.3]):

(4.4) IMeflizecxy S MfllLscx)
In the next lemma we collect the necessary properties of A-“fractional” maximal

function.

Lemma 4.7. Lei p > 0 and v be an ouler measure satisfying the condition (3.5).

Then the following weak type tnequality holds:
] ]
(4.5) v{re X :Mupg(z) > A} £ (: ”9"1."(){)) .

and v(Ej plg]) = 0 for any function g € LP(X), where

Eyplel = l: € X: Tim_ h(r) f |9/ dp > 0
l B(r.r)
Proof. We first prove the second assertion of the lemma. By subadditivity of

measure v, it is enough to show that ¥(E)) = 0 for A > 0, where

Ex=(zeX: moh(r) f’ gPdp > A
l B(z.r)
Let 0 < § < 1. If x € E,, then there exists a ball B, = B(x,r;), where r; € (0,86),

such that

(4.6) h(r,)f_q” di > A
B,

By Lemma 4.6, from the covering {B; : z € E)} it can be selected at most countable
subset of mutually disjoint balls { B, = B,,} satisfying Ey C U, 5B..
Heuce taking into account the subadditivity of v, and conditions (2.2), (3.5) and

{4.6), we can write

B S v (U'JB-) < v(5B) £ 3 u(Bi)/h(ri) S

1 / 1
.';.—E .Opdlls-/ Pdp — 0 5> 0.
A g, Y U.B.g 1 as § o

12
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The last relation follows from absolute continuity of the integral and continuity of

the gauge function A at zcro. because by (4.6) we have

(U80)<2Mn)[ g dp <'(6) gPdp =0 as 50,
s

Repeating the above arguments for the set {My, ,g > A}, we obtain (4.5).

Lemma 4.8. Let p > (), 0 < 8 < a, and let the outer measure v satisfy the condition
(3.5), where h(t) =t " Then for f e L (X) the following inequality holds:

. )
[ Ay > nar < 14011
0

This result can be found in [20] (see Theorem 2 and the remark at the end of §2
in [20]).

Lemma 4.9 ([10,11]). Let EC X, 0<a <1, 7> ap andp > 0. Then the follounng
assertions hold:

1) the capacity Cap, , s an ouler meusure end
Cap, ,(E) = inf {Cap, ,(0) :EC 0.0 s open}) .

2)forze X,0<r <1 Cap,,(B(z.7)) < r ™ Pp(B(r,1)).
3) for 0< B < a Cap, (E) =0 = Capg ,(E) =0.

5. A WEAK INEQUALITY FOR CAPACITIES

To prove the main result of the paper. we need a number of results, which can
also represent an independent interest. Such results are weak estiwates of capacities
which will be obtained using a discrete maximal function. To define this notion, we
necd some preliminary work. We start with lemmas on coverings and on existence of

partition of unity {see (9])

Lemma 5.1. There ezists a number N € N, such that for any r > 0 a farmly of
finite or countable balls { B{z:. r)}: , can be found to satisfy

Xc O B(mi'r)f Z XB(z:.6r) < N.

=1 =)

Lemma 5.2. Let0 < ¢ < 1 andr > 0. For the balls {B(2,,7)} from Lemnma 3.1 there
erists a collection of functions {¢,} C Ha(X) possessing the follounng properties:
1)0<¢ <1,
2) u(r) =0, x € X\ B(zi 6r).
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3) ¢ (z) > c. £ € B(x,.3r), where constant ¢ > 0 depends only on a, from (2.1).
4) ‘ﬂ-”lidf,\'; -\ g
5) Y oz =1
1=l
Now we are ready to define the diserete maximal function. Let > 0 and {B,} be
a covering of X by balls B(r,,r) from Lemma 5.1, and let é; be the functions from

Lennna 5.2. Define the discrete convelution of function f by

(5.1) fole) = Zo-(r)lfﬁ'(), and 1

=1

and the discrete maximal operator by
A* f(z) = sup [, (z),
7

where {r;} are in some way emumerated sequence of rational numbers from (0, 1).
Note thay in the standard definition of the discrete maximal function (see [9], [13])

is used the integral averages. In our case, these averages are replaced by the clements

of the best approximation I} f. Now we proceed to prove a number of pioperties of

the discrete convolution and discrete maximal function. We will follow the scheme

from [13].

Lemma 5.3. The operutor of discrele connolution s bounded in the spaces L¥(X)

and MP(X), that is.

(3.2) | friloexy S Nl Leexy-

(5.3) fellanzoxy S I Raeny-

Proof. We first prove the inequality (5.2). We have
x

finrans s [ AU < 3 B
=1 =1

Using the following easy verified inequality ll‘ f|P faB. |f|P du and taking into
account the bounded multiplicity of the intersection of balls 68, (see Lemma 5.1), we

obtain

T .Zj f 1P aus [ 11,

and the inequality (5.2) follows.
14
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To prove the inequality (5.3), we follow |13]. and produce the a-gradient for f, and
prove that this gradient and the function f, belong to LP(X). We usc the notation
B, = B{z;,r). and represent f, in the forin

@) = @)+ 3 outa) (11851 - 1))

i=]
It is easy to seo that g + 3.0 7 € D|[f,], where g € D[f] and g, is the generalized
agradient for ¢; [|I§'g‘ fl - ﬂflf Using Lemma 4.3, with some constant ¢ > 0 we have

r ,
(17 - 1851+ 0) xon, € D [0 (115351 - 171)]
Let 2 € 61,. then 3B, C B{x,9r). We write the obvious inequality
1)~ 1811 S 1£(2) = Tgtean | + 150 ! - 185 1)

and estimate the terms on the right-hand side separately.
If at a point z the relation (3.1) is satisfied, then using Lemma 4.3. we can writ

the following chain of inequalities

|I(I) (.t ']r]fl Z 'I.B,?: 32*Ir)f - Ilﬁl.{j:,il"lr)fi ~

-~ x
2- iy
< Z A,,(f. B(I. 3 J")) S Z, R
=0 1=0

The parameter 8 we choase to satisty the condition of Lemma 4.3. that is.
TR

(5.4) CRE<-+2
v & p v

To estimate the second term, we again use Lemma 4.3 to obtain

G, oy f = 15 5| < Aplf. B(z.97)) < 7°Mag.

Thus. for almost all € X (see Lemma 4.1) the inequality holds:

ik 8 0

r 4 " a 4

|’(I,’l"b‘,'if M‘v ;(6\ ‘-'0:

implying that c(g + Msg) € D|f;]. Taking into account (4.4). we obtain inequality
(5.3). O

Lemma 5.4. The discrete maximal function acts boundedly in the space MP(X).
that is,

(5.5) 1M flaez o) S 1 F laezcx)-

15
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Proof. In Lemma 5.3 it is shown thal the function c(g + Mag) (where g is any
a-gradient of function f. and ¢ satisfies (5.4)) is an a—gradient for the discrete
convolution f, for any ». Hence. by (2.8) this function is also an a gradient for

Af* f. Write the inequality
in)
[AUED M 14}
"P

where i indicates that the sum is over those indices i. for which = € 613, (by Lemma
5.1. the number of such indices is bounded by a constant, depending (){ll_\' on 7). We
choose a number 8 to satisly (5.4), and ¢stimate cach tern on the right-hand side of
the inequality

/¢
511 < Avis3ma+ (f 101 du) < Ap(J.6B.) + Mo (x).

Using the self-improvement property of the Poincaré inequality and Lemina 4.3, we

obtain
£.(r) € Mog() + Mo f(2).

implying the inequality (5.5). The proof of Lemma 5.4 is complete. O
Now we introduce one more maximal operator:
M) = sup [ID)
Bes.ru<l
The next lemma asserts that for the operators My f, Myf aud Aaf n weak type

inequality by capacity holds.

Lemma 5.5. Let f € MP(X), then

] 1B
(5.6) Cap...,{z:(rn(r);»x}sLi,i‘ﬂ, A>0,

where as T can be taken any of the operators M f, My f or Ao f.

Proof. Observe first that the inequality (5.6) for T' = A:,"’ follows from Lemna
1.8. Indeed. for given A > 0. by Lemmas 4.3 and 4.8 we get
s e

A(Cap, , {401 > A})”p < ( A j 7 'Cap,,, {AE,"’f > :} d!) 3

/2
S AP flleeixy < 1S laezexs:
To prove the inequality (5.6) for T = M;, observe that

Mif(x) < c (AP f(z) + M'f(a:)) .
16
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From the previous inequality, using the fact that the assertion is already proved for

A", we obtain
Cap,,, (M1f > M) < Cap,, , (Af,”’ f> %) +Cap, p (M' I>% ) <

1P g 2\
< a . Law o o
.\;—” +blpu'\.\| ] > 2'_}
Thus. it remains to show that

Hf" ME

a-pn,.(M f> )~ L

To prove the last inequality, we use the definition of capacity to obtain
T

e M\ A"
C{\p",p (A” f>2—c)§_ T o T
|1f|1Mp

Therefore
Cap, ,(M;f >\ S ——

Fiually, the inequality (5.6) for operator M f follows from the above proved inequality
and M, f(x) < AP f(z) + M, f(z). Lemma 5.5 is proved
6. Proor or THEOREM 3.1 AND ITS COROLLARIES

We define
Qfx) = Bm 05, o~ T8 Sl
and show that
Cap,,{r€ X :Qf(z) >0} =0.

Taking into account that the Halder class H,(X) is everywhere dense in M?(X), for
€ > 0 the function f can be represented in the form f = f; + fa, where f, € Ha(X)

and || f2l| pg <.
For any y,z € X we write the obvious incquality

M it = I8 oy f1 S Mige ] — SN+ UG, o
HIG. o f2 — AW+ g, o f = S|+ 113 s - f;(z)|+
HI, myf2 — P2+ UG, f1 = T il + UBle iy fo = 13, o .
and average it by y € B(r,7) and z € B(z. R) to obtain
U ]~ 10 S| < Aplf Ba:7)) + Ap(fa Bla.r))+
+Ap(f2, B(z, 7)) + Ap(/. B(.’r R)) + Ap(f1, B(x, R))+
I hi- (g R)f1|+”3(:r) l},’;’,’mm.

+Ap(f2 B(z.R)) + |1 Bis.r)
17
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The Frst six terms can he estimated similarly as follows. Using the inequality (4.2)
and Lemmas 1.2. 4.7 and 1.9. we conclude that the following relation is fulfilled

Cap,, ,-almost everywhere:

/ \ Up

Adf. Biz.r)) €7 ( ][ l./lf,"’j]"dp) =0 as r— 0.
s r)

Besides. in view of continuity of f; and Lemma 4.1, for any x € X we have

LTI L S R
Thercfore. Cap,, ,-almost ever}'where
Qf(c) < Qfa(z) < M fo(x).

Also. by Lemma 5.5 for any A > 0 we have

Wl \"
Cap, ,{2f > A} £ Cap, ,{M;fy > A} £ (%ﬁh) < (%)n

Hence for any A > 0 we have Cap,, ,{2f > A} = 0, and the result follows. Theorem
3.1 is proved.
Now we prove the assertions in Remark 3.1. Observe first that the assertion 1)
unmediately follows from Holder inequality. To prove the assertion 2), the inequality
1 /] 8) ]
e = Iie I S 1) — 150 S + 11 (0) = 2550, 3 )
we average by y € B(x.r) to obtain
. [/
1 pteerf — I5tenyf| S Aglf. B(x,7)).
The right-hand side of the last inequality tends to 0 as r — +0. which implies 2),

since m view of (3.1) and (3.2)) we have I‘B'(':c of = I ().
To prove the assertion 3). for ¢ 2 1 we write the obvious inequality

1/¢ / l/q
f = Imenldn] s f =12 |+
‘J“l r) \e.r)
{ 1/q
{p P
gt = Il S 1 1 =18, ivan|
(z,r) J

and observe that by Theorem 3.1, the right-hand side of the last inequality tends to

0 as r = +0. implying the assertion 3).
18
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To prove Corollary 3.1, we need an inequality for 1he difference of the best approximations
I:_-,”f and medians m’}(B).

Lemma 6.1. For any ball B C X and any function f € L7 _(X) the following
mequality holds:

Wy
(6.1) m$0) - 18115 (3 f 17181 )

Proof. The result easily follows from the following clemcentary properties of medians
mff {see [21], and also [18. Lernma 2.7)):

mi(B) +a=m},,(B) for aeR |m}(B) <mi(B)

3 | i/p
m(B) < (Ifolfl”dy) , p>0.

Indeed, using the above properties, for any ball B © X we have

m$(B) - IPf| s m? ., (B)< l]( TN
! b =1\ 2=\ 3 - B 1

iniplying (6.1).

Now. the result of Corollary 3.1 follows from Theorem 3.1. since by the inequality
{(4.2) of Lemima 4.2, and Lemmas 4.7 and 6.1 (see also property 2) of capacities from
Lemma 4.9), for all 0 < § < 1/2 we have

i — A (p)
Cap, {re X : "I_l’rt’ln|m!(l?(:.r)) —Ignt] >0} =0

7 PRrROOF OF THEOREM 3.2

Let the numbers 0 < 7 < 1 and n € N be such that 27" < r < 27"+ Then by
Leinma 4.2 (see the inequalities (4.1) and (4.2)) we have

i/p

WGl “ oz i | f 1A
ari
Hence. we can use Lemma 4.7 to obtain

(w i -
vir e .\’:'I_T._r:“lln’“_,] = Dyieg-wyl >0} =0,
showing that it is enough to check that the sequence {I;,’?I ,‘,,]} converges v-almost

everywlhere.
19
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Let m > n and B, = B(x,2°"). We again use the inequalitics (4.1) and (4.2), to

estimate the difference IIH’) J - "H’..). f|. to obtain

e
=191 3: o ,,,II‘*E?"(’{“?’”#) -

-n r-n

Ve
} 3 (4/“"0 11" d : Zv(u Y (h(ﬂ')/l“q‘.”l”“‘) S

i=n \ i,

< Mg f(2) Y 9(27") 0

ann — 20 at cach point € X for which M, f(z) < 0o, and hence, by Lemma 4.7,
the convergence is v-almosl everywhere. Theorem 3.2 is proved.
To prove Corollary 3.2 it ix enough to show that the limit (3.1) exista ﬂ?-nlmtmt

cverywhere, since the conditions HP(E) = 0 and HA(£) = 0 are cquivalent. So, it
remwaings to apply Theorem 3.2 with v — X}, Corollary 3.3 imnmediately follows from

Lemma 6.1,

8 PROOY OF THEOREM 3.3

We prove the convergence for the elements of the heat approximation, that is, the
cquality (3.8). Then the result for mediank (3.9) will follow from (3.8) and Lemma
6.1

Let E; be the camplement of the ket of points = € X satisfying the relation:

i»
.'...Tu “” l"'l‘ "I] -0

It follows from Theorem 3.2 that v (E|) = 0.
let z€ X\ E, 0<r <1and B, = B(z.2 /r). Applying the inequalities (4.1)

and (4.2), from Lemma 4.2 we obtain

P(r)] 7 L) = 10, S < ot} Zu,.,,,l-lﬁ',’lls

Wr
< lwtr)) ‘Zw B)) < -22 "(f us."nw) S
A,

i) }-lt

iy
< wup (h(ﬂfm_ ”IA.‘."’ﬂ'da) :
20
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and the lnst term tends to O an r — 40, provided that

' (v =
'l_l'!}:"h(r) mr.r)[}l,,“ NN"du =0,

Al)l)lyi“g ld'-'"l""‘ ‘-i w".h " - Af‘ ’ , W uh'ai“ U(FJZ) = 0. wher'
L L) xr A ¢ I (1] ‘I. r J 2N d L > "
i +~240 ) J l (i /I } >

Thus, on the complement of the set E = Fy U E; the relation (3.8) in fulfilled.
Now we prove the relation (3.10). It follows from Inequality (4.3) that

: 3 \I/q 1/p
(r)| f - gy <) AP 4 ,
lotr)] (mmu B ~(.m &) u)

and for £ € X \ £ the right-hand side of the last incquality tends to 0 as r — +0.

Therefore for any r € X \ E we can write
fim_[¢(r)] " ( /
vr-aa0 n

Ie
. 1 (p
+ i fe(r)] ( fu - i = 1ent I"flu) =0,

and (3.10) follows. Theorem 3.3 is proved.

e
_r)lff(-’-)l"du) < lim folr)] ' /() - 17, . 11+

s
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