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A b s tra c t .  Let X  be a metric measure space satisfying the doubling condition of order
1  >  0. For a function /  € Լ Լ է. ( ճ ) ,  p >  0 and a ball В  С A՜ by T ^ f  we denote the
best approximation by constants in the space L P(B). In this paper, for functions /

from Hajlasz-Sobolev classes M j(.Y ), p >  0, о  >  0, we investigate the size o f the set
E  o f points for which the; following lim it exists: lim r -»+o г )/  =  / * ( i ) .  We prove

tha t the complement o f the set E  has zero outer measure for some general class of
outer measures (in  particular, i t  has zero capacity). A  sharp estimate of the HausdorfT

dimension o f th is complement is given. Besides, i t  is shown that for x € E  lim  f D< ,
r-»+o

I /  — f * ( x ) \q dn =  0, l / q  =  1/p — a  ի .  Similar results are also proved for the sets where 
the “ means" lg ) x r \ f  converge w ith  a specified rate.

M SC 2010 num bers: 46E35, 43A85.
K e yw ords: M etric measure space; doubling condition; Sobolev space; Lebesgue point; 
capacity; outer measure; Hausdorff measure and dimension.

1. I n t r o d u c t i o n

The classical Lebesgue theorem (see [1, Chapter 1, § l|) states that for any function 

J  € L*oc(Rn), p  >  1, almost all points are Lebesgue points, that is, fo r թ -almost 

everywhere, x  6 R”  the lim it

(11 ) հ ո ւ T v f  fd p  =  f ( x )
B{s,r)

exists and the function / *  is equivalent to / .  where p is the Lebesgue measure on R".

For inore regular functions, the sizes o f the Lebesgue exceptional set (that is. 

the set o f points for which the lim it (1.1) does not exist), can be estimated more 

precisely. For instance, for functions from Sobolev space VV^R") w ith 1 < p < n /k , 

this exceptional set has vanishing №£’-capacity, and its Hausdorff dimension is at most 

n -  kp. Such type questions first were considered in |2|, and then were generalized in 

[3| (5|. A detailed history o f sim ilar results on R ՞ can be found in [6, Chapter 6.2].
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Recently similar problems in more general situation, for Hajlash Sobolev classes 
M £(X), p > 1, a  > 0, on metric spaces w ith measure (see definition below) have 
been studied by a number of authors (see [7] [14|, and references therein).

In the present paper, we also study estimates of the size o f the Lebesgue exceptional 
set for functions from Hajlasz Sobolev classes M £(X), but for p >  0, in which case 
the functions from M g(X) can be non-summable. To this end, we firs t introduce 
a generalization of the notion of Lebesgue points, which does not use the integral 

averages over balls.

2. T he  b as ic  n o t io n s  a n d  n o t a t io n

Let (X ,d,n) be a metric space w ith a regular Borel measure p. and a metric d. 
We assume that the measure թ  satisfies the doubling condition, that is, there exists 
a number ай > 0. such that

(2.1) ц{В{х,2г)) < арц(В(х,г)), x  € X , r  >  0.

Note that the condition (2.1) can be given the following quantitative form: under

(2.1) for some 7 > 0 (can be taken 7 =  log2 aM) the following inequality holds:

(2.2) p(B(x, R)) <  /i(B (x , r)), x  6 X , 0 <  г  <  R.

The constant 7 plays the role of the dimension o f the space X .
For a ball В С X , by тд and хв we denote the radius and center o f B, respectively, 

and by Л В we denote the concentric w ith В  ball of radius Xrg.
Throughout the paper we w ill use the notation

шЯШШШв в

for the average o f a function /  € L?oc(X ) over the ball B c X .
By letter с w ill be denoted various positive constants, possibly depending on some 

parameters, but these dependence w ill not be essential for us. Besides, the notation 
A < В w ill mean A < c.B.

I t  is easy to check (see, e.g., [15, Lemma 3|) that for any number p >  0, a ball 
В Ը. X  and a function /  e L? (B) there exists a number / j fV  to satisfy
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Note that the number I g f  generally is not uniquely defined. In this case we take 
any of the possible values of ijg f .  The numbers /g ' /  we play the role of integral 
averages /в  for nonsummable functions.

For a function /  e LP(X) by Da [/] we denote the class of all nonnegative թ֊
measurable functions g, for each of which there exists a set E С X with ц(Е) = 0,
such that

I/ ( * )  -  f( y ) I < [d(x,v)]a\g(x) +  g{y)], x,y e X \ E .

The elements o f Da[f\ are called generalized а-gradients of function / .  We list some 
simple properties o f the generalized «-gradients DQ[-] that w ill be used below without 
additional comments and references:

_ D „ [ f ]  С D0 [I/I], Da[ f  +  const] =  £>„[/],

9 f e Da[f] and gv 6 Da[u] = ►  9/ + 9ѵ €  Da[ f  +  v],

9f  e Da[ f ] = >  cgf  e Da[cf], с >  0,

if  ցլ G Dn [/i]  and supj f i  < +oo /х-almost everywhere, then 

(2.3) sup gi € Da [ sup f i ] .
teN  t€N

We introduce the scale o f Hajlasz-Sobolev classes հ Ա { ճ )  =  { /  € LP{X) : Dn[f] Ո 
1?{Х) փ  0 }, 0 < р < ос, а  > 0. These spaces are normed as follows:

(2-4) l l / l lMS(X) — ||/|lx,s*(x) +  in f {||<7||lp(x) : 9 € Da[f] r \L p(X )}

(notice that for 0 < p < 1 the expression (2.4) is only a pre-norm). For a =  1 
these spaces were introduced in the paper by P. Hajlasz [7]. where it was shown that 
M f (Rn) coincides w ith the classical Sobolev space W,'1P(R"). For a > 0 these spaces 
first were appeared in [16, 17].

For о >  0 define the Holder classes:

{
|^(z) ~ 4(i/)|

Ф € C (X ) : М |я„ (x) =  sup < +oc I  -

Observe that in contrast to the classical cases X  =  [0, l ] n and X = Rn, the class 
Ha(X) can be nonempty for some a >  1. Notice also that the class Ha(X) is 
everywhere dense in M P(X) for p > 0 and 0 < a < 1 (see [7, Theorem 5] for 
p > 1 and a  =  1), in the case p > 0 and 0 < a < 1 the proof is similar.

The classes generate the capacities:

Capa p(J5) =  in f { l l / H ^ * )  : /  € M * (X ) , f  > lin  the neighborhood of E С .v } .
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The capacities, together w ith the measure, the content and the Hausdorff dimension 
w ill play the role of “measuring instruments” of the sizes of exceptional sets.

Now we consider another way of estimating the complement of an exceptional set. 
which is based on the use of the so-called modified Hausdorff contents (see [19] and 

[22])-
Let h : (0.1] -> (0.1] be a given increasing function w ith h(+0) =  0, which w ill 

be called a gauge function. The modified Hausdorff Я-content, of codimension h for a 

set E  С X  is defined to be

where the infimum is taken over all possible coverings o f the set E  by countable 
collections o f balls, while the quantity Mh(E) =  Іііпя-н-о W ji(E) is called t he modified 
Hausdorff measure of codimension h for E.

Recall that for a gauge function h and 0 <  R <  1 the classical Hausdorff (Л.. R)- 
content of a set E  С X  is defined a£ follows:

{ ОС oo

^ / i ( r ; ) : £ c U % r ; . ) ,  n < R  
i= l  i= l

where the infimum is taken over a ll possible coverings o f the set E  by countable 

collections of balls, while the quantity H  (E) =  1іш я-ч о ̂ n ( ^ )  is called the Hausdorff 
Л-measure for E. For h(t) — tn . a >  0, we write H n instead o f H '" . The Hausdorff 
dimension is defined as follows:

dimnE =  in f {« : H [{E ) =  0} .

3. T h e  m a in  resu lts

In the definition of Lebesgue points of a function /  € Lr (X ), p > 0, instead of 
the integral averages fa , we use the best approximations 1ը^f -  The next theorem 
shows that the results, proved for averages /в , remain valid for such defined Lcbcsgue 
points.

Theorem 3.1. Let a € (0,1], 0 < p < 7/ ո ՛ and f  6 M £(X). Then there exists a set 
E С X  such that CapП։Р(Е) =  0 and for any x G X  \  E the following lim it exists:

(3.1) lim  =  / '( * ) •
r -»+0 Щ т - . П *  J  \  /
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Besides, we have

(3.2) Urn /  | / - r ( x ) | " d , i  =  0, ֊  =  ֊ ֊ ֊ .#•-♦+0 j  q p i
B(x.r)

The result of Theorem 3.1 for classical Lebesgue points is well-known. In the ease 
X  =  R ", p > 1, о  =  1 it  was proved in |2], for p > 1, a =  1 Theorem 3.1, without 
relation (3.2), was established in |8], for the case p >  1, a =  1 and 1 /q > 1/p -  a/7 

it  was proved in [9|, for p > 1, a >  0 in |10] |12), and for p =  1. q =  1 in [13].

R em ark 3.1. In addition to the result of Theorem 3.1, for any x £ X  \  E the 
following assertions hold:

1) if 0 <  I  <  q, then

В 1S B B i
2) if  0 <  I  <  q, then

г!Й о 4 5 Ա /  = /" (* ) ,
3) if  p > (in th is case q > 1), then

r!5+o /  \ f - f ^ ) \ gdp =  0,
B(x.r)

in particular, we have lim r -̂ +o fe [x ,r )  — /* ( x ) ՛

When preparing the present paper, the preprint [18] was published, where a different 
approach to the definition of Lebesgue points was proposed. This approach is based 
011 the use o f the quantities

(3.3) m j(£ ) =  in f {a 6 R : ц ({х  G E  : /(x ) > a}) < <*/x(£)}. 0 < S < 1/2,

whicli are called й-medians of a measurable function /  over the set E  С X  of finite 

measure.
The main result of [18] concerning the spaces M£[X) (in [18] also was considered 

Besov and Triebel-Lizorkin type spaces) is that the result of Theorem 3.1 holds when 
the best approximations Іщ т г)/  are replaced by medians msf (B(T.r)) for any 0 <

6 < 1/2, that is. in Theorem 3.1 the relation (3.1) can be replaced by

(3.4) lim  mSf(B (x ,r))  =  /*(x ).
'  I  r -» + 0  7

We show that in  a sense these two approaches are equivalent, and hence the above 
cited result from [18| can easily be deduced from our Theorem 3.1.
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C oro lla ry  3.1. Let a  € (0,1]. 0 < p < 7/a  and f  € M g(X). Then there exists a set 
E  С X . such that CapQiP(E) =  0 and fo r any x € X  \  E  and any 0 < 5 < 1/2 the 
relation (3.4) holds.

A nonnegative function 1/, defined on the a algebra o f Borel sets from X , is called 
an outer measure if  it is monotone (that is, E i С Eo implies ս (£ շ) < u(E2)) and is 
subadditive w ith some constant a„, meaning that for any sequence of Borel sets Ek 
the following inequality holds: v(\Jk &k) < au Tlk u№k).

Let h be a given gauge function. We w ill use the following condition that connect 
the underlying measure //. and the outer measure v\ there exists a constant. c„, such 
that

In the theorem that follows, in terms of the above condition, we give an estimate of 
the complement of the set of points at which the relation (3.1) is satisfied for functions 
from the classes M g{X) for all p > 0 and a  > 0. We w ill consider gauge functions h 
of the following form:

where if : (0. 1] —> (0, 1] is a positive increasing function for which <f{t)t a decreases.

Theorem  3.2. Let a > 0, 0 <  p < 7/a ՛ and f  € М%(Х). Let и be an outer measure 
satisfying condition (3.5) with a gauge function h of the form (3.6), such that

Then there exists и set E  С X  such that v{E) =  0 and fo r any x € X  \  E the lim it 
in (3.1) exists and the relation (3.2) is satisfied.

Observe that и =  Capo p satisfies the condition (3.5) for ip =  1, for which (3.7) 
is not satisfied. Hence Theorem 3.1 cannot be dcduced from Theorem 3.2. As an 
example of outer measure 1/  satisfying conditions o f the theorem can be considered 
the modified Hausdorff measure %h, from which we obtain the following result.

C oro lla ry 3.2. Let a > 0, 0 < p < 7/0 and f  € M *(X ), and let a gauge function 
given by (3.6) satisfy the condition (3.7). Then there exists a set E  С  X  such that 
J ih(E) — 0 and fo r any x € X  \  E the lim it in (3.1) exists and the relation (3.2) is 
satisfied.

(3.5) //(B) < c „ - —\- for all balls В С X , г  в <  1.
Ыщщ

(3.6)

(3.7)
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A sim ilar result cau be stated in terms of medians nA(B(x, r)), instead of the best 
approximations Іщ х ,.)/•

C o ro lla ry  3.3. Let a  >  0, 0 < p < 7/a  and f  e M£{X), and let a gauge function 
given by (3.6) satisfy the condition (3.7). Then there exists a set E С X such that 
ԴՀh(E) =  0 and fo r any x € X  \ E  the lim it in (3.4) exists and the relation (3.2) is 
satisfied.

FINE PROPERTIES OF FUNCTIONS PROM HAJLASZ-SOBOLEV CLASSES

Note that this result, without relation (3.2), for a € (0,1] and p € (0,1) was proved 
in (22].

at least locally. Indeed, we fix the ball Bq =  B(xq,Rq) and let В be a ball that is

following result.

C o ro lla ry  3.4. Let a > 0, 0 < p < 7/a  and f  € M£(X). Then there exists a set 
E C X ,  such that dimH(£ ) < 7  -  ap and for any x e X \ E  the lim it in (3.1) exists 

and the relation (3.2) is satisfied.

Our next result estimates the sizes of the complement of a set on which the 

“averages” Іщ ж r ^ f converge with a specified rate.

Theorem  3.3. Let 0 <  a, 0 < p < 7/a  be given, and let и be an outer measure 
satisfying the condition (3.5) with h of the form (3.6) and a function <p satisfying
(3.7). Then fo r any function f  6 Afg(X) there exists a set E С X , such that 1/(E) = 0 

and fo r all x 6 X \ E  the following relations hold:

The classical content t f f  satisfies the condition (3.5) with function h{t) = Ր  &

contained in  Bo, then by doubling condition we have /t(Z?) > Therefore
§jq

Ilencc taking into account the subadditivity of the content # f  wc can state the

(3.9)

(3.8) lim  [v>(r)]֊1  [/•(*) ֊  /& ,г)Л  =  0, 
r—►+0

rUmoM O ) " 1 K № > r)) ֊  /• (* ) ] =  °» 0 < 6 Հ  J/ 2’

(3.10)
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Notice that, the set E  in Theorem 3.3 satisfies the condition 

j((»֊fi)P(E) =  W -< a-*b (E )  =  0 

for 0 <  в <  a  (see [14, Theorem 2) in the case p > 1 and <p(t) =  t^).

R em ark 3.2. A ll above stated results remain valid for the homogeneous versions 
Mg(X') o f Ilajlasz-Sobolev spares, which are defined to be the sets o f measurable 
functions /  satisfying Da[f]  Ո  I^ (X )  փ  0 .

4. A u x il ia r y  n o t io n s  a n d  r e s u lts  

We first examine the behavior o f the best approximations Іщ х

Lem m a 4.1. I f  f  € C (X ), x 6 X  and p >  0. then Hm  ̂Іщ с r^ f =  f(x ) .  I f  f  € 

LP(X ), then the lim it ^  r) /  exists ц -almost everywhere.

The first assertion is obvious, while the second was proved in  |15, Lemma 7| (see 
also [24, Theorem 2| and [25, Lemma 2|). Lemma 4.1 shows that for nonsummable 

functions, in the definition o f Lebesgue points the integral averages fo(x.r) can be 
replaced by the best approximations Ig)x r . f .

The basic tools in the proofs o f the main results play the Մ -  oscillations:
i/p

APU ,B ) =  I /  -  /a ')/ | p rf/i

where В  С X  is a ball, and the corresponding maximal operators:

ш | 1  i  SUPT^M/'B),
0 Э х

where the supremum Is taken over a ll balls В containing the point a-, and a > 0,
■p / 
lo c ՝f < = L * t X ) , P >  0.

Lem m a 4.2. Let a, p. Ѳ >  0. The following assertions hold:

1) i f  B \. В-հ С -Y are two balls such that By С 5 շ and 0 <  гл, < гц.։ , then

(4.1) I / ! ? /  ֊  / g / і  <  л „ ( /, B i) +  ( ^ ) 1 '  M f .

2) fo r any ball В  С X  we have

(4.2) Ae{ f ,B ) <

>/i>

\u
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if, in  addition, p <  7/a . then

(4.3) < r% (-f [A W f}» d i) \ , when -  = - ֊ ֊ .
\e  /  Ш  /

P roof. The inequality (4.1) was proved in [15, Lemma 5|. The inequality (4.2) can 
be obtained by averaging over у 6 В of the obvious inequality

Ao(f,B ) <r% AW f(y) for y e B ,

while (4.3) is proved in [15, Theorem 2[.
The next lemma follows from the so-called self-improvement property of the Роіпсагб 

inequality (see [15, Theorem 6)).

Lem m a 4.3. Let 1/0 < l/p  +  r t/7. -Thbi for f  € \f£ (X ) and g e Da[f]
i/e

AP(f,B )< r» D ^ g ° d i i

Next, we preseut results containing descriptions of classes in terms of maximal 
functions (see [23, Corollary 3.1|. and also [15, Theorem 4[).

Lc inm a 4.4. I fa ,p  > 0 and /  6 IP (X ), then
1) from A a ]f  e LP{X) fo r some 0 >  0 follows f  € M£{X),

2) from f  € M £(X ) follows € LP{X) for 1/0 > max {1/p -  a /7,0}.

Lemma 4.5. Let a ,p  >  0. / /  /  6 Л Г£(Х), ф € f fa(X) and is bounded, then fo  t  
M £(X ). Besides, i f  ф(х) =  0 /o r x 6 X \ E ,  then for any function у G Dn[f]C\Lp{X) 
we have

( 9  • ll̂ lloo + I/I • IM I/m *)) x *  € Da[f<t>) ո  Щ Х ).

The result o f Lemma 4.5 is known for p > 1 (see [8, Lemma 5.20) and [9. Lemma 
2.5J). The proof is similar in the case p > 0. The next classical lemma can be found 
in  J2G) (see also [27, Lemma 1.6]).

Lemma 4.6. Prom each covering of the set E  С X  by balls of boundeil diameters ran 
be selected at most countable set of mutually disjoint bul k  {/?*} satisfying Й с Ц  5/?i-

For a measurable function h we introduce the Л-‘fractional” maximal function:

Mh,Pg{x) =  sup ^Л(гд) J  I #  d p j

11
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In the special case h(t) =  1 we obtain the usual modified Hardy-Littlewood maximal 

function:

Mpg(x) =  sup ( j

for whicli for 0 <  Ѳ < p the following standard estimates hold (see, e.g., (1, §1.3)):

(4.4) ||3tffl/JUp(_Y) ~  II/Hlp(X)

In the next lemma we collect the necessary properties of /^ “fractional” maximal 

function.

Lemma 4.7. Let p > 0 and v be an outer measure satisfying the condition (3.5). 

Then the following weak type inequality holds:

(4.5) и {x  € X  : M h.Pg(x) >  A} <  Ռ  № 11լ*(*)) • 

arid i'(Eh,p\g]) =  0 fo r any function g € Մ { ճ ) ,  where

Eh,P\g1 := e X :  H m ) Л ( г )  j  Ы р й / х > 0 І .

B (x .r )

P roof. We first prove the second assertion o f the lemma. By subadditivity of
measure i/, it is enough to show that v(E \) =  0 for A > 0, where

Ел =  < x € X  : lim o h(r) j  gp d\i >  A > .

I  B(x,r) J
Let 0 < S < 1. I f  X € E \, then there exists a ball Bx =  B (x ,rx), where r x 6 (0, Ճ), 
such that

(4.6) h(rx) gpd fi>  A.
в.

By Lemma 4.6, from the covering {B x : x  6 Ел} it can be selected a t most countable 
subset of mutually disjoint balls {B 4 =  Bx,}  satisfying E \ С Ա  5B*.

Hence taking into account the subadditivity o f i/, and conditions (2.2), (3.5) and
(4.6), we can write

HEx) < «/ £  J > № )  < £ > ( В 0 /М г<) <

~  T 5Z  [  9pd i i < \  f  gp d/i —» 0 as 5 -> 0. 
л i JBi A A j,B .
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The last relation follows from absolute continuity of the integral and continuity of 
the gauge function h at zero, because by (4.6) wc have

,l (և) - 52 J в11 d / i<  f gp d p-+0 as 6 -> 0.

Repeating the above arguments for the set {Mh<pg > A}, we obtain (4.5).

Lem m a 4.8. Let p >  0, 0 < 0 < a, and let the outer measure v satisfy the condition
(3.5), where h(t) =  Then for f  € Lpoc(X ) the following inequality holds:

£  > A} d \ <  f e t , .

This result can be found in [20] (see Theorem 2 and the remark at the end of §2 
in [20]).

Lem m a 4.9 ([10,11]). Let £ c ^ , 0 < n < l , 7 > n p  and p > 0. Then the following 
assertions hold:

1) the capacity CapQ p is an outer measure and

Cap QiP(E) =  in f {CapQ p(0 ) . E c O . O  is open} .

2 )  fo r Ь е Х , 0 < г < 1  CapQ p (B(x. r)) <  (B(x, r)),

3) fo r 0 < 0  <  a Capa p(E) =  0 =► CapS,P{E) =  0.

5. A W E A K  INEQUALITY FOR CAPACITIES

To prove the main result of the paper, we need a number of results, which can 
also represent an independent interest. Such results arc weak estimates of capacities, 
which w ill be obtained using a discrete maximal function. To define this notion, wc 
need some prelim inary work. We start with lemmas on coverings and on existence of 

partition o f unity (see [9])

Lem m a 5.1. There exists a number N  € N, such that for any r  > 0 a family of 

finite or countable balls {В (х і, г) } ” 1 con be found to satisfy
90 OO

X  С U  В(х і,г), VB(xi.Or) < N.
»=i

Lem m a 5.2. Let 0 < a <  1 andr > 0. For the balls {£ (x „ r ) }  from Lemma 5.1 there 
exists a collection of functions {& } С H „(X ) possessing the followng properties: 

1 ) 0 < ф і < 1 ,

2 )  ф і ( х )  =  О, X  6 X  \  В { х і , 6 г ) ,

FINE PROPERTIES OF FUNCTIONS FROM HAJLASZ-SOBOLEV CLASSES ...
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3) фі(х) >  с, X  € В (х і,3r), where constant с >  0 depends only on ap from (2.1),

4) ll0t ll«a(A-) ~  r "°«
OO

5 ; £ ծ ( * )  =  ւ.
1=1

Now we are ready to define the discrete maximal function. Let r  > 0 and { f l,  } be 
a covering of X  by balls B(.r,, r) from Lemma 5.1, and let Фі be the functions from 
Lemma 5.2. Define the discrete convolution of function /  by

(5.1) Л М = £ А м ! | 1 1 1
t=J

and the discrete maximal operator by

M *f(x ) — sup f Tj (x), 
i

where { r , }  are in some way enumerated sequence o f rational numbers from (0, 1).

Note that 'n the standard definition of the discrete maximal function (see [9], [13]) 
is used the integral averages. In our case, these averages are replaced by the elements 
of the best approximation I vBf .  Now we proceed to prove a number o f properties of 

the discrete convolution and discrete maximal function. We w ill follow the scheme 
from (13].

Lemma 5.3. The operutor of discrete convolution is bounded in the spaces L l'(X ) 
and M%(X), that is.

(® -2 ) І І / г | | і . * ( Х )  І І / І к " ( Х Ѵ

(5-3) WfrWmx) < WfWmxy

Proof. We first prove the inequality (5.2). We have

f  ւ / , | 'փ < ք ; /  W ^ € ^ E > 4 p < ) \ M f £
JX i= l JX i= l

Using the following easy verified inequality | / ^ '(/ | p < f 3B \f \*d f i and taking into 

account the bounded m ultiplicity of the intersection of balls 6B, (see Lemma 5.1), we 
obtain

m u X ) < ± f  \ ք ? < Կ ւ < [
՜ ձ  JsBi Jx

and the inequality (5.2) follows.

14



To prove the inequality (5.3), we follow (13], and produce the а-gradient for /, and 
prove that this gradient and the function f r belong to LV{X). Wc use the notation 
В, =  B {X i,r ) , and represent f T in the form

ՉԹ

ա  =  i / ( * ) i+ y . m * )  [ l4 Й ./І -  i# ) i ]  ■ 
tel

I t  is easy to sec that g + gt 6 D [ / r], where g € D [/] and gt is the generalized 
Qgradient for <pi p / ^ / l  -  | / | j.  Using Lemma 4.5, with some constant с > 0 wc have

' ( p r lz  ֊  +  я) * « ,  e D  [ *  ( | / 2 , / |  ֊  l / l ) ]  ■

Let X  G GBi, then 3В і С B[x, 9r). Wc write the obvious inequality

I/(*) ֊  | § i  < l/w  -  & Л
and estimate the terms on the right-hand side separately.

Մ  at a point x the relation (3.1) is satisfied, then using Lemma 4.3. we can write 
the following chain of inequalities

I/0 0  ~  Jfl(x.9r)/| -  5 2  Ks(L,32֊i r ) /  ՜  ^B(L.3‘-ir)/| ~  
j =0

<  £  A p U - B (x ,  S‘ - ' r ) )  <  £ )  ~ M g g .
J=0 jmO

The pai՝ameter Ѳ wc choose to satisfy the condition of Lemma 4.3, that is.

/«. .4 1 1 І 1(5.4) -  <  -  <  -  +  - .
p Ѳ p 7

To estimate the second term, we again use Lemma 4.3 to obtain

№ 1 » ) ! -  Ш , ! \  £  M i . B ( x , 9 r ) )  <  r “ M №

Thus, for almost all a* £ X  (see Lemma 4.1) the inequality holds:

implying that c(g +  M eg) € D [fT]. Taking into account (4.4), we obtain iuequality

(5.3). , □

Lemma 5.4. The discrete maximal function acts boundedly in  the space Af£(X), 

that is,

(5.5) ||M 7 llif( ;o  ~  H/llMjJW-
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P roof. In Lemma 5.3 it is shown that the function c(p +  M##) (where g is any 
a-gradicnt of function / .  and в satisfies (5.-1)) is an a—gradient for the discrete 
convolution f r for any /՛. Hence, by (2.3) this function is also an о gradient for 

M * f .  Write the inequality

if
where V indicates that the sum is over those indices i. for which x € C ii, (by Lemma
5.1, the number o f such indices is bounded by a constant, depending only on 7). We 
choose a number Ѳ to satisfy (5.4), and estimate each term on the right-hand side of 

the inequality

І4 Й /І < AP(/,3B ,) +  | / | Ч Ц  ՚  < АРи ,в в ,)+ м в/(х ).

Using the self-improvement property- of the Роіпсагё inequality and Lemma 4.3, we 

obtain

Ш < М ѳ 9 ( х )  +  МѳПх),

implying the inequality (5.5). The proof of Lemma 5.4-is complete. □

Now we introduce one more maximal operator:

M ,f(x) =  sup \ l f t \ .
В б * .г и < 1

The next lcinum asserts that for the operators M i f ,  M pf  and A qJ a weak type 

inequality by capacity holds.

Lemma 5.5. Let f  € M £(X), then

(5.6) C4> „, [x : (T/) (х )  >  A} <  М ! ! к ш ,  A >  0,

where as T  can be taken any of the operators M j f ,  M p/  or Aof.

P roof. Observe first that the inequality (5.6) for T  =  A q follows from Lemma 
4.8. Indeed, for given A > 0. by Lemmas 4.3 and 4.8 we get

A (C a p „„ { Հ - 1/  >  a } ) '7'  <  Ц % - ‘ СВр„.„ { A ^ f  > « }  d tj <

<  S s f f l iw )  Ճ  ll/ ll

To prove the inequality (5.6) for T =  M i, observe that

M j f H  < с ( A ^ f ( x )  +  A T /(* ) )  •

16
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FVom the previous inequality, using the fact that the assertion is already proved for 
Л ц , we obtain

C<4V„ ( M lf  >  A) <  Cap„,p ( а Р /  > А )  +  Capo p ( л Г / >  <

,  H / l l«  „  ( . . . .  AN

Thus, i t  remains to show that

гл ( кжщ A ՜\ ^, Ц / &
Р п ,р  \ м  f >  2 с )  ~  ЛР ՜

To prove the last inequality, we use the definition of capacity to obtain

Capч ( м Ѵ > А

Therefore
„  . . . .  v4 J l /Гмя
Capa,p ( A / , / > A ) < ^ p . .

Finally, the inequality (5.6) for operator M p/  follows from the above proved inequality 
and M pf(x )  < A ^ f ( x )  +  M jf(x ) . Lemma 5.5 is proved.

6. P r o o f  o f  T h eo rem  3.1 a n d  i t s  c o r o l la r ie s

We define

Ո /( * )  =  0<г1̂ _ >0І/ в(11г ) /  -  l{B{x.R)f\՝
and show that

CapQ,p {t € X : П /( і)  > 0} =  0.

Taking into account that the Holder class Ha(X) is everywhere dense in А д а ) , for 
e > 0 the function /  can be represented in the form /  =  J\ +  /շ , where / i  6 Ha{X) 
and \\f2\\M, <  e.

For any y,z € X  we write the obvious inequality

I ֊  < V I  <  ֊  /(» ) I +  р і л  ֊  Л (,)|+

+\la l,r)h  -  Л(ѵ)І + VbL r)! -  /(■»)! + Ѵщ.*)Ь -  Л WI+
+ і4 1 я )Л  -  A W i+ | | & , , л  -  4 'Ա / * ւ + Ա Տ ? .,)*  -  4 1 я )Л і.

and average it  by у € B(x, r) and z 6 B(x, R) to obtain

l4 & „ /  ֊  < , « ) / !  S  M l - B M )  + A ,№ ,% r ) )+

+ ճ ր ( /շ , B (2T, r)) +  Ap(f. B(x, R)) +  Ap(f\,B (x , R))+

+A p( f2, B(x, R)) +  |J «  >r)/ ,  -  4 1 л , / i l  +  і ф /շ  ֊  / й л Л|.
17
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The first six terms can be estimated sim ilarly as follows. Using the inequality (4.2) 
and Lemmas 4.2. 4.7 and 4.9, wc concludc that the following relation is fulfilled 

CapQp-almoet everywhere:

Ap(f. D(x. r)) < r °  I j  [ A ^ f ] pdti J —» 0 as г  —► + 0.
\р М  I

Besides, in view of continuity o f f \  and Lemma 4.1, for any .r € X  wc have

«,/.!=<>•

Therefore, Cap,, p-almost everywhere

ВДж) <  Ո f 2(x) <  M th ix ) .

Also, by Lemma 5.5 for any A > 0 we have

C a p „,„{!!/ >  A} <  Сар0іІ){Л///2 >  A} <  <  ( £ ) '.

Hence for any A > 0 wc have CapQ р{П / >  A} =  0, and the result follows. Theorem 

3.1 is proved.
Now we prove the assertions in Remark 3.1. Observe firs t that the assertion 1) 

immediately follows from Holder inequality. To prove the assertion 2), the inequality

ՀԼ)/ ֊ 4'<L/r s l/to) - 41г,/І* + l/to) ֊ -С,,)/!*
wc average by у € B{x, r)  to obtain

I 's d , ) /  -  4 1 . ) / !  S  Л с |  B (x, r)).

The right-hand side of the last inequality tends to 0 as r  —> +0. which implies 2), 
since in view of (3.1) and (3.2)) we have Іщ ^ r^ f —> f ' ( x ) .

To prove the assertion 3), for q > 1 we write the obvious inequality

1/e /  i  i/q

S. A BONDAREV, V. O. KROTOV

I I  +

/  \ l/4

+ и & , . ) / - / в ( , . , ) і< 1  j  Ц - й Щ с »
W*r> ,

and observe that by Theorem 3.1, the right-hand side of the last inequality tends to 
0 a s r-+  + 0, implying the assertion 3).

18
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To prove Corollary 3.1, we need an inequality for the difference of the best approximations 
1ը’^ք and medians m*(B).

Lemma 6.1. For any ball В С X  and any function f  € Lfoc(X ) the following 
inequality holds:

(6.1) K ( B ) - / g " / l<

Proof. The result easily follows from the foUowing elementary properties of medians 
m 6j  (hoc |21j, and also |18. Lemma 2.7|):

m*f (B) +  a =  msf+a(B) for a € R, \m){B)\ < mfn {B),

т іЛ(в ) < ( ֊ ^ ш > '< і/і ) І/Р, p > o.

Indeed, using the above properties, for any ball В  С X  we have

K m  -  ' b ’ / i  <  ы , , (B) <  | | Լ  і /  ֊  1f r r </,.)' , r ,

implying (6.1).

Now. the result o f Corollary 3.1 follows from Theorem 3.1, since by the inequality
(4.2) o f Lemma 4.2, and Lemmas 4.7 and 6.1 (see also property 2) of capacities from 
Lemma 4.9), for a ll 0 <  6 < 1/2 we have

C ap „,,{i € X  : rMm(i |m }(B (i,r)) ֊  /<£ r)/| > 0} = 0.

7. P ro o f  o f  T heorem  3.2

Let the numbers 0 <  r  <  1 and n € N be such that 2 ՜"  < r  < 2~,,+ I. Then by 
Lemma 4.2 (see the inequalities (4.1) and (4.2)) we have

Hencc, wc can use Lemma 4.7 to obtain

v{ x e X :  > 0} =  0,

showing that it  is enough to check that the sequence { / ^  2֊ „)}  converges ^-almost 
everywhere.
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Let m  >  n find Bn ■  В  (ж, 2 ՜ " ) .  We again use the Inequalities (4.1) and (4.2), to 

estimate the difference | / j j j^ /  -  ^hJ, / 1՛  to obtain

as n -» 30 at each point x  6 X  for which M л,р/ ( х )  <  oo, and hence, by Lemma 4.7, 

the convergence is (/-almost everywhere. Theorem 3.2 is proved.

everywhere, since the conditions 1K ,(E )  =  0 and !Kh(E ) =  0 arc equivalont. So, i t  

remains to apply Theorem 3.2 w ith  i> -  IK{‘ . Corollary 3.3 imm ediately follows from 

Lemma 6.1.

8. Proof of T he o re m  3.3

We prove the convergence for the elements o f the best approxim ation, th a t is, the 

equality (3.8). Then the result for medians (3.9) w ill follow from  (3.8) and Leinma 

6.1.
Let E I be the complement o f the set o f points x  € X  satisfying the relation:

I t  follows from Theorem 3.2 tha t v ( E \ )  =  0.

Let X € X  \  E i,  0 <  r  <  1 and B j  *  B (x ,2 ~ *r). Applying the inequalities (4.1) 

and (4.2), from Lemma 4.2 we obtain

• »» \g t J  \  //,it

To prove Corollary 3.2 i t  is enough to  show tha t the lim it (3.1) exists -almost
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and the last term  tends to  0 ш  г  -> + 0, provided that 

lim  M r)  /  [A {p)f ] p НцшО.
r - * + 0  J B ( r , r )

Applying Lemma 4.7 w ith  g  =  As, f t  we obtain is ( E i )  =  0, where 

=  < X € A' : П т  h(r) I  \ №  I Y  <Ш >  0 V .
I  r -> + 0  r) J

Thus, on the complement of the set E m E\ U E j the relation (3.8) in fulfilled. 

Now we prove the relation (3.10). I t  follows from inequality (4.3) that

i*wr‘ {լ.,:* - ig S g l ~ m  **Г-
and for X € X  \  £’շ the right-hand aide of the laat inequality teuds to 0 a* r  -> + 0. 

Therefore for any x  €  X  \  E we can write՜

Ш о M r ) )  ՜ 1 ^  I /  -  W T  d f} j <  Д т 0 ( I r ) ] ՜ 1 | / ( x )  ֊  i j # , . r ) / | +

+ JS b W r) ] - 1 ( Լ ւ / - է ) / ք ^  %

and (3.10) follows. Theorem 3.3 is proved.
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