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Abstract. G am m a-type functions satisfying the functional equation / ( x  +  1) =  g (r ) / ( j" )  

and lim it sum m ability o f real and complex functions were introduced by W ebster (1997) 
and Hooshinand (2001). However, some important special functions are not limit sutiimable, 

and so  other types o f such sum m ability are needed. In this paper, by using Bernoulli numbers 
and polynom ials B„ (z ), we define the notions o f analytic sum m ability and analytic summand 

function o f complex or real functions, and prove several criteria for analytic sum m ability of 
holomorphic functions on an open domain D. A s conscquenccs o f our results, we give some 

criteria for absolute convergence o f the functional series Сп<т(гП)» w îere < *( * " )  =  5 n (z)
=  g ft* 1 — — ՜1՜1—-.  Finally, we state  some open problems for future study  o f  analytic 

and lim it sum m ability o f  functions.

M SC2010 num bers: U B 68, 11B99, 40A30, 39A10.
Keyw ords: Bernoulli number; Bernoulli polynomial; lim it summability; summand 
function; Gamma-type functions; analytic function; difference functional equation.

1. I n tro d uctio n  and  pr elim in a r ie s

The notion of lim it summability of real functions was introduced and studied in [3,4] 
as a generalization of the Gamma-type functions satisfying the functional equation 
/( x  +  1) =  g (x )f(x ) from [6]. Below we summarize some definitions and results from
[3,4]. Let /  be a real or complex function w ith domain D f D N* :=  {1.2,3, • • •}. Put

Е /=  {x |x  +  N* С D f) , » 

and then for any x  € Е / and n € N* set

R n (f,x ) ֊  Rn(x) :=  / ( n j -  / ( x  +  n),
VI

/ * « ( * )  =  / * , . „ ( * )  : =  X f ( n )  +  Я *(аг ).
Jk-i

The function /  is called lim it sunnnablc at xo € £ /  if  the functional sequence {/<?„ (x)} 
is convergent at x =  xo- The function /  is called lim it summablc on a set 5  С S / if  
it  is lim it summable at all points of S.
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Now, put

JAx) =  / „ , ( x) =  Hm / „ „ ( * ) , Щ х) I  R ( / , i)  =  t o  RnU,x), fl—¥00
and observe that D /B =  {ж € Е /|/ is lim it summable at x }, and f a, — fa  is the same 
lim it function f 0n with domain Dfa.
The function /  is called lim it summable if  it  is summable on Е /, Я(1) =  0 and 
Df С Df — 1. In this case the function f a is referred to as the lim it summand 
function of /.  Noticc that if  /  is lim it summable, then D/0 — Df — \ and

f<r(x) =  f( * )  +  fA x -  !)  ; Vx € D f.

Therefore, if  /  is lim it summable, then its lim it summand function f a satisfies the 
well-known difference functional equation ip{x) — <p{x — l )  =  f{x )  (see [2 -  4]). Hence, 
we have

m

/ . W  =  / ( l )  +  - + ' / W  = £ / ( j )  ; Vm € N*.

If f  is lim it summable, then one may use the notation <ri(f(x)) instead of /*«(*)•
In [3,4] were obtained some criteria for existence of unique solutions of the above 
functional equation. For instance, if  |a| < 1, then the complex (rcsp. real) exponential 
function a* is lim it summable and &t{as) =  “ ^(e* — 1)-
Often if  a real function f  is lim it summable on an interval of length 1 and A (l) =  0, 
then /  is lim it summable (see [3,4]).

Example 1.1. If 0 < b փ  1 and 0 < a <  1, then the real function f(x )  =  cax +  logb x 
is lim it summable and

ՇՌ
fo ix ) -------- r(e* -  1) +  logfc Г(х + 1).a — 1

However, some important special functions, such as nonconstant polynomials and 
trigonometric functions are not lim it summable according to the above definition. 
So, we need to introduce other types of summability. To this end, we first recall the 
Bernoulli polynomials and numbers.

The Bernoulli polynomial £ n(z) is generated by the identity

I  £  * Ц г )<п |£| < 2  6C  
e* -  1 Հ -ք n!n=0

Denote by Bn := Bn(0) and 6n := Bn( 1) the first and sccond Bernoulli numbers, 
respectively. Recall that bn =  Bn for all n > 2, and b„ =  ( - l ) nBn, |6„ | =  |5n| for all
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n > 0 (ծշյէ+ւ =  i?2fc+i =  0 for all к > 1 and 6i =  —B\ =  դ , bo =  Bo =  1).
Also, we have

: i*i < շ» ՛z—' n ! el  — 1 " ,  n ! e* — 1
Ո տ Օ  n = 0

We refer the readers to [1, 5] for more properties of Bernoulli polynomials and 
numbers. Now, put

(1.1) Ы г") I  ф ")  :=  S „(z ) =  Bn+i(z + l) -b n+i . j e C n > 0 .

Note that the notation 5n(x) was used in many references (see, e.g., (1, 5|, and 
references therein).
Since Bn(z + 1) -  Bn[z) =  nzn_1 (z € С , n > 1), then 5„(m ) =  £ Г = і kn for all 
in  G N*, and

(1.2) a(zn) =  zn + a{(z -  l) n) ; z € C ,n > 0 .

On the other hand, we can write
n+l

(1.3) a{zn)֊Y ^0 n k Z k ; z€<C ,n>0,
k=l

where

j З ^ш Ш И И И И ; n-°’i֊'!2n+i-
Note that we can define ft,*  =  0 for all к >  n + 2, but f t *  is not defined. Simple

calculations show that fln,n+1 =  &».« =  =  շ՝ A»,i =  n̂« &*,fc =
and X)]b=i A i* =  1- Also, if  n -  A? is au even number > 2, then 0nk =  0. Hence wc

have
(1.5)

n + l e+1 I I n ' / _  i t \

1 1  i  i  N  -  E  В  Г -  = ^ T T ^ 0(  է  ) bk2” + , ‘ -fc=l b=l ՝ ' k=0 > '

2. A n a l y t ic  s u m m a b il it y  a n d  a n a l y t ic  su m m a n d  f u n c t io n s

Now, we are ready to introduce the notion of analytic summability of complex 
and real functions. For simplicity, we define the analytic summability for analytic 
functions around с =  0, the case с փ  0 is similar.

ANALYTIC SUMMABILITY OF REAL AND COMPLEX FUNCTIONS

D e fin ition  2.1. Let f(z ) = Y^fLo °ոշՈ be а complex or real analytic function defined 
on au open domain D. We call /  "analytic summable at zo"(resp. "absolutely analytic
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summable at *o"), i f  the functional series
OO

Лги («о) =  fa{*o) =  Cn(r(zg)

is convergent (reap, is absolutely convergent). We call /  "analytic summable on a set 
E С D  i f  it  is analytic summable at every point o f E. The function f OA =  f „  (w ith 

the largest possible domain) is called "analytic summand (function) o f / " .  I f  /  is 
analytic summable on the whole C, then we call f  “entire analytic suminable”.

R em ark 2.1. In  the cases where we use both concepts (analytic and lim it summable 
functions), we w ill use the symbols f a, and f OA to  denote the lim it summand and the 

analytic summand functions of / ,  respectively.
We w ill use the following identity for iterated series of double complex sequences, 

which represents the sum of a ll arrays o f the lower triangle o f the (N  + 1 ) x (N  + 1 ) 

m atrix [Cnk\ by two different ways:

the function a* is lim it summable if  and only i f  |a| <  1 (see [3,4]). The following 

example shows that ez is analytic summable.
Exam ple 2.1. The exponential function exp(z) =  e* is entire analytic summable 
and

For the last equality, we used the identity l )7 ̂ -  =  —j.
Now we are in position to state some basic properties o f analytic summ ability of 

real and complex functions. One can see tha t these properties are sim ilar to tha t of 
lim it sumraability o f functions.

JV  7 1 + 1 N + l ԻԼ
(2.1)

n= 0  fc=l n=l k=n—l
I t  is known tha t the natural exponential function ex is not lim it summable. Indeed,

<*pM  = 7Г Т  (e* -(e* — 1) : z € C .

Indeed, using (2.1) we can write
МП ЛГ «-ԼI
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Theorem 2.1 .Let f(z ) =  ]T)̂ L0°"г"  an(l 9(z) = analytic functions
defined on an open domain D. The following assertions bold.
(a) I f  z, z — l  € D, then f  is analytic summable at z if  and only it is analytic summable 
at z — 1. So, i f  f  is analytic summable on D, then

(2.2) f e(z) = f(z ) + f a(z -  1) ; Ѵг € D  Ո  (D + 1).

(b) I f  f  is analytic summable on D and D C D  +  1, then

(2.3) ш  =  /(* )  +  U *  -  1) ; Vz € D.

(c) I f  f  and ց are analytic summable at z (reap, on D), then every linear combination 
of f  and ց is also analytic summable, and we have (a f +  bg)a(z) =  afa(z) +  bg0(z) 
(resp. for all z € D).
Proof. Put f „ N (z) := ^  2>z ~ 1 € D, thou by using (1.2) we have

N
(z) = 5^  cnzn + f „ N (z -  1).

nsO

Also, a simple calculation shows that

(a f + bg)aj, (z) = a f „ N (z) +  Ъдвы(г).

Now, one easily can get the results. □

3. Some upper bounds f o r  oa(zu)

Since the analytic summand function is generated by the sequence {o-^(zn)}JILi> 
upper bounds for <ta(z'*) should be useful in establishing criteria about analytic 
suminability. We first consider the following bounds for Bernoulli numbers:

I I  И Й  I I S = w  ■< $ $  ■ - г 1՝2՝3. . . . .

The inequality (3.1) together with J92r+i = ծշւ+ւ = 0 (for all r  > 1) imply
2n! 1

(3.2) |B„| =  |6r»| < ՜ լ  _  շ1- ո ’ ո  = 2,3,4,0, ----

Applying the identity (1.4), for every positive integer n and l< fc < n  — 1, we obtain
n! 2(n -  fc + 1) ! ____1 _  n! 1

l^nfcl < lc\(n -  к + 1)! * (2тг)"-*+1 ՚ 1 -  2fc-n k\irn~k+l ՛ 2n~k -  1 ՛

Since n - k >  1, then < 1, and hence we have
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Observe that the inequality (3.3) does not hold for к  =  n, but the next inequality 
holds for a ll 1 <  fc <  n +  1

2)jl
(3.4) IA * I< ; I< fc < n  +  1,

and for к =  n we have fJnn =  ֊  <  „^« -Լ+ ւ =
Now, using (1.5) and (3.3), we obtain

zln+1 \z\n X .1 n! k \z\n+1 \z\n n! Ճ ( Փ [ ) *л I <  l£l , F T  , V '  w ■֊»* _  , I fL  , n! V '
L^_ n + l 2 ^  fclir» ֊ ^ 1 *՛ I n +1 2 ^

• n + l

1 7T » *+ 1

֊  - Ж  * !

7 Г -2 . . n! ^  (тгЫ)*
2тГ 7Tn+1 Է Հ  к\

Therefore

(3.5) и*")1  < j j i I  p  I ; - Щ +ЩЛ 1 1

In sim ilar way, by using (3.4), we can derive the following inequality

<“ ) W *-)l < ֊ 5 t L ^ <  H I  ֊  I
Ar«l

4. Som e  c r it e r ia  for  a n a ly t ic  s u m m a b il it y  of  c o m p le x  a n d  r e a l

FUNCTIONS

The inequalities for <7д (гп), stated in Section 3, together w ith  some previous results 
allow to prove a number o f criteria  for analytic summability.

Theorem 4.1. Let f(z ) = CnZn be an analytic function defined on an open 
domain D. IfY ^ -a  yrCn м absolutely convergent (for example t/lim su p ,,.^  JJ/Vi!|cn| < 
ir), then f  is absolutely analytic summable on D. Moreover, by putting <7„,лг := 

EfcLn-i #fc»cb Abs(f{z)) := ЕГ=о M \z\n an(i Abs'/A f)  '■= we have
the following assertions.
(a) The analytic summand function f a is analytic on D. Indeed, the lim it on :== 
hmjv֊>oc On,N exists (for* all n),

(4.1) \an\ <  —  ֊ ձԵտ\ի{ք) ; Vn.
p i

and f e admits the representation:
00 OO « oo J. _ 'l4|

(4.2) Ш  =  =  £  § ( £  -,z e  D .
r ie l n = l j =n ^
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(which provides an important explicit formula for computing the analytic summand 
function Щ  (z).)
(b) The following upper hounds for f „ A hold:

(4-3) \{„(z)\ < |(e»W !  1 )Abs,/M ) ; » 6 D

and

(4-4) |/„ (z ) | <  i { ( |  -  \)Abs(J(z)) +  (e 'l'l ֊  l)A b,, / , ( / ) )  ; z €  D.

Proof. By using (3.6), for every z € D and a positive integer N, we can w rite

1 і-в  11Я1И - u IИ  ֊ i) e ЯІ
n = 0  n= 0  n= 0

oo

=> \и л * ) \  <  p  \Cn<r(zU)\ <  I S  3 $  E
n = 0  n= 0

Therefore, /  is absolutely analytic summable on D and (4.3) holds. Sim ilarly, using

(3.5), we can obtain (4.4).

Next, by applying (2.1), we can write
1Վ N  n+1  N n+1 ЛГ+1 N

f ° N  ( z )  =  У  Օ ո Օ ՜(2 ռ )  =  Cr> 0 n k Z k  =  У ]  P n k C n Z k  =  У  P k n C k Z * .
7i=0  71=0 fc= l ті=0 k—l  n = l  k = n —l

Therefore
/Ѵ+1 JV+1 N  N  N  n + 1

(4.5) faH{*) =  ̂ 2  an,NZn = ^ 2  0knCkZn =  Y , С пф П) =  52^20nkCnZk-
n = l  n = l  k—n —l  n = 0  n = 0  fc= l

Taking into account that
N  o - n - l  N  u| 2 irn - l  J L  u\

K n | <  Y ,  l ^ b . lN < - ^ j -  Y  ^ | c * | < - ^ -
k = n —I k = n —1 k=0

we obtain (4.1), and conclude that 1ітлг-юо <Jn,N exists (for a ll n). Since the series 

IT ^-o  п*°п ls absolutely convergent, in  view o f (4.5), we get
ЛГ+1 oo

U (z) =  J mJ oA z) =  Y  ffri,NZn = J 2  ° ո շՈ-
n = l  n = l

Finally, noting that

,. Y ՜' a 1 Հ ՜ ' ( j  +  Ո ՜  1)!,an =  lim  an>N =  > Рыск =  - r  > ------- 7:------- 6jCJ+n_ ] ,
N^°° к І? ֊і n! £0

we complete the proof. Theorem 4.1 is proved. □

Corollary 4.1. Let f(z ) =  S nLo6»*2"  an ^a ly tic  function defined on an open
domain D, and let z0 € D. I f  the iterated series £JJLi Y^T=n-i PknCkz11 is absolutely
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convergent on D (resp. at Zo), then f  is absolutely analytic summable on D (resp. at 
zo).
Proof Since the iterated series YlkLn- 1 PknCkz”  is absolutely convergent, then 
£/£=„_! РкпСк is convergent (for all n), and

ЛГ+1 N  oo oo

L t e . E  E  ^ 4 ,2*  =  Y . EN —teo n=l k=n— 1 11 = 1 Ac=?i — 1
(note that the absolute convergence is enough for the above equality). Hence, we can 
apply the identity (4.5) to conclude that /  is analytic summable at z, and

oo oo
Ш  =  £  Y ,

n = l k=n—l

C orollary 4.2. Analytic summand function o f every polynomial o f degree n exists, 
and it  is a polynomial o f degree n +  1 without a constant term.
C orollary 4.3. I f  the series JjjkCn is absolutely convergent, then

j=o I

Theorem 4.2. Let f(z ) — J2™=o be an analytic function defined on an open 
domain D. I f  yn!|c^| < 6 < ir for a ll n, then f  is absolutely analytic summable on 
D, and the following inequalities hold:

(4-6) \U z )\ < — ( г ''1' - 1 )  +  ֊ e '" '1 ; z e D

and

(4 -7 )  \U (z)\ <  ֊И ' 1 -  1 ) ; z e D .
7Г — О

Proof. By applying Theorem 4.1 and (3.5), for all z € D  we can write

I 2 . й  n!
я

n=0 n—0

oo
\ Ш \  < E  Ы К О І  < £  ֊  1))

27Г n! 7г
n=0

= ^ e‘ w + 7 b (e" ' , - i ) ՛  ..... ւ
and thus (4.6) is proved. The proof of (4.7) is similar. О
Example 4.1. I f  f(z ) =  ez, then S =  1, and we have

\exp*(z)I =  (es -  1)| < —Ц -(e*1*1 -  1) + ; z € С.e — ւ 7Г — i  zir
70



ANALYTIC SUMMABILITY OF REAL AND COMPLEX FUNCTIONS

Hence

I— (e= -1)1 < p f S  - 1) ; 2 € C. e — 1 7Г — 1

5 . A n a l y t i c  s u m m a n d  o f  e x p o n e n t i a l  a n d  t r i g o n o m e t r i c  f u n c t i o n s

As it  was mentioned before, polynomials of degree at least one, the trigonometric 
functions (sin and cos) aud the exponential functions a* with |a| > 1 are not lim it 
summable. However, they are analytic summable. Indeed, observe first that in view 
of Corollary 4.3 and Example 2.2, we have

N  N+ 1

<ta(%2 °ոշՈ) ~  5Z  ffn,NZn and <тд(е2) =  ^ - j֊ (e z -  1).
n= 0 n s l

Next, we consider analytic summabiUty of functions az, sin(c), cos(z), etc.
Note that az =  ехр(г In a) is an entire function for a fixed value of եւ a, and f(z ) =
a* =  հՈ- I f  |lna| < ir. then in view of Theorem 4.1, a։  is (absolutely)
entire analytic summable and

В Н И И Я Я 1E3n p g  J l ( j + n — l)[  n ! ՝  ^ j V

I  ձ(]ոօ)»-ւ. (b*0)*1 =  JL _  . (>utt)՞
n! a — 1 a — 1 n!

Therefore, <тл(а։ ) =  £ £ L i and hence

ол(вж) =  ~ լ ( ° *  ՜  * ) ; l lna l <  я-, *  € C.

To determine the analytic summand function of sin (г), let {en} be a sequence such 
that en =  0 if  n is even and e„ =  1 if  n is odd. Then, we have

n=0 n=0

and hence 0

г ИШИИ» Տ1Տ1 » . 6 2 z + i

”  n ! S  յ+ո՜ j l  " 6  2Z.

Taking into account that

-  V V  1 \* Bzk =  I sin^^
ե >  (2* )! ե  m i  ^ 008̂ ) ’

we can write
oo 1 °o , 2fc+l ІчіпШ -22.

sinv{z) =  Y  Ծ* շՈ =  շ  (2k +  1 )\ ~  l- c o s ( l)  (2fc)!
Аг= 0  fc—1k=0
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1 . / ч . շ sin(l) I  __, ѵч sin(z) +  s in(l) -  sin(* +  1)
“  2 8m W  +  -  “ « * » --------------- 2 ֊2 co 7 (T )----------- ■

The function cosa(z) can be calculated analogously, or by using the identity 
g*

—— -(e * * - l)  =  cos<7(«) + tsin<r(z). 
e* — l

Finally, we have
. . sin(z) + sin(l) -  sin (շ + 1) . . cosfe) +  cos(l) — cos(s + 1) -  1

a " ' W ---------------2 -2 c o s(l)-----------' ք --------------- 2 -2 0 0 5 (1 )------------ --

Using the properties of analytic summability, some trigonometric identities and the 
above results, we obtain

sin(az + 6) + sin (a -f b) -  sin(a2 +  a +  b) — sin(6)

М. Н. HOOSHMAND

<Tjt(sin(os + 6)) =  

a a (cos(az + 6)) =

2 — 2 cos(a)

cos(az + b) + cos(a + b) — cos (az +  a + 6) — cos(6)
2 — 2 cos(a)

where a, b are real or complex constants and a փ  0. .
Now, we pose a number of questions that are very important for future study of 

analytic and lim it summability of functions.
Open problem I. Let /  be an analytic function defined on an open domain D  = D j 
with the property N‘ C D C Z / .  I f / is  both lim it and analytic suminable, then is it 
true that on D?
Open problem I I .  I f  /  is analytic summable on D  =  £)/, then under what conditions 
is it  a unique solution of the functional equation f a(z) =  f(z )  +  f a(z — 1) on D  with 
the in itia l condition f a(0) =  0? Compare with the uniqueness Theorem 3.1, Corollary 
3.4 of [3] and Theorem A, Corollary 3.4 of [3]).
Open problem I I I .  Is f[z ) =  e,,zn absolutely analytic summable (on D) 
whenever n <  limsupra_>oc y/n\\cn\ <  2тг? A special interest represents the case when 
it  is equal to Ц
Open problem ГѴ. Is the inequality (4.3) (or (4.4)) sharp? I f  no, find a sharp upper 
bound for the analytic summand of / .

Finally, as another direction of research, one may study intersection of the spaces 
of lim it and analytic summable functions.
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