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Abstract. Gamma-type functions satisfying the functional equation f(z + 1) = g{(r}f(r)
and limit summability of rcal and complex functions were introduced by Webster (1997)
and Hooshmand (2001). However, rome important special functions are not lizit sunimable,
and so other types of such summability are needed. In this paper, by using Bernoulli numbers
and polynomials B.(z), we define the notions of analytic summability and analytic summand
function of complex or real lunctions. aud prove several criteria for analylic sunimability of
holomorphic functions on an open domain 2. As consequences of our results, we give some
criteria for absolute convergence of the functional series S0 ; cno(z"), where o{z") = Su(2)

= B—"*'—"—‘;—}%}h—"‘—']—l. Finally, we state some open probleins for future study of analytic
and limit summability of functions.
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1. INTRODUCTION AND PRELIMINARIES

'The notion of limit summability of real functions was introduced and studicd in [3.4]

as a generalization of the Gamma-type functions satistying rhe functional equation

f(z+ 1) = g(x)f(2) from |6]. Below we suminarize some definitions and results from

[3.4]. Let f be a real or complex function with domain Dy O N* := {1.2.3,--}. Put
¥y ={ca+N G D}

aud then for any & € Ly and 1 € N* set

R‘I‘I(f'z) - R,,(I) = f(n)—f(1?+ﬂ).

foul®) = foru(2) == 2f(n) + 3 Ru(z).
k=1

The function f is called limit summable at zg € X if the functional sequence { fo, ()}
is convergent at @ = 2. The function f is called limnit sunimable on a set S C ¥y if
it is limit summable at all points of S.
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Now. put
fo(@) = fa () = nl.i—l'l; S (x) , R(z)= R(f, 1) = "li,?,L. Rn(f, 7).

and observe that Dy = {z € I/|f is limit summable at z}, and f,, = f; is the same
limnit function f,,, with domain Dy, .

The function f is called linit summable if it is summable on Ey. R(1) = 0 and
Dy € Dy — 1. In this case the function f, is referred to as the limit summand

function of f. Notice that if f is limit sunmuable, then Dy, = Dy — 1 and
fa'(-r) = f(I) + fa(I = 1) ; Yz € DI

Therefore, if f is limit summnable, then its limit summand function fo satisfies the
well-known difference functional equation ¢(z) — ¢(x—1) = f(x) (see [2 - 4]). llence,
we have

m

fom) = f()+---+ f(m)=>_f(5) : Vm €N".

Jwl
If f is limit simnmable, then one may use the notation a¢( f(r)) instead of f,, (z).
In |3,4] were obtained some criteria for existence of unique solutions of the above
functional equation. For instance, if || < 1, then the complex (resp. real) exponential
function a® is limit summable and g¢(a®) = 25 (e — 1).
Often if a real function f is limit sunmable on an interval of length 1 and R(1) =0,

then f is limit summable {sce [3.4]).

Example 1.1. If 0 < b # 1 and 0 < a < 1, then the real function f(r) = ca* +log, =
is limit summable and

ra

fa(-r) -

a-—l(a —1) +log, T(z + 1).

However, some important special functions. such as nonconstant polynomials and
trigonometric functions are not limit summable according to the above definition.
So. we need to introduce other types of summability. To this end, we first recall the
Bernoulli polynomials and numbers.

The Bernoulli polynomial B, (z) is generated by the identity

1t

et —1

- - B,, z
=Z—(,-)r" Pl <2mzeC
n.
n=()
Denote by Br = B,(0) and b, := B,(1) the first and sccond Bernoulli numbers,
respectively. Recall that b, = B, for alin > 2, and &, = (~1)"B,, |bn| = {B,,| for all
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120 (bzrss = Baxyy=0forallk > 1and by =-B, =3, bp= By = 1}.
Also. we have
\’-‘. Hans ' = »,_,.',, te'

= — ; |t < 27,
b p! et—1 = p! c'—l'l‘

We reler the readers to [1. 5] for more properties of Bernoulli polynoniials and

numbers. Now. put
e i B i (i e < PR PP Y

n+l

Note that the notation S,(a) was used in many references (see. e.g.. |1, 5|, and
references therein).

Since Bu(z +1) = Ba(2) = nz""! (z€ C. n > 1), then S,(m) = Y[~ k™ for all
m € N*, and

(1.2) o(z")=2"+a((2-1)") ; 2€C.n2>0.
On the other hand. we can write
r+1
(1.3) o(z") =) Buz* : z€Cn20.
k=1
where
(1.4)
n+ 1\ by -k n! 5
B = = = > N k< .
Pk ﬂn,k ( i ) T k!(n gL k)!b".}.]_k cn201< k <n+l1l

Note that we can define 8,x = 0 for all X > n + 2, but 3,0 is not defined. Simple
calculations show that Bunst = v, Bnn = = §. Bat = bu. Ba = Fluciian

and Z:;l' Bne = 1. Also, if # — k is an even number > 2, then Gnie = 0. Hence we

have
(1.5)
n+1 ’ n41 - 1 Ly PO !
z!l = _ - Ty, TS A :A=_'__ el I nil :
& ;ﬂ“"z kglk!(n+l—k;!b“ & u+lk__0( k )’*z

2. ANALYTIC SUMMABILITY AND ANALYTIC SUMMAND FUNCTIONS

Now, we are ready to introduce the uwotion of analytic summability of complex
and real functions. For simplicity, we define the analytic summability for analytic

functions around ¢ = 0, the case ¢ # 0 is similar.

Definition 2.1. Let f(2) = Y7, cn2" be a complex or real analytic function defined
on au open domain . We call f "analytic summable at z," (resp. "absolutely analytic
65



M. H. HOOSHMAND

summable at 2,"), il the functional series

Fon(20) = falzo) = Zc,.a(z

n=0
is convergent (resp. is absolutely convergent). We call f "analytic summable on a set
E C Dif it is analytic summable at every point of E. The function f,, = f, (with
the largest possible domain) is called "analytic summand (function) of f". If f is

analytic summable on the whole C, then we call f “entire analytic summable”.

Remark 2.1. In the cases where we use both concepts (analytic and limit summable
functions), we will use the symbols f, and f;, to denote the limit summand and the
analytic swmmnand functions of f, respectively.

We will use the following identity for iterated series of double complex sequences,
which represents the sumn of all arrays of the lower triangle of the (N + 1) x (N + 1)

matrix [Cox] by two different ways:

N nu+l N+1
(2.1) Y 3 Ga=Y Z Clen
n=() k=1 n=1 k=n-1

It is known that the natural exponeutial function ¢* is not limit summable. Indecd,
the function a* is limit summable if and ouly if [a| < 1 (see [3,4]). The following
example shows that e is analytic summable.

Example 2.1. The cxponential function exp(z) = ¢® is entire analytic summable

and
exp,(z) = l(t’—l) :z€C
Indeed, using (2.1) we can write
= -2
oxp,(z) = "2-7, “-'o ") = llm "L-:“z' AR l k)'l'nol-l'-

-

4+l

2 o= 1 Bt a
U—‘ﬁ L
=P

For the last equality, we used the identity 37 %, % = Z,-n( I)
Now we arc in position to state somc basic propertics of analytlc bummnbility of

.

(e* =1).

»
-

r—l

real and complex functions. One can sce that these properties are similar to that of

limit summability of functions.
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Theorem 2.1.Let f(z) = Y2 [ eaz™ and g{z) = Z:‘.‘, dy, 2™ be analytic functions
defined on an open domain D. The following assertions hold.

(a) Ifz,2—=1 € D, then f is analytic summable at z if and only it is analytic summable
at z — 1. So, if f is analytic summable on D. then

(2.2) Jo(2) =2} + fo(z—1) ; Vz€e DN (D +1).
(b) If [ is analytic summmable on D and D C D + 1, then
(2.3) Ja(2) = f(2)+ fo(z—1) ; Vze D.

(c) I f and g are analytic summable at z (resp. on D), then every lincar combination
of f and g is also analvtic summable, and we have (af + bg)s(z) = af,(z) + bg,(2)
(resp. for all z € D).
Proof. Put f,,(2) := }::’-o euol2"). If 2,2 — 1 € D, theu by using (1.2) we have

N

Jox(2) =3 caz™ + fou (2= 1)

n={0

Also, a simple calculation shows that

(af +bg)on (2) = fan (2) + byay (2).

Now, one easily can get the results. @]

3. SOME UPPER BOUNDS FOR og4(2")

Since the analytic summand function is generated by the sequence {o4(2")}32,,
upper bounds for o4(z") should be useful in establishing criteria about analytic
sununability. We first consider the following bounds for Bernoulli numbers:

1 2(2r)! 2(2r)! 1
—_— = —— ¢ r=123...
@) T3 Qe < |Bar| = Jb2r] < @ T=F 3
The inequality (3.1) together with B4 = b2 41 = 0 (for all 7 > 1) imply

2n! 1 )
< (—Q?FITQT—_" < A DR T, (A

(3.2) I‘Bnl = |bnl
Applying the idcutity (1.4), for every positive integer n and 1 < k < n - 1. we obtain
nl 2n—k+1)! 1 nl 1
Iﬂnkl < k‘!(‘n — JE At 1)| . (2ﬂ)n—k+l i 1 —-2k-n -— k!”v|-k+l ) on-k _ 1’

Since n - & > 1, then =t < 1, and hence we have

n! 1 n! i
Elze-d4l 2a-k Skg,mlu )
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Observe that the inequality (3.3) does not hold for & = n, but the next inequality
holds forall 1 €A <n+1

2n!
(3.4) |ﬁuk|$m 1 1<k<n+1,
and for & = n we have B, = 5 T =4

Now, using (1.5) and (3.3), we obtam

ey < BB S e e S
PR3 T T e SR T Ty T et
i 2 el ) (wlzl}*

Y T gl ]

Therefore
w2 e wjz[)* -2 n! 4
(35 lo(e") < T2k + MZ“ 2o+ e 1),

In similar way. by using (3.4), we can derive the following inequality

el

(36) o(")] < ,'i'lz‘""” < (e ),

4. SOME CRITERIA FOR ANALYTIC SUMMABILITY OF COMPLEX AND REAL
FUNCTIONS

The inequalities for 4 ("), stated in Section 3, together with some previous results

allow to prove a number of criteria for analytic smnmability.

Theorem 4.1. Let f(z) =
domain D. If Yo
m), ther f is absolutely analyr:c summable on D. Moreover, by puttm g On N =
E::"_l Binck, Abs(f(2)) 1= Loy leall2]™ and Absy(f) = Yoowy & Lleal, we have
the following assertions.

¢, z" he an analytic function defined on an open

._.u -"

e o ¢, 18 absolutely convergent (for example if limsup,, . % nlien| <

{¢) The analytic summand function f, 3 analytic on D. Indeed, the limit o, :=
By o 0p N ezists (for all 1),

2a" i
4.1 laal S -—n'—AbSl_/,r(f) L Vn.

and [, admits the represeniation:

42)  fa(z)= Za L Z n,(z ‘—J-f—"-:'—" 4Cjem~1)s" ;2 € D.

=N n=l =0
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(which provides an important ezplicit formula for computing the analytic summand

Junction f,,(z).)
(b) The following upper bounds for f,, bold:

(43) ol < 2~ 1) Absya(f) 5 2 €D
and
(49 1folo)l S 2UG - ) ABs(f() + (€7~ VAbsya () + z€ D

Proof. By usi.ng (3.6), for every z € D and a positive integer N, we can write

n 2n! "l | . 2 x|z N n!
Zlcm )|<Z|a,r e - =~( —1)5_:0;;|cﬂ|

n=0

l
= [fan (2] < ZI( oz < 2 - 1)2 = e
n=0 —O
Therefore, f is absolutely analytic summable on D and (4.3) holds. Similarly. using

(3.5), we can obtain (4.4).
Next. by applying (2.1), we can write

n4l N n+i N4
fon(z T caa(2") = Z%Zﬁnkz =3 D Bucazt =Y Z Brnckz™.
u=0 n=0 =1 n=0k=1 n=1 k=n-1
Therefore
N+1 N+1 N n+l
(4.5) fan(2) =) onnz"=) Z Bincr2™ = chﬂ(z =Y > Burcnz
n=1 n=1 ken-1 n=0 k=1

Taking into account that
n-1 N (R}

iy O ! 20— Ll
ol S Y Braller) S =5 >° —ledl S —— 3 <laul.

k=n—1 " k=n-1 E=0

we obtain (4.1), and conclude that limp o on, v exists (for all 7). Since the series

S 2r, is absolutely convergent. in view of (4.5), we get g

n=0 #n
N+1

o) = i fou(2) = Jim 3 " - =Y one”

n=1

Finally, noting that

S N

On = lim ooy = E Brnck = ,—li Z ﬁ;_—mbﬁnn-:.

k=n—1 i=0

we complete the proof. Theorem 4.1 is proved. a

Corollary 4.1. Let f(z) = Sar,cnz™ be an analytic function defined on an open

domain D. and let 2o € D. If the iterated series Y | 3 pe,_ 1 Bencr2" is absolutely
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convergent on D (resp. at zp). then f is absolutely analytic summable on D (resp. at
o).
Proof. Since the iterated series S0 "0 | Brackz” is absolutely convergent, then

D w1 Brnck is convergent (for all 2}, and

N+1 N o0 00
lim Z Z .f'ik,.ckz"=z z Bruts
N—oo

n=1 k=n—1 n=1ik=n-1}

(note that the absolute convergence is enough for the above equality). Hence, we can
apply the identity (4.5) to conclude that f is analytic summable at z, and

0 o0

a(’:) = Z Z Ancaz".

n=1k=n~1
Corollary 4.2. Analytic summand function of every polynomial of degree n exists.
and it is a polynomial of degree n + 1 without a constant term.
Corollary 4.3. If the series ¥ .., Z-c is absolutely convergent, then

RS

.,12" Z(-ll’o—"—”,')#n 1 =0,

=0
Theorem 4.2. Lot f(z) = 3°7°  ¢q2" be an analytic function defined on an open
domain D. If {/nlle,] < 6 < m for all n, then f is absolutely analytic summable on

D, and the following inequalities hold:

(4.6) |fa( ple A0+ '2—;%5"' . z€D
and

o 2 wlz| .
(4.7) [fal2) S —(e™™ ~1) ; zeD.

Proof. By applying Theoremn 4.1 and (3.5), for all z € D we can write

(NS 3 onllet ")t<z|cﬂ|( " 4 (e~ 1))

n=0

T=2 (8)z])"™ c""—lw 5.
= 27 Z n! m ;'(;)

n=0

T—2 5.
e"'|+ﬂ_

1
mizl _

and thus (4.6) is proved. The proof of (4.7) is similar. a
Example 4.1. [f f(z) = €7, then § = 1, and we have

¢ " -2

:_Dls ezl _ MLz e
(-l -+ =6 e
70
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Hence

e £ 2 iz}
|e_1(e —1)[51.__1((: -1); =eC.

5. ANALYTIC SUMMAND OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

As it was mentioned before, polynomials of degree at least one, the trigonometric
functions (sin and cos) aud the exponential functions a* with |a| > 1 are not limit
summablc. However, they are analytic summable. Indeed, observe first that in view

of Corollary 4.3 and Example 2.2, we have

N+1
(’A(Zr"“ )- Z”nfvz and O'A(e"): ef l(ez_l)-
n=0 n=1

Next, we consider analytic summability of functions a*, sin(z). cos(z), etc.
Note that a®* = cxp(zIna) is an entire function for a fixed value of Lia, and f(z) =
= §x el on If |lna] < 7. then in view of Theorem 4.1, a* is (absolutely)

cntire analytic summable and

G+n-1)!, (n ayitn=t 1 b
z = —(lna)" ~=llnay
b ] 7 ( .
“a &= (G+n-1) =y
- i{ln 2t (ngja @ (lna)".
n! a

=1 T @il n!

P
Therefore, 04(a*) = Y o0 | =% - "T‘:':". and hence

aa(a’) = =

To determine the analytic summand function of sin(z), let {e,} be a sequence such

(a -1);:|lna)j<nx z€C.

that €, = 0 if n is even and ¢, = 1 if n is odd. Then, we have

® (-1)i8) = o~
sin(z) = Z ‘—%z" = Zr..:
n=0 :

n=0
and hence o
n-1
SRS
- i il_\\“-f:—_‘](, ﬁ I'(_g),,}_- ne2Z+1
o Eeaes D o jn—17

1
InC P e e ne2z
Taking into account that
- - B 3 sin(l
S0t 2 = 20 G = 12—5::25,-()1)'
k=0 ( ) k=
we can write

oo 4 00 ) (1) :?.A
sing(z) = Zonz" = 52(-1)‘ G - 1‘_ cos(D) kz;(—l)u(_%_)!

I | k=0
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I _sin(z) 4 sin(1) — sin(z + 1)
B ism(z)+ - 2 — 2cos(1) '
The function cos,(z) can be calculated analogously, or by using the identity

| = cosil)

el

p: (€% — 1) = cos,(z) + 1sing (2).

Finally, we have
(2) sin(z) + sin(1) — sin(z + 1) oo cos(z) + cos(1) —cas(z=+ 1) — 1
SNy = ) sal2) =
) 27— 2cos(1) \ 2 — 2cos(1)

Using the properties of analytic summability, some trigonometric identities and the

above results, we obtain
sin(az + b) + sin(a + b) — sin(az + ¢ + b) — sin(b)
2 — 2cos{a)

ca(sin{az + b)) =

cos(az + b) + cos(a + b) — cos(az + a + b) — cos(b)
2 — 2cos(a) !
where a, b are real or complex constants and a # 0.

ga(cos(az + b)) =

Now, we pose a number of questions that are very important for future study of
analytic and limit summability of functions.
Open problem I. Let f be an analytic function defined on an open domain D = Dy
with the property N* C D C ¥ ;. If f is both linit and analytic surnmable. then is it
true that f, = f,, on D?
Open problem II. If f is analytic summable on D = Dy, then under what conditions
is it a unique solution of the functional equation f,{z) = f(z)+ f-(z —1) on D with
the initial condition f,{0) = 0? Compare with the uniqueness Theorem 3.1, Corollary
3.4 of |3] and Theorem A, Corollary 3.4 of [3]).
Open problem IIL. Is f(z) = 3.7, e.2" absolutely analytic sununable (on D)
whenever 7 < limsup,, .. V/n!le,| < 27?7 A special interest represents the case when
it is equal to .
Open problem IV. Is the inequality (4.3) (or (4.4)) sharp? If no, find a sharp npper
bound for the analytic summand of f.

Finally, as another direction of research, one may study interscetion of the spaces

of limit and analytic summable functions.
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