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this departure from stationarity We show that a smoothed periodogram approach
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1. INTRODUCTION

Much of statistical inferences about unknown spectral parameters is concerned
with the discrete-time stationary models, in which case it is assumed that the model
is centered, or has a constant mean (see Beran et al. [7]. Dzhaparidze |12|. Giraitis
et al. [24], Taniguchi and Kakizawa |28]. and references therein). In this paper we
are concerned with the robustuess of inferences, carried out on a coutinuous-time
stationary process contaminated by a small trend, to this departure fron} stationarity.

Specifically. let {Y(2),t € R} be a a zero mean stationary process with spectral

density f(A,8), where 6 := (8).....8;) € © C R” is an unknoun vector parameter.

We want to make inferences about 8 in the case where the actual observed data are
in the contaminated form:
(1.1) X(t)y=Y(@t)+ M(t), 0<t<T.

where M(t) is a determiuistic trend.

1The rescarch of M. 8. Ginovyan was partially supported by Nationnl Science Foundation Graut
#1DMS-1309009 at Baston University.
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We assume that the trend A (¢) is small. that is, we consider the situation in which
the major trend is removed from the model and a certain component that remains
in the model has only minor effect. In these cases standard inferences can be carried
on the basis of the stationary model Y (¢), and we arc interested in question whether
the conclusions are robust against this kind of departure from the stationary model.

A sufficiently developed inferential theory is now available for a continuwous-time
stationary model Y(t). For instance. in Anh ct al. [3, 4]. Avram et al. [5], Casas
and Gao [9]. Gao [14|, Gao et al. [15, 16], Leonenko and Sakhno [26] were obtained
sufficient conditions eusuring consistency and asymptotic normality of various statistical
estimators of #. including quasi maximum likelihood (Whittle) and minimum contrast
cstimators of ¢ constructed on the basis of a finite realization Yy := {Y'(1).0 < { < T'}
of the process Y'(t).

In this paper we show that under some conditions on the process Y (z) and the
deterministic trend A (¢) the above asymptotic properties of Whittle and minimnum
contrast estimators remains valid for the model X(t), that is, the estimating procedure
is relatively robust against replacing the stationary model Y () Ly the nou-stationary
model X (t) of the form (1.1). We will be concerned with this question for models
which may exhibit long memory, short memory or intermediate memory.

Throughout the paper the letters C and c are used to denote positive constants,
the values of which can vary from line to line.

The paper is structured as follows. In Section 2 we describe the statistical model.
Section 3 contains the approach and the main result of the paper - Theorem 3.1
Section 4 is devoted to the proof of Theorem 3.1.

2. THE MODEL: LONG MEMORY. SHORT MEMORY AND INTERMEDIATE MEMORY
PROCESSES

Let {Y(t}, t € R} be a centered, real-vilned, continuous-time second-order stalionary
process with covariance function 7(?). pussessing a spectral density f(A), A € R, that
is, E(|Y (1)[*] < 00 E[Y(#)] =0, 7(t) = E[Y (¢ +u)Y (x)] (u.t € R), and r(¢) and f(A)

are connected by the Fourier integral:

(2.1) rit) =/r"‘/um. teR.
“

There are several possible definitions of the notion of “memory” of a stationary

process, and they are not necessarily identical (sce Beran et al. (7], Gao |14]. Giraitis

et al. |24, Heyde and Dai [25]. Taniguchi and Kakizawa [28]). In this paper. we define
50



ON THE ROBUSTNESS TO SMALL TRIENDS OF PARAMETER

the memory concept basing on the integrability property of covariance function r{¢),
and depending on the memory structure we will distinguish the [ollowing types of
stationary models: (a) short memory or short-range dependlent, (b) long memory or
long-range dependent, (c) intermediate memory or anti-persistent.

We will say that the process Y(t) displays short memory (SM) or short-range
depencence (SRD) it the covariance function r{#} is integrable: » € L!(R) and
f_:: 7(t)dt # 0. In this case the spectral density f(A) is bounded away from zero
and infinity at frequency A = 0, that is, 0 < f(0) < oo.

A typical continuous-time short memory model exanple is the stationary continuous-
time autoregressive moving average (CARMA) process whose spectral density is a
rational function (sec. c.g., Brockwell [8]).

Much of statistical inference is concerned with the short memory stationary models.
However, data in many ficlds of science (economics, hydrology, telecommunications,
etc.) is well modeled by a stationary process with unbounded or vanishing at the
origin spectral density (see Beran et al. [7], Casas and Gao [9]. Gao [14], Tsai and
Chan [29] and references therein).

The process Y (t) is said to be anti-persistent or exhibits intermediate memory
(IM) if the cuvariance function r(#) is integrable: 7 € L'(R) and f+:” r(t)dt = 0. In
this case the spectral density f{A) vanishes at frequency zero: f{(0) = 0.

We say that the process Y (t) displays long memory (LM) or long-range dependence
(LRD) if the covariance function 7(t) is not integrable: r ¢ L'(R). In this case the
spectral density f(A) has a pole at frequency zero, that is, it is unbounded at the
origin.

The memory property of a stationary process can also be characterized by the
behavior of spectral density f(A) in the neighborhood of zero, or by the behavior of
covariance function r(1) a infinity (see Beran et al. [7], Section 1.3.4).,

An exainple of 3 continous-time model that displays the above defined memory
structures is the continuous-time autoregressive fractionally integrated moving-average
(CARFIMA) process (see Chambers [10], Tsai and Chan [29]).

In the coutinuous context, a basic process which has commonly been uscd to model
LRD is fractional Brownian motion (fBm) Bg(t) with Hurst index H. This is a

Guaussian process with stationary increments and spectral density of the form

(2.2) F) ~eA¥2, e¢>0, 1/2<H<],
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as A = 0, and covariance function:
(2.3) () ~ct¥2 1/2< H <1,

as | — oo, where the symbol © ~ ™ indicates that the ratio of left- and right-hand
sides tends to 1. Notice that the form (2.2} can be understood in a limiting sense,
since the fim L35 1s a nonstationary process (see, e.g., Solo [27). Gao et al. [15]).

A proper stationary model in lien of fBm is the tractional Riesz-Bessel motion
(fRBm). introduced in Anh et al. [1], and then extensively discussed in a number of
papers (sce Auh et al. [2], Gao et al. [15]. Leonenko and Sakhno |26, and references
therein). The fRBm is defined to be a continuous-time Gaussian stationary process

with spectral density of the form

(2.4) f(X) = AER 0<e<o0,0<u</2, v>0

©
AP (1 + A2y’
Observe that the spectral density (2.4) behaves as O(|A|=2*) as |A| — 0 and as
O(|A|"2“+)) as jA] — oc. Thus, under the conditions 0 < « < 1/2, ¢ > 0 and
u + v > 1/2 the function f(2) in (2.4) is well-defined for both |A] = 0 and |A] = o
due to the presence of the component {1 + A?)~", which is the Fourier transform of
the Bessel potentisl. Note that in the spacial case 0 < u < 1/2, v > 1/2 the condition
u + ¢ > 1/2 holds automatically. The exponent u determines the LRD, while the
exponent v indicates the second-order intermittency of the fRBm (see Anh et al. [2]
and Gao ct al. [15]).

Comparing (2.2) and (2.4), we observe that the spectral density of [Bm is the
limiting case as v — 0 that of (RBm with [Turst index If = u + 1/2. Thus. the form
(2.4) means that fRBm may exhibit both LRD and second-order intermittency.

The next result, which was proved in Ginovyan and Sahakyan [22], gives an
asymptotic formula for covariance function of an fRBm: Let f(A) be as in (2.4) with

0<u<i/2and v > 1/2, and let 7(t) : = f(t) be the Fourier transform of f(A), then

(2.5) r(t) = Ct*~Vsin(ra)T(1 ~ 2u) - (1 + 0(1)) as t = oco.

3. THE APPROACI! AND RESULTS

The basic approach in estimating unknown spectral parameters, originated by
Whittle |30]. is based on the smoothed periodogram analysis on a frequency domain,
involving approximation of the likelihood function and asymptotic distributions of

empirical spectral functionals.
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The Whittle estimation procedure, originally devised for discrete-time short memory
slationary processes, has played a mnajor role in the parametric estimalion in the
frequency domain, and was the focus of interest of many statisticians. Their aim was to
weaken the conditions needed 1o guarantee the validity of the Whittle approximation
for short memory models, to find analogues for long and intermediate memory models,
and to show that the Whittle estimator is asymptotically equivalent to exact maximumn
likclihood estimator (see Dahlhaus |11], Dzhaparidze [12], Fox and Taqqu [13], Giraitis
and Surgailis [23], Giraitis et al. [24] and references therein). In particular, it was
shown that for Gaussian and linear stationary models the Whittle approach leads to
consistent and asymptotically normal estimators with the standard rate of convergence
under short, intermediate and long memory assuniptions.

Continuous versions of Whittle estimation procedure have heen cousidered, for
example, in Anh et al. [3, 4], Avram et al. [5|, Casas and Gao [9], Gao [14], Gao et
al. [15, 16|, Leonenko and Sakhno [26].

The procedure of estimation of a parameter 8 involved in the spectral density
f(A.8) of the wodecl, based on a finite realization Yy := {¥({t). 0 < t < T} of
the centered stationary process Y(t), is to choose the estimator 6y to minimize the
weighted Whittle functional:

| o0 Iry(X)
(3.1) U.rl®) = J—'/ [l()gf()\, a) + 7nu0) | ~w(A) dA,
where
2
1 I
(3.2) Iry(A) = — / MY (t)de
2nT | Jo

is the “continuous" periodogram of Y (¢}, and w(}) is an even weight function (that
is, w(—A) = w(A), w(}) > 0, and w(A) € L'(R)) for which the integral in (3.1) is well
defined. The choice of an appropriate weight function depends on the sp'eciﬁc form of
the spectral density (see Anh et al. [4]). An exatmple of common used weight function
is w(A) = 1/(1 + A?%).

Thus, the Whittle estimator fy with weight function w()} is defined to be a

solution of the following estimating equation

+00 a
(3.3) / Ury() ~ SO0 55~ (A6) - w(X)dA = 0.

-0

obtained by differentiating under the integral sign in (3.1).
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The asymptotic properties of the Whittle estimator 8y then can be obtained using
the standard Taylor expansion inethods based on the following smoothed periodogram
convergence results:

+oc +oc
(3.4) J/ g\ 8) Iy (A)dr f 9(A0)f(\6)dr as T - oo,

and

+o0
(3.5) 'l""‘f y()\,G)[IT.r(z\)-—f(,\.H)ld,\—"—»{-vN(U.az) as T =+ oo,

—
where g(X, 0) = g5 f (A, 8)w(X), Ity (A) is the periodogram of Y (t) given by (3.2).
N(0,02) denotes the nornal law with niean zero and variance o2, and 2L oand 5
stand for convergence in distribution and in probability. respectively.

Using this approach. statistical properties of Whittle minimum contrast estimators
for continuous-time stationary processes were studied in Anh et al. [3], Avram et al.
[5], Casas and Gao [9], Gao |14, Gao et al. [15, 16], Leonenko and Sakhno [26].
In particular. consistency and asymptotic normality of Whittle minimmum contrast
estimator 8y was established for some classcs of stationary models, including the
fractional Riesz-Bessel motion model, specified by spectral density f(A) = f(A;0)
given by (2.4) with 8 = (u,v,¢).

In our analysis we will use a general even integrable smoothing function g(X;#)
rather than the specific form g(A,68) = # f~(X,8)m()) which is suggested by the
Whittle procedure in (3.3). The general estimator 8¢ of 0 is then obtained as a
solution of the estimating equation

+
(3.6) [ ltry ) - 70000900002 =0

o)

Then the asymptotic properties of the estimator éc can be ohtained from smoothed
periodogram convergence results of type (3.4) and(3.5) with general smoothing function
g{»:; 9).

Notice that in the continuous context the basic tool for derivation of limit theorems

for empirical spectral functionals of the form

(37) soy= [ o 0)iry A

S -0
is a central limit theorem for Toeplitz type quadratic functionals of stationary processes

(sec Ginovyan |18, 19]. Ginovyan and Sahakyan [21] for Gaussian processes, and Bai
et al. [5, 6] for linear processes).

54




ON THE RONUSTNFESS TO SMALL TRENDS OF PARAMETER

It can be shown that the standard Taylor expansion methods based on the smoothed
periodogramn convergence resulis of type (3.4) and(3.5) with a general smoothing
function g(A; 8) and with the contaminated periodogram I x (X) instead of 14y (X),
lead consistent and asymptotically normally distributed estimators ol 8. We will not
nursuc this matter here (the details will be reported clsewhere), however, notice that
1 the special case of Whittle procedure. where g{A;8) = gT(,{,_a) - w(A) the results
of Anh et al. |3], Avram et al. |5], Casas and Gao [9], Gao [14], Gao et al. [15, 16].
Leonenko and Sakhno [26]| concerning consistency and asymptotic normality of the
Whittle minimum contrast estimators constructed on the basis of the periodogram
Iy (X), continue to hold without change for estimators calculated ou the basis of the
contaninated periodogram f7 x (A). under appropriate assumptions imposed on the
madel Y (¢£) on the smoothing function g(A,#) and on the trend AS(2).

In Theorem 3.1 that follows we show that a small trend of the form |A(2)| < CJ¢|~7?
docs not cfect the asymptotic properties (3.4) and (3.5) of the smootherl periodogram.
and hence, the asymptotic properties of the estimator 8¢, even if Iy ()) is replaced
Ly the contaminated periodogram It x (A).

Theorem 3.1. Suppose that the stalionary mean zerv process {Y (t), t € R} in (1.1)
is such that the asymptotic relations (3.4) and (3.5) are satisfied with general even
integrable smoothing function g(A) and o0? as in (27). If the trend M(t) and the
Fourer transform a(t) := §{t) of smoothing function g(A) arc such thet M(t) is
locally integrable on R and

(3.8) M@ <Cl™?, e SCIEI™". teR, 23+7>

wiw

with some constants C >0, v > 0 and 3 > 1/4, then

+c0
39) T2 / 00 0) rkelA) = Try (W] dA230 as T - oo,

— 00
and hence the esymptotic relations (3.4) and (3.5) are satisfied with {7y (\) replaced
by the contaminated periodogram Ir x (A), provided that one of the following conditions
holds:

(i) the process Y (t) has SM or IM, that is, the covariance function r(t) of Y (¢)
satisfies r € LY(R), and 3+~ > 1.
(ii) the process Y (t) has LM with covariunce function r(t) satisfying

8
(3.10) MO SClE™, tER, a+y23
with some constants C > 0,0<a <l. ando+28>1if8<1 <.
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Remark 3.1. It is easy to check that the statement of Theorem 3.1 holds, in
particular, if the parameters «. 8 and « salisfy the following conditions:

in the case (5): 8 > 1/2, ¥ > 1/2,

in the case (i) a > 3/4. 3 > 3/8, v > 3/4.

Remark 3.2. The discrete version of Theorem 3.1 (with addilional conditions v = 1
in the case (i). and ¥ > 1, a < 1/2 in the case (4i)), was proved by Heyde and
Dai 25| (see also Taniguchi and Kakizawa [28]. Theorems 6.4.1 and 6.4.2). Using the
same arguinents applied in the proof of Theorem 3.1 one can prove that the complete

discrete analog of Theorem 3.1 is also true.

Remark 3.3. Convergence results of type (3.4) and (3.5) holds under broad circumstances
of SM. IN and LM . For detailed conditions see. for example. Avram et al. [5],
Ginovyan [17]  |20]. Ginovyan and Sahakyan |21], and Leonenko and Sakhno [26].

Remark 3.4. The conditions imposed on the Fourier transform of generating function
9(t) in {3.8) and on the covariance function »(¢) in (3.10) ensure ceutral limit theorem
for empirical functionals of Gaussian and lincar long memory processes. This can
be scen from the considerations of Theorem § of Ginovyan and Sahakyan [21] (for
Gaussian processes), and Theorem 2.1 and Corollary 2.1 of Bai et al. |6] (for linear

processes).

4. PROOF OF THE MAIN RESULT

Proof of Theorem 3.1. In view of (1.1) and (4.2) we can write
2

7
/ e X (dt] -
0

2

!

r
/ MY (2) de
0

Itx(A) ~Iry(A) = 2—:7 (

]

=
/ My () dt
0

1 s 2
- oL 1y & §
R ’/“ (Y(t) + M(2)] dt

1 r r
= ,;f/ /., MY ()M (s) + YV (8)M(E) + MM ()] dtda
and

/. 9(A8) 1y, x(A) = Iyy (N)] dA

Ly
T T 0 A {}'(!)M(s) & Y(s)ﬂl(t) + ﬂr!(t)hl(s)] ot — s) dtds.
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Thus, to coniplete the proof it is enough to prove that under the conditions of the

theorem we have

TR o
(4.1) G / / M()M(s)a(t — s)dfds =0 as T -~
Jo Jo
and
r v
(4.2) T‘1/2/ _/[ Y(t)M(s)a(t — s)dtds 250 as T - oc.
v Jo

Proof of (4.1). For T > 2 we set

T 7
(4.3) I(T) = / / [M ()M (8)a(t — s)| dtds

// // ffllz /jw : L(T) + I(T) + I3(T) + 1(T),

and estimarte the integrals I,(T'), + = 1,2, 3,4, separately.
Observe first that the Fourier transform a(?) := g(t) is a bounded functiou on R,
since g is integrable on R. Hence, taking into account that by assumption the trend

M(t) is locally intcgrable on R, for [;(T) we oltain the estimate
rl 2

(4.4) I(T) < C||a||m/ [M(s)ldsjl 1M (t)]dt < C < oo, T>2
u (1]

Next, in view of (3.8). for 0 < s < L and ¢ > 2 we have |a(t—s)| < C(t—s)™" < Ct™7,

and hence. taking into account that 8+ > 1, [5(T) can be estimated as follows

) T
45) LT < c/ M (s ds/ SmdisC<m, T>2
0 2
Similarly, for I3(T) we have
(4.0) ]:;(T) SFER< 50, TESS)

To estimate [4(T) observe first that, in view of (3.8), for 1 < s < T we can write

w = [ M ol By, ™ 1,
i(s) = d(t)a(t — s)| dt < f - "14»/ - dt
( /1-/2l ( 4 {a—1) » ot DL —15)”
T 1 o0 1 s—1 1
e —_— _—
+La lﬁ(‘*-“)" ./1/2 t3(s — t)7 +//2 t3(s - t)"

i & ) 1 2 2 4
Cllaflx-s7%+s77 idr+ ——dt+ 577 " —dt+578 B Zdr
o LT b t7+‘7 18 1 v

s
1/2

e [s—ﬁ a5 L(.,‘-r)’l-ﬂ- Y+ LB+, T) (Tl—ﬂ—ﬁ'_i_sl*ﬂ—‘))
+ LB, T) ("7 4 977) + L(r.T)s' 7]

(4.7) < ClogT - (T'=2=2 +sl_‘3_"+s_’9+s").
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where the function L{u.T) is defined by

L{u,T) = logT if awl,
; 1 otherwise,

Taking into account that 8 + v > 1. from (41.7) we get
(1.8) h(s) S ClogT- (s" 274577 +577), 1<s<T,

and hence for T > 2, I,(T) can be estimated as follows
T
LT) = / Ms)his)| ds
i
S | 1 i Sa {

ClogT 1+ L(28+~ — 1,T)T*2=Y 4+ L(28,T) T'~% + 7' -F1]
C'log2 T (1 oG L Tl—zﬂ) :

IA

A

(1.9) <
Finally. taking into account that by assumption 23 + v > 3/2 and 8 > 1/4, from
{4.3)-(4.6) and (4.9) we obtain
T-Y2 . [(T) < Clog?T (T-W T2 Tl/Hﬂ) -0 as T = oo,

which implies (4.1).

Proof of (4.2). Observe first that the inequality
{(4.10) B+y>1
holds also in the case (i), since by (3.8) and (3.10), we have 2842y > 283+ y+3/2—
a>3/2+1/2=2.

Deuote

T
v(s) = u(T,8) —/ M(t)a(t - s)dt, 0<s<T,
(4]

and observe that

r1/2
/ [M (t)a(t — s)| dt gCl IM(t)[ dt<C-s7, 1<s<T,
0 Jo (=121 1/1 T
and by (1.8),
(4.11) v(s)] < ClogT- (s PV + 578 4577, l<s<T.

On the other hand. by (3.8), for T > 2 and 0 < s < 1 we have

2 T
: . |
(4.12) |Ws) < C|]la / M(t d:+/ S e D
Y [u lec J, MO+ | el

Observe that from (3.8) and (4.11) it follows that (4.12) holds for0<s<T.
58
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Now, we denote
T T T
Q(T) =T~/ / / Y (s)M (t)alt — s) dtds = T~ /2 Jf Y (s)i(s)ds,
o Jo 0

and observe that

T T
E{Q*T)} T /0 /o E{Y (3)Y (1)}v(s)v(T)dsdr

T T
e [ / v(s)v(t)r(s — 7)dsdT.
Jo Jo
Hence, to prove (4.2) it is enough show that
T /T
(ASI3) I (= f / |v(s)v(T)r(s — 7)|dsdr = o(T) as T — oo.
(1] (1]

In the case (3). when the process Y () has SM or IM, and hence r € L!(R), from
(4.12) for T > 2 we get

T T T
(4.14) |J(T)| SC’logT/‘; |y(s)t'/“ [r(s — 7)| drds {.ClogTJ/(; |v(s)] ds.

In view of (4.11), the last integral in (4.14) can be estimated as follows:

T I r |
/ lu(s)|ds < Clog*T [[ ds +/ (8" P 745845 ds
0 [} 1
< Clog®T(14+L(B++-1.DT* P+ LB.TT' 2+ L(7,T)T')
(415) < Clog*T(1+ 77+ 11774 T727977).

Hence. taking into account that 8+ v > 1, from {4.14) and (4.15) we obtain
JT)=0(T) as T 0.

In the case (3:), when the process Y (¢) has LM, using (3.10), (4.10) - (4.12), for
1 < 7 « T we obtain

glr) = [ [ (s = s S (:logT[” ('r = %) v 5

A S g, & T (g —
/ P(%_T‘rl)lds + f hﬁv—‘r)lds et / MF[.‘
1 e 1 1 .

(4.16) + ClogT -
2 #Y e

Taking into account that r is bounded {|r(t)] < r(0) = E|Y(#)]® < =, t € R), and
using similar arguments as in (4.7), from (3.10) we obtain that for any n > 0

A

T .
/ |r(t 7)| dt < C]()gT(Tl_"_"+Tl_a_"+7‘_"-!-T"’)
2 t"

IA

ClogT(1+T" "), 1<7<T.
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Applying this inequality for n = 8+~ — 1. n= 4 and 7 = 7, from (4.16) we obtain
(417) () S Clog?T (1 473 #=1 4740~ 1<r<T.

since a + 4 > 1. On the other haud. by (4.11) and (4.12) for I'> 2 and 0 < 7 < 1,

we have

2 i
(4.18) ¢(r) < C llogT/ [r(s = 7)| ds +/2 ——-——da( lu(’:;“ ]
0 . -

<ClogT(1+ T 8- 4 Ti==8) < ClogT (1 + T'~#),

U<r<l.sincea+y>1and a>0.

Next. we denote

T ] T
(14.19) T = / [v(T)| g(7) dr =/ +/ =: JI(T) + Jo(T),
0 0 1
and cstimate Jy(7T) and Jo(T). By (4.12) and (4.18), for J,(T) we have
(4.20) MT)<Clog? T (1+ T P)=o(T) as T > =,

since 3 > 0.
To estimate Jo(T) we consider three cases, and use conditions (3.8). (3.10), (4.10)
and inequalities (4.11), (4.17).

Case 1. If 8 > 1, then we have
()| < ClugT(r"a +7r77). qlr) < Clog?T, 1<r<T,
and hence
(421) LT <SClZ@T(A+T"P+T' ") =0oT) as T - .
Case 2. If 8 < 1 < v, then we have
T S ClogT- 7%  g(r) SClog?T(1+T'"f) 1<7<T
and hence

L(T) < Clg’T(1+T"%) (14171

(4.22) < Clg®TA+T" AT A4 70" = y(T) as T o oo

since in this case by assumption a + 28 > 1.
Case 3. If A< 1 and ~ <1, then we have

(T < ClogT 7' 47 q(r) < Clog® T(1 4+ T>*~%-7),  1<7<T,
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and hence

(4.23) L) S Clog? T 1+ T3 (1 4 T27-7) <
SClog® T (1 + T2~ . 72 A=7 p pi-a-28-1) _ (1)

asT oo, since f+y>landa+28+2y=028+)+(a+7) >3
From (4.19) (4.23) we obtain J(T') = o(T) as T — oo. Thus, the relation (4.13)

and hence (4.2) are proved. O
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