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Abstract. The paper deals with a question ofYobustness of inferences, carried 
out on a continuous-time stationary process contaminated by a small trend, to 

this departure from stationarity. We show that a smoothed periodogram approach 
to parameter estimation is highly robust to the presence of a small trend in the 

model. The obtained result is a continuous version of that of Hede and Dai (Journal 
of Time Series Analysis, 17, 141-150, 1996) for discrete time processes.

M S C 2 0 1 0  n u m b e rs : 60G10, 62M20.

K e y w o rd s : trend*, robust inference; short, in term ediate and long mem ory; smoothed 
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1. I n t r o d u c t io n

M uch o f s ta tis tica l inferences about unknown spectral parameters is concerned 

w ith  the discrete-tim e s ta tionary  models, in  which case i t  is assumed th a t the model 

is centered, or has a constant mean (see Beran e t al. [7], Dzhaparidze |12|. G ira itis  

e t al. [24|, Taniguchi and Kakizawa (28), and references therein). In  th is  paper we 

are concerned w ith  the robustness o f inferences, carried out on a continuous-tim e 

sta tionary process contam inated by a small trend, to  th is  departure from  stationarity.

Specifically, le t {Y (£ ), t € R } be a a zero mean stationary process w ith  spectral 

density / ( A, 0), where Ѳ :=  ( 0 j, . . . .  Ѳр) €  Ѳ С is au unknown vector parameter. 

We want to  make inferences about Ѳ in  the case where the actual observed data are 

in  the contam inated form :

(1.1) X { t)  =  Y (t) +  M (t), 0 <  t <  T ,

where A f (t) is a  determ inistic trend.

'T he  research o f M . S. Ginovyan was partia lly supported by National Science Foundation Grant 
#DMS-1309009 at Boston University.
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We assume that the trend M (t) is small, that is, we consider the situation in which 
the major trend is removed from the model and a certain component that remains 
in the model has only minor effect. In these cases standard inferences can be carried 
on the basis of the stationary model Y (t), and we are interested in question whether 
the conclusions are robust against this kind of departure from the stationary model.

A sufficiently developed inferential theory is now available for a continuous-time 
stationary model Y(t). For instance, in Anh et al. [3, 4|. Avram et al. [5|, Casas 
and Gao [9], Gao [14], Gao et al. [15, 16], Leonenko and Sakhno [26] were obtained 
sufficient conditions ensuring consistency and asymptotic normality of various statistical 
estimators of Ѳ, including quasi maximum likelihood (W hittle) and minimum contrast 
estimators of Ѳ constructed on the basis of a finite realization Y  ր := { Y (t), 0 < t < T) 
of the process Y(t).

In this paper we show that under some conditions on the process Y(t) and the 
deterministic trend M (t) the above asymptotic properties of W hittle and minimum 
contrast estimators remains valid for the model X (£), that is, the estimating procedure 
is relatively robust against replacing the stationary model Y (t) by the non-stationary 
model X (t) of the form (1.1). We w ill be concerned with this question for models 
which may exhibit long memory, short memory or intermediate memory.

Throughout the paper the letters С and с are used to denote positive constants, 
the values of which can vary from line to line.

The paper is structured as follows. In Section 2 we describe the statistical model. 
Section 3 contains the approach and the main result of the paper - Theorem 3.1. 
Section 4 is devoted to the proof of Theorem 3.1.

2. T he  m ode l: lo n g  memory, s h o r t  m em ory and  in term ed iate  memory

PROCESSES

Let {Y {t)t t € R} be a centered, real-valued, continuous-tiine second-order stationary
process with covariance function r(<), possessing a spectral density /(A ), A 6 R, that 
is, E [\Y(t)\2] < oo, E[Y(t)\ =  0, r(t) =  E [Y(t +  u)Y(tt)] {u ,t € R), and r(<) and /(A )

There are several possible definitions of the notion of “memory" of a stationary 
process, and they are not necessarily identical (see Beran et al. [7], Gao [14], Giraitis 
et al. [24], Heyde and Dai [25|, Taniguchi and Kakizawa [28]). In this paper, we define

are connected by the Fourier integral:
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the memory concept basing on the integrability property of covariance function r(t), 
and depending on the memory structure we w ill distinguish the following types of 
stationary models: (a) short memory or short-range dependent, (b) long memory or 
long-range dependent, (c) intermediate memory or anti-persistent.

Wc w ill say that the process Y(t) displays short memory (SM) or short-range 
dependence (SRD) if  the covariance function r(t) is integrable: r  € L l {R) and 
/_  *  r(t)d t փ  0. In this case the spectral density /(A ) is bounded away from zero 
and infinity at frequency Л =  0, that is, 0 < / ( 0) <  oo.

A typical continuous-time short memory model example is the stationary continuous­
time autoregressive moving average (CARMA) process whose spectral density is a 
rational function (see, e.g., Brockwell (8]). -  —

Much of statistical inference is concerned with the short memory stationary models. 
However, data in many fields of science (economics, hydrology, telecommunications, 
etc.) is well modeled by a stationary process with unbounded or vanishing at the 
origin spectral density (see Beran et al. [7], Casas and Gao [9]. Gao [14], Tsai and 
Chan [29] and references therein).

The process Y (f) is said to be anti-persistent or exhibits intermediate memory 
(IM ) if  the covariance function r(t) is integrable: r  € L l (R) and / * *  r{t)d t = 0. In 
this case the spectral density /(A ) vanishes at frequency zero: /(0 ) =  0.

We say that the process Y (t) displays long memory (LM) or long-range dependence 
(LRD) if  the covariance function r(t) is not integrable: r  փ L 1(R). In this case the 
spectral density /(A ) has a pole at frequency zero, that is, it  is unbounded at the 
origin.

The memory property of a stationary process can also be characterized by the 
behavior of spectral density /(A ) in the neighborhood of zero, or by the behavior of 
covariance function r(t) вф infinity (see Beran et al. [7], Section 1.3.4).

An example of a continuous-time model that displays the above defined memory 
structures is the continuous-time autoregressive fractionally integrated moving-average 
(CARFIMA) process (see Chambers [10], Tsai and Chan [29]).

In the continuous context, a basic process which has commonly been used to model 
LRD is fractional Brownian motion (fBm) B n(t) with Hurst index H . This is a 
Gaussian process with stationary increments and spcctral density of the form

(2.2) /(A ) -  с |А|1֊2Я, с > 0, 1/2 <  Я  <  1, 
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as A —» 0, and covariance function:

(2.3) r(t) ~  c t211՜ 2, 1/2 < H  < 1,

as / —> oo, where the symbol ” ~  ” indicates that the ratio of left- and right-hand 
sides tends to 1. Notice that the form (2.2) can be understood in a lim iting sense, 
since the ffim  Bh is a nonstationary process (see, e.g., Solo (27), Gao et al. [15]).

A proper stationary model in lieu of ffim  is the fractional Riesz-Bessel motion 
(fRBm), introduced in Anh et al. [1], and then extensively discussed in a number of 
papers (see Anh et al. [2], Gao et al. (15), Leonenko and Sakhno (26), and references 
therein). The fRBin is defined to be a continuous-time Gaussian stationary process 
with spectral density of the form

(2.4) /(> )=  |Л ‘+Л2)„ , AeR,  0 < c < o o t 0 < u <  1/2, v >  0.

Observe that the spectral density (2.4) behaves as OflA|~2u) as |A| —> 0 and as 
0(|A|~2*U‘Ĥ ) as |A| —► oc. Thus, under the conditions 0 < u <  1/2, v >  0 and 
и + V > 1/2 the function /(A ) in (2.4) is well-defined for both |A| —► 0 and |A| —► oo 
due to the presence of the component (1 +  A2)՜'՜, which is the Fourier transform of 
the Bessel potential. Note that in the spacial case 0 < u < 1/2, v > 1/2 the condition 
u + V > 1/2 holds automatically. The exponent u determines the LRD, while the 
exponent v indicates the second-order intermittency of the fRBm (see Anh et al. [2] 
and Gao et al. |15|).

Comparing (2.2) and (2.4), we observe that the spectral density of fBm is the 
lim iting case as v —» 0 that of fRBm with Hurst index I I  =  u +  1 /2 . Thus, the form
(2.4) means that fRBm may exhibit both LRD and second-order intermittency.

The next result, which was proved in Ginovyan and Sahakyan [22], gives an
asymptotic formula for covariance function of an fRBm: Let /(A ) be as in (2.4) with
0 < и < 1/2 and V > 1/2, and let r ( t ) : = f( t)  be the Fourier transform of /(A ), then

(2.5) r ( i)  =  C i21* "1 «іп(тга)Г(1 -  2u) ■ (1 +  o(l)) as t -+ oo.

3. T he approach and results

The basic approach in estimating unknown spectral parameters, originated by 
W hittle [30], is based on the smoothed periodogram analysis on a frequency domain, 
involving approximation of the likelihood function and asymptotic distributions of 
empirical spectral functionals.
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The W hittle estimation procedure, originally devised for discrete-time short memory 
stationary processes, lias played a major role in the parametric estimation in the 
frequency domain, and was the focus of interest of many statisticians. Their aim was to 
weaken the conditions needed to guarantee the validity of the W hittle approximation 
for short memory models, to find analogues for long and intermediate memory models, 
and to show that the W hittle estimator is asymptotically equivalent to exact maximum 
likelihood estimator (see Dahlhaus (11], Dzhaparidze [12], Fox and Taqqu [13], Giraitis 
and Surgailis [23], Giraitis et al. [24] and references therein). In particular, it  was 
shown that for Gaussian and Unear stationary models the W hittle approach leads to 
consistent and asymptotically normal estimators with the standard rate of convergence 
under short, intermediate and long memory assumptions.

Continuous versions of W hittle estimation procedure have been considered, for 
example, in  Anh et al. [3, 4], Avram et al. [5], Casas and Gao [9], Gao [14], Gao et 
al. [15, 16], Leonenko and Sakhno [26].

The procedure of estimation of a parameter Ѳ involved in the spectral density 
/(A ,  0) of the model, based on a finite realization Y y  :=  {Y ( t ) .  0 <  t < T } of 
the centered stationary process Y {t), is to choose the estimator 6w to minimize the 
weighted W hittle functional:

is the “continuous” periodogram of Y (t), and iw(A) is an even weight function (that 
is, iu(-A ) =  w {\), u'(A) > 0, and w(A) G I»l (R)) for which the integral in (3.1) is well

the spectral density (see Anh et al. [4]). An example of common used weight function

Thus, the W hittle estimator §w with weight function tu(A) is defined to be a 
solution of the following estimating equatiou

(3.1) :=  —  / +0С [log/(Л , в) + -w(X)dX,

where

(3.2)

defined. The choicc of an appropriate weight function depends on the specific form of

is tw(A) =  1/(1 +  A2).

/ + 0 0  я
\It ,y (A) -  /(A ,«)] g i'T 'O M ) • «-(A) d \  =  0.

•OO

obtained by differentiating under the integral sign in (3.1).
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The asymptotic properties of the W hittle estimator $w then can be obtained using 
the standard Taylor expansion methods based on the following smoothed periodogram 
convergence results:

ր+ՕՕ ի  oo
(3.4) /  0 (A ,0 )/r,y(A )dA -^ /  g(K 0)f(X ,e)d\ as Г - too,

J — oo J —oo

and
/ +ОО

</(A: 0) [/т.у (A) ֊  /(A , 0)] <ZA - A  £ ~  iV(0, a2) as T  oo,
■oo

where g(A, Ѳ) =  щ /֊ 1(А, Ѳ)ги(Х), It ,y (A) is the periodogram of Y (t) given by (3.2), 
N (0, a2) denotes the normal law with mean zero and variance a2, and — ► and — ► 
stand for convergence in distribution and in probability, respectively.

Using this approach, statistical properties of W hittle minimum contrast estimators 
for continuous-tiuie stationary processes were studied in Anh et al. [3], Avram et al. 
[5], Casas and Gao [9], Gao |14|, Gao et al. [15, 16], Leonenko and Sakhno [26]. 
In particular, consistency and asymptotic normality of W hittle minimum contrast 
estimator 6w was established for some classes of stationary models, including the 
fractional Riesz-Bessel motion model, specified by spectral density / (A )  =  /(A ; Ѳ) 
given by (2.4) with Ѳ = (u, v, c).

In our analysis we w ill use a general even integrable smoothing function g(A; Ѳ) 
rather than the specific form д(Х,Ѳ) =  ™ /- 1(A,0)u>(A) which is suggested by the 
W hittle procedure in (3.3). The general estimator Oq of Ѳ is then obtained as a 
solution of the estimating equation

(3.6) Г ° °  [ I t A  A) ֊  /(A , 0)] y(X, 6 ) d \  =  0.
J  —oo

Then the asymptotic properties of the estimator can be obtained from smoothed 
periodogram convergence results of type (3.4) and(3.5) with general smoothing function 
g(W).

Notice that in the continuous context the basic tool for derivation of lim it theorems 
for empirical spectral functionals of the form

(3.7) J(g) *  j(A , 9)It ,y (A)dA
J —oo

is a central lim it theorem for Toeplitz type quadratic functionals of stationary processes 
(see Ginovyan [18,19], Ginovyan and Sahakyan [21] for Gaussian processes, and Bai 
et al. [5, 6] for linear processes).
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I t  can be shown that the standard Taylor expansion methods based on the smoothed 
periodogram convergence results of type (3.4) and(3.5) with a general smoothing 
function g(A; Ѳ) and with the contaminated periodogram /т ,л (A) instead of ir,y(A ), 
lead consistent and asymptotically normally distributed estimators of Ѳ. We w ill not 
oursue this matter here (the details w ill be reported elsewhere), however, notice that 
եւ the special case of W hittle procedure, where g(A; Ѳ) =  |  f ( i j )  ՛ wW  the results 
of Anh et al. |3], Avram et al. [5], Casas and Gao [9], Gao (14), Gao et al. [15, 16]. 
Leonenko and Sakhno [26] concerning consistency and asymptotic normality of the 
W hittle minimum contrast estimators constructed on the basis of the periodogram 
/т.у(А), continue to hold without change for estimators calculated on the basis of the 
contaminated periodogram I t , x { A), under appropriate assumptions imposed on the 
model Y (t) on the smoothing function ց(ճ, Ѳ) and on the trend M (t).

In Theorem 3.1 that follows we show that a small trend of the form \M (i)| < C |i|֊/J 
does not effect the asymptotic properties (3.4) and (3.5) of the smoothed periodogram, 
and hence, the asymptotic properties of the estimator 0g, even if  It,y (A) is replaced 
by the contaminated periodogram I t,x (A).

Theorem 3.1. Suppose that the stationary mean zero process {У(£), / € R} in (1-1) 
is such that the asymptotic relations (3.4) and (3.5) are satisfied with general even 
integrable smoothing function g(A) and a2 as in (??). I f  the trend M (t) and the 
Fourier transform a{t) :=  g{t) of smoothing function g(A) are such that M (t) is 
locally integrable on R and

(3.8) \M (t)\< C \L \-p% K O I< C |« r \ te  R, 2,0 +  7 > 

with some constants С > 0, 7 > 0 and 0 > 1/4, then

(3.9) T 1/2 f  °° g{A, Ѳ) [IT,x (A) ֊  I t,y (A)] d \ A  0 as T  -> oo,
J —oo

and hence the asymptotic relations (Յ.Հ) and (3.5) are satisfied with /т,у(А) replaced 
by the contaminated penodograin I t,x(A), provided that one of the following conditions 
holds:

(i) the process V (t) has SM or IM, that is, the covariance function r(t) o fY (t)
satisfies r  € L1(R), and 0 +  7 >  1,

(ii) the process Y (t) has LM with covariance function r{t) satisfying

(3.10) |r(t)| <  C |t|— , te R , 0 +  7 >  I

with some constants С >  0, 0 < a < 1, and a +  20 > 1 i f  0  < 1 < 7-
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R em ark 3.1. I t  is easy to check that the statement o f Theorem 3.1 holds, in 
particular, i f  the parameters a, 0 and 7  satisfy the following conditions: 

in  the case (i): 0  >  1/ 2, 7 >  1/ 2, 

in  the case (ii): a >  3/4. 0 > 3/8, 7 >  3/4.

R em ark 3.2. The discrete version o f Theorem 3.1 (w ith additional conditions 7 = 1  

in  the case (i), and 7 >  1, a  <  1/2 in the case (ii)), was proved by Ileyde and 
Dai [25] (see also Taniguchi and Kakizawa [28]. Theorems 6.4.1 and 6.4.2). Using the 

same arguments applied in  the proof of Theorem 3.1 one can prove th a t the complete 
discrete analog o f Theorem 3.1 is also true.

R em ark 3.3. Convergence results of type (3.4) and (3.5) holds under broad circumstances 

o f SM, IM  and LM  . For detailed conditions see, for example, Avram et al. (5], 

Ginovyan [17] [20], Ginovyan and Sahakyan [21], and Leonenko and Sakhno [26].

R em ark 3.4. The conditions imposed on the Fourier transform o f generating function 

g(t) in (3.8) and on the covariance function r(t) in (3.10) ensure central lim it theorem 

for empirical functionals o f Gaussian and linear long memory processes. This can 

be seen from the considerations o f Theorem 5 o f Ginovyan and Sahakyan [21] (for 

Gaussian processes), and Theorem 2.1 and Corollary 2.1 o f Bai et al. [6| (for linear 
processes).

4. P ro o f o f  th e  m a i n  re s u lt  

Proof of Theorem 3.1. In  view of (1.1) and (3.2) we can w rite

Itjc(X) — It,y (X) =

e iA (t- « )  [ y W iV / ( s )  +  +  A /(t)A f(s )] dtds

and

f l  Լ  [*4*)M (s) +  Y(s)M(t) +  M(t)M(s)} a(t -  s) dtds.
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Thus, to  complete the proof it  is enough to prove that under the conditions o f the 
theorem we have

(4.1) T - 1/2 Г  [  M(t)M(s)a(t - s ) d td s ^  0 ae T - t o о
Jo Jo

and

(4.2) T ՜ 1' 2 f  Я  Y(t)M(s)a(t -  s) dtds A  0 as T ֊>  oo.
Jo Jo

Proof o f (4.1). For T  > 2 we set

(4.3) I(T ) =  ք f \M{t)M(s)a(t — s)| dtds
Jo Jo

П2 ր1 rT  eT p l/2  rT  rT
+  /  /  +  /  /  +  /  /  = : / і( Ц + Ы Г )  +  /з (Т ) +  /4( П

./о J շ J ւ ./о J ւ / і /շ
and estimate the integrals /»(Т), t  =  1,2,3 ,4 , separately.

Observe firs t tha t the Fourier transform a(t) g(t) is a bounded functiou on R, 
since g is integrable on R. Hence, taking into account tha t by assumption the trend 

M {t) is locally integrable on R, for I i(T )  we obtaiu the estimate

(4.4) h  (Г ) <  СЦаЦоо Щ  \M(s)\ ds Г  |M («)| d t < C <  oo, T  >  2.
Jo Jo

Next, in  view o f (3.8), for 0 <  s <  1 and t >  2 we have |a (t-a )| <  C {t֊s )~ y < Ct~7, 
and hence, taking in to  account tha t 3 +  y  > 1 ,12(T) can be estimated as follows

(4.5) I 2(T) < С Լ  \M{s)\dsJ^ — d t < C < o o ,  T > 2 .

Sim ilarly, for /з (Т ) we have

(4.6) / 3(Г ) <  С  <  oo, T  >  2.

To estimate U(T) observe firs t that, in  view o f (3.8), for 1 <  s <  T  we can w rite 

rT . r*+ i !Ш  ֊  »vi 1
-dt

ON THE ROBUSTNESS TO SMALL TRENDS OP PARAMETER ...

f t ( » ) = /  \M { tH t- a) \d t< c  [ '  ք  - 1 -
j  I/շ . J(a-l) t J.4+1 (I _#s)7

f T 1 ■  1 j .  Z* '"1 ւ
+ У3в ^ (« -в )7  ! i+ y1/2 ^ ( s - o 7<tt+ i i / շ ^ ( « - o ,v

< c

dt

Г* 1՛ yT 1 ri/2 է <.5/2 -I
” -տ՜ 0 + տ ՜ * 1  ^ d r+ L  ^ d t+ s '" J 1/2 ^ d t+ s ~el  ^ dr

< С [s-P +  L (7 , +  L(.tf +  7 , Г ) (Г 1՜*՜7 +  s1՜ ^ )

+ О Д  Г) + * ՜7) + L(7, Г)*-1՜ * ՜ 7]

(4.7) < ClogT • (T1՜ ^  + s1՜ * ՜ 7 4- s - fl + s ՜7) ,
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where the function L(u, T) is defined by

Taking into account that В +  7 > 1, from (4.7) we get

(4.8) h{s) < С log T  ■ (s1՜ * ՜ 7 +  s’ *  +  e~7) , 1 < s < Г,

and hence for T  > 2, h {T ) can be estimated as follows

֊  clogr|/ ds+i ^ds+l
< С log T  [1 +  ԼԼ20 +  7 ֊  1, Г) r 2" 2̂ " 7 +  L(2/3, Г ) T 1֊2/3 +  T 1՜ ^ ՜ 7]

(4.9) < С log2 Г  (1 +  Г 2" 2̂ "7 +  T 1" 2̂ ) .

Finally, taking into account that by assumption 2/3 +  7 >  3/2 and 0 > 1/4, from
(4.3)-(4.6) and (4.9) we obtain

T " 1/2 • 7(T) < С log2 T  (Т~1/2 +  T3/2՜ 2̂ ՜7 + T 1/2" 2̂ ) -> 0 ae T  00,

which implies (4.1).
Proof o f (4.2). Observe first tlia t the inequality

(4.10) I  + 7 > 1

holds also in the case (it), since by (3.8) and (3.10), we have 2/3+27 >  2/3+7 + 3/2 — 
a > 3/2 + 1/2 =  2.

Observe that from (3.8) and (4.11) it  follows that (4.12) holds for 0 < a < T.

Denote

and observe that

/  \M (t)a (t-s )\d t< C  |M(£)|?-----L — d t < C s ֊ \
JO Jq (5 — 1 /ձ)~

/ 1/2 л1/2 I
dt <  С • 8 7, 1 < s < T ,

and by (4.8),

(4.11) |i/(e)| < C logT • (s1՜ * ՜ 7 +  e ՜* + s ՜7) , 1 < 8 < T .

On the other hand, by (3.8), for T  > 2 and 0 < а < 1 we have
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Now, we denote

Q(T) :=  T~l/2 Г  [  Y (s)M (t)a(t -  s) dtds =  T ՜ 1/2 Г  Y(s)v(s)ds, 
Jo Jo Jo

ON THE ROBUSTNESS TO SMALL TRENDS OP PARAMETER ...

and observe that

£ { Q 2 ( T ) }  =  Г 1 /  I  E{Y(8)Y(T))v(s)v(T)dsdr  
Jo Jo

= Г՜1 f f u(s)v(r)r(s — r)dsdr.
Jo Jo

ds

Hence, to prove (4.2) it  is enough show that

(4.13) J{T ) := f  [  \и(а)ѵ(т)г(8 — r)\dsdz =  o(T) as T  —> oo.
Jo  Jo

In the case (i), when the process Y (t) has SM or IM, and hence r  € L1 (R), from
(4.12) for T  > 2 we get

(4.14) \J (T )\< C \o g T  [  |//(s)| f  |r(s — r)| drds < C logT  f  |i/(s)| ds.
Jo  Jo  Jo

In view of (4.11), the last integral in (4.14) can be estimated as follows:

f  \u(s)\ds < С log2 T  f ds+ f (s1՜ 3՜ 7 +  s ՜0 +  s ՜7)
Jo  Що J 1

< c log2t  [ l  +  w + 7  ֊  l , t ) г 2- 0-՜՝՛+ L(P,T) T 1՜ 3 +  L(7, T )T l -

(4.15) <  С log3 T  ( l  +  T 1՜ 0 +  Г 1՜ 7 +  T2՜ 3՜ 7) .

Hence, taking into account that /9 +  7 > 1, from (4.14) and (4.15) we obtain

J(T ) =  o(T) as T  —> oo.

In the case (ii), when the process Y(t) has LM, using (3.10), (4.10) -  (4.12), for
1 <  г  < T  we obtain

q(r) :=  J  K s ) r ( s - r ^ < C lo g r /  ( r  -  0  *

, |r(s — r ) |  . f T  |r(a — r) | , f T |r(s — r)|
(4.16) +  С log Г  '  11 ; | յ - 1 1 1 v ) i j ~ 1 ' K —ք Օ & խ + ք  л+[

Л /շ տ Л/а 5 Л /շ տ

Taking into account that r  is bounded (|r(t)| < r(0) =  E \Y (t)\2 < oo, t € R), and 
using similar arguments as in (4.7), from (3.10) we obtain that for any ту > 0

[ T Й  ~ Z2! dt < С log T  (Г 1՜ " ՜ 4 +  r 1- 0'- ’» +  т~а +  T-*»)
Л/շ Ц

<  С log Г  (1 +  г 1՜ " ՜ 4) , 1 < т  < Т.
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Applying this inequality fo r 77 =  /3 +  7 — l,r )  =  0 and r; =  7, from (4.16) we obtain

(4.17) q (r) < C log2Г  (1 +  f 1 <  г  <  Г,

since а +  7 >  1. On the other hand, by (4.11) and (4.12) for T  >  2 and 0 < r  < 1, 
we have

Й  r T
(4.18) q (r) <  С '
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logT j^  \ r { t - T ) \d .  +  J  ֊

<  С log Г  (1 + т 2՜ 0՜ 0՜ 1 +  T1- " - 0) < С log T  (1 +  r 1՜ '* ) ,

0 <  г  <  1, since a  +  7 >  1 and a > 0.
Next, we denote

(4.19) J (T ) =  [  |i'(T )\q (T )dr =  f  +  [  = : І/Д І)  +  ж |
Jo Jo J 1

and estimate J i(T ) and «/г(Т). By (4.12) and (4.18), for J \(T ) we have

(4.20) J i(T ) < C log2 T  (1 +  T 1՜ 0) =  o(T) as T  -> oo, 

since 0 >  0.

To estimate J?(T) we consider three cases, and use conditions (3.8), (3.10), (4.10) 
and inequalities (4.11), (4.17).

Case 1. I f  0  >  1, then we have

|i/( t) | <  С log T  ( r ՜ 0 +  r ՜ 7) , q (r) <  С log2 Г, 1 <  r  <  T,

and hence

(4.21) -h (T ) < C log3Г  ( l +  T 1՜ 0 +  T 1՜ 7) =  o(T) as Г -ю о . ■

Case 2. I f  0  <  1 < 7, then we have

И г ) I <  С log T  ■ T ՜0, q (r) <  С log2 T  ( l +  Г 1՜ ՞ ՜ '3) 1 <  r  <  T,

and hence

.72(T ) <  C log3Г  ( l +  T 1՜ 0) (1 +

(4.22) <  С log3 T  (1 +  T 1 + Г 1՜ 19 + т2՜"՜20) =  o(T) as T  -*  00

since in this case by assumption a +  23 > 1.
Case 3. I f  0 <  1 and 7 <  1, then we have

|i/(r) | <  C log Г  • т 1՜ 0՜ ՞1, g(r) < C lo g 2T ( l+ T 2- tt- ^ “ 7) ,  1 <  r  <  T,
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and hence

(4.23) J2{T ) <  С  log3 T  (1 +  T 2՜ 3՜ ՜1) (1 +  T 2- « - /3- 7) <

<  С log3 T (  1 +  T 2- ? -0-՜* +  T 2~0~y +  T 4՜ '1՜ 29՜ 2'1) =  o(T)

as T  -> oo, since /3 +  7 > 1 and о +  2/9 +  27 =  (2/3 +  7) +  (a +  7) >  3.
FYom (4.19) (4.23) we obtain J (T ) =  o{T) as T  -+ 00. Thus, the relation (4.13) 

and hence (4.2) are proved. □
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