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A b stra c t . The Ricci flow is an evolution equation in the space of Rieniannian metrics.
A solution for this equation is a  curve on the manifold of Riemannian metrics. In this 

paper we introduce a  metric on the manifold of Ricmannian metrics such that the 
Ricci flow becomes a  geodesic. We show that the Ricci solitons introduce a special 
slice on the manifold of Riemanuian metrics.
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1. I n t r o d u c t i o n

The collection ЗЯ o f a ll smooth Riemannian metrics on a compact smooth n- 
dimensional manifold M  is an infin ite dimensional FY<§chet manifold. Geometry of 

this space has been studied at firs t by D. Ebin (8], where he proved the existence 
o f a slice in the space o f Riemaiinian metrics. The basic facts about the manifold of 

Riemannian metrics SOI can be found in [8, 10, 12]. In  [4, 5], B. Clarke proved tha t 

the geodesic distance for the natural metric is a positive topological metric on 9Л, 

and determined the metric completion o f SOT. The existence o f a vanishing geodesic 
distance for some in fin ite  dimensional manifolds has been established in  [3, 16, 17).

The Ricci flow is a valuable geometric flow introduced by R. Ham ilton in  the 

early 1980 |14|. Following the paper by J. Eells and J. Sampson [9], he introduced an 

evolution equation for a fam ily o f Riemanuian metrics ae follows:

*  “ 2Яіс(0(О)» .9(0) =  go,

where Ric(g(t)) denotes the Ricci curvature o f the metric g(t).
The short time existence o f solutions of the above evolution oquutiou has been proved 
by R. Hamilton [13, 14), by using Nash and Moser im p lic it function theorem. Later 
D. DeTurck |7] gave a shorter proof based on linearization of differential operators.
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THE RICCI FLOW AS A GEODESIC ON THE MANIFOLD

In  [11], the authors have proved this result by considering geometry of the manifold 
of Riemannian metrics 3Jt.

Ricci solitons are special solutions of the Ricci flow (see [1]). Namely, a solution 
<7(0 o f the Ricci flow 011 M  is a Ricci eoliton (or self-sim ilar solution) if  there exist a 
positive time-dependent function a(t) w ith <r(0) =  1, and an 1-param eter fam ily of 
time-dependent diffeomorphisms ipt : M  — ► M  w ith (po =  id, such that

g(t) -  a(t)ip(t)mg(0).

I t  is a very useful tool in the sdudy o f the differential geometry and physics (see, 

e.g., [G, 18, 19, 21]). Observe tha t the solution o f Ricci flow is a curve in the space 

o f Riemannian metrics. In  this paper, guided by the results o f [2], we show that the 

Ricci flow can be considered as a geodesic o f a Riemannian metric on 3R. Also, we 
show tha t the Ricci solitous are applicable to  give a special slice on 9Л.

The paper is organized as follows. In  Section 2, we present the necessary notation 

and some prelim inary facts. In  Sectiou 3, we recall some results o f D. Ebin [8] on the 

manifold o f Riemannian metrics, and prove a useful lemma concerning Levi-C ivita 

connection. In  Section 4, we prove the main results o f the paper (Theorems 4.1 and 

4.2), giving a Riemannian metric on Ш1 such that the Ricci flow is a geodesic on 951. 

In  Section 5, the relation between Ricci solitons and slices on 9Я is described. We 
show tha t Ricci soliton is equivalent to  existence o f a fin ite  dimensional slice for 9Jl.

2. Notation

2.1. A m etric on tensor spaces. A Riemannian metric g :T M  x  д/ TM  -► R w ill 

equivalently be interpreted as musical isomorphisms:

b — g : T M  T*M  Ц =  g ՜1 : T *M  -> TM

The m etric g can be extended to the cotangent bundle T*M  = T?M  by setting

՝g~x{at,0) -  gi(ot,0) =  а(#0)

for a ,0  € T*M , and the product metric
r •

հ = 0 < 7 ® ( 8 ) 0 " 1

extends g to  a ll tensor spaces TJ'A/. A useful formula is 

for symmetric h,k € T§M.
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2.2. A  m otric on tonsor fields. A metric 011 the space of teusor fields can be 
defined by integrating the appropriate metric 011 the tensor space with respect to the 
volume density:

й ( м ) - /  й (і» ( 4 Ф ) М ( а)(®)
J m  _______

for /?., fc € Г(7Հ \ ք ) ,  where vd(g) is the volume density y/det(gy)diг1 Л ... A dxn in 
local coordinates {x*} for Л/. According to Section 2.1, if  h and к  are tensor fields of 

type ( շ  ) and h or к  is symmetric, then we have

< $ (M )=  [  Tr(g~'h{x)g~xk(x))vol{g)(x).
Jm

2.3. D irectional derivatives o f functions. We use the following ways to denote 
directional derivatives of functions, in particular in infinite dimensions. Given а 
function F(x, y), for instance, we w ill write:

D(x,h)F 01՝ dF(x)(h) as shorcut for #t|oF(x + th, y).

Here />.) in the subscript denotes the tangent vector with foot point x and direction 
h. Here the calculus in infinite dimensions as explained in [15] has been applied.

3. T he  m an ifo ld  of R ie m a n n ia n  m etrics

In this section we recall some fundamentals on the manifold of Riemannian metrics 
and the natural L 2 metric. The manifold of Riemannian metrics 9Л is the subset of 
all sections in S2T*M  of symmetric rank-2 covariant tensor fields that are positive 
definite on each T* M  for p € M , and 9Ո is an open convex positive cone in T(S2T*M ), 
which is an infinite-dimensional Fr£chet manifold (see |13]).

We first recall some results of Ebiu [8]. Let 3) be the group of smooth functions 
on Л/, and let

Ф : an X D -> an, (0, / )  1֊> f*g

denote the usual "pull-back11 action of X) on ՑՈ. For g € 9Л, let

® -> 9Ո, /  н» f*g

denote the orbit map at g. Then 4/g is a smooth map with derivative at the identity 
e € Ф given by

c*„ =  Т.Ф, : X(M) -> S2{M )t X  ь* Lx gy

where L,\ is the Lie derivative with respect to the vector field X. We can describe 
the canonical splitting of S3(M ). Let O0 = { f*g \f  6 © } С Фд(Ѵ) С ՕՈ be the
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o rb it through g, Then 0 U is a smooth closed sub-manifold o f SOT, w ith  tangent space 

at. g given by TgOg =rango:„. Observe tha t there exists, orthogonal to  Og, a slice 

Sg Q which is also a smooth closed manifold o f SOI w ith  tangent space at g giveu 

by TgSg =  Տշ(<յ). Hero Տշ(ց) — [h  6 Տշ(Ի՚1)\ձցհ  =  0} is the space o f C°° divergence 

free two-covariant sym m etric tensor fields on M. Thus, the canonical sp litting  of 

S2(M ) can be w ritte n  as follows:

ТдУП =  TgSg ® TgOg.

The curvature and the geodesic spaces in 9Л relative to  the canonical m etric were 

studied in  [10, 12]. O ther weak Riemannian metrics on 9Л have been introduced in 

[20], and formulas fo r covariant derivative, eurvature tensor, sectional curvature and 

geodesics have been obtained. M etrics on EOT th a t are stronger than L 2—m etric has 

recently been described in  [2]. Using a pseudo-differential operator they introduced 

the follow ing general metrics:

G 5 (/.,fc )=  f  g i(Pyh,k)vcl(g)=  [  T r (g ՜1 ,Ր ,( հ ) .ց ՜1 .k)vol(g),
Jm  Jm

where P9 : Г (S2T *M ) ֊¥■ T(S2T *M )  is a positive, sym m etric, b ijective pseudo

d iffe ren tia l operator o f order 2p,p >  0, depending sm oothly on the m etric g. They 

obtained a geodcsic equation for the general m etric and a ll particu lar cases, and 

among other results, they showed th a t under certain conditions on the operator Pg, 

the geodesic equation is well-posed.

The next lemma w ill be used in  Section 4, in  the proofs o f the main results o f the 

paper.

Lem m a 3 .1 . The Levi-Civita connection induced by the Sobolev metric Gg on the 

manifold of Riemannian metrics is given by the following formula:

V„.fc =  i P g l[ ֊h .g - lPgk -  Pgkg~l h +  D (g,h)Pgk +  DM Pgh -  (D {B..) W ( * ) ) l

+  ^ [T r(g~ l li)k  +  Tr(g~l k)h -  T iig ~ l Pgh g -l k)Pg l g].

Proof. The Levi-c iv ita  connection on any Riemannian m anifold is determined by the 

follow ing six terms form ula:

2C e p .Щ  =  hG${k, m) +  kGvg{h; rn) -  k)

-C?S(/I, [fc,m]) -  <?£(*•, [rn, h)) +  GJ(m, [Л, к}).
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I t  suffices to  look a t constant vector fields h and к  satisfying (Л- k\ ՜  ° ' °» we can 

w rite

2G (̂Vhfc, m) = +
=  J  [-T r(g ~ l hg~l Pykg~lm) -  T r {g - l kg~XPgh9 ' lm ^

—Tr(g - 1 m g ՜l Pgh g ՜1 к) -  T r (g - l P9k g - l hg~l rn) 

- T r ( g - l Pgh g -l kg - l m) +  T r{g ^ P gh g 'l m g 'l k) 

+Tr{g~ l DM {Pgk)g~1m) +  Tr(g~ l D{g,k){pah)9 

- T r ( g - l D{atm){Pgh )g -l k) 4- ^ ( g - ^ k g ' ^ T r ^ h )

+ - T r ( g - 1Pgh g -l rn )T iig -1k) -  ^ Հ ց ՜ ^ ց հ ց ՜ ^ Հ ց ՜ ^ օ Ա ց ) .
2 2

Notice th a t some terms in  the last form ula cancel out because fo r sym m etric Л, k, m 

one lias

Tr(hkm) =  Tr{(hkm )T) =  T r(m Tkr hT) =  T r(h TmTkT) =  Tr(hm k).

Therefore, we have

2GP(Vhfc,m) = f  [Tr(<T1hg~l Pakg~xm) — T t(g ~ l Բցհ ց ՜ Հհ ց ՜ Ղm)
J m
+Tr(g~1Dlgth)(Pgk )g -1m) +  T  r{g~l D{y<k) (Pgh)g~lm)

—T Վ ց ՜ 1 D(a,m) {P<jh)9~l k) +  Рдкд "1т ) Т т { д 'хН)

+ 1 тг(д -՝Р „Іід -1т )Т т (д -1к) -  ^ Т іід ^ Р д к д ^ Щ Т т ^ т ^ ѵ о Щ  

=  ֊ G Z(P -՝(hg-՝P ,k),m ) -  Gg(P~ 1 (Pgkg~l h), m) 

+ G ^ p - '(D M (Pgk)),m ) +  G ^ p - \D M (Pgh)),m )

~  JM Щ з,т)(РдЬ)д *к)ѵоІ(д) +  ~[Gg (Tr(g~l h)k,m )

+Gg (T r(g -'k )h , m) ֊  C f^ Վ ց ՜ լբ ։ հ ց ՜1հ ) բ - կ ,  f f i

We assume th a t there exists an adjoint in  the follow ing sense

Լ  9aM D i0,m)P)h, k)vol(g) =  Լ  9»(m, (£Ѵ ,Р А )'(*))ио1(9),

which is smooth in  (p, h, k) and is bilinear in  (h, k).
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Thus, we can w rite

2 G J(V **,m ) =  -G g  (P ՜1 (hg -'P ,k),m )  -  Gp( p - \ p gkg -'h ),m )

+G p, ( P ; \ D M (Pgk)),m ) +  Gp, ( P ; \ D (g,k)(P,h)),m ) 

-G ?U D (,..)P ,W W ,m ) +  ֊ [G p {T r(g - l h)k,m) 

+G p(T r(g ֊ 'k )h ,m ) -  Gg (T r(g ՜ ' Ր ց հց~ լ k )P ՜'g ,m )].

F ina lly, we have

Vhk =  \P g l [ ֊ h g - l Pak -  Pgkg-'h +  D(gM)Pgk +  DM Pgli -  Щ д,.уРдН)т(к))] 

+  І [T r ig - 'ty k  +  Ո ՝ ( ց - Գ ) հ  -  Tr{g~l Pghg~l k)Pg l g].

Lemma 3.1 is proved. □
R e m a rk  3 .1 . The above form ula, applied to  the geodesic equation Հ7ց՚ց ՛ =  g" yields:

which coincides w ith  the geodesic equation obtained in  [2] using m inim izing energy 

function.

4 . A  VARIANT O F RIEMANNIAN METRIC USING A PSEUDO-DIFFERENTIAL

OPERATOR

Let go be a fixed Riemannian m etric. The form ula

where Pg : T(S2T *M )  -> F(S2T *M )  is a positive, symm etric and bijective pseudo- 

d iffe ren tia l operator o f order 2p, p >  0 depending sm oothly on the fhetric g, defines a 

Riemannian m etric on the m anifold o f Riemannian metrics.

9
// Р Г ՝ [ ֊ \ ( О м Ряд Г (д ') )  -  І g 'g -՝P gg' -  -P rf's ՜1»' 

+ \ т г ( д ֊ 1д')Ряд' -  ֊Tr(g-՝P„g'g֊1 g')g +  U W M l l

(4.1)

T heo rem  4.1 . The geodesic equation fo r Gvgo metrics defined on the manifold of 

Riemannian metrics SDt is given by the following formula:

(4 .2)

9" =  ֊  \9 '9 - l Pa9՛

I  \pasf9~lsf +  №(д,д')рд)9՛]
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Proof. In view o f Lemma 3.1 and Remark ??, for G^0 we have

2 G > ;,(V h k ym )  =  hG^t (k, m) +  kG*a (h. m) — т Щ І  (h, k)

=  f  [ - T r ig ՜1 hg~1Pgkg~1m) -  Tr(g~1kg~1P9hg~1m) 
Jm
-Т г(д~1тд ~ 1Рдкд~1к) -  Tr(g~1Pgkg~1hg~l m ) 

-T rig ^P g h g ^kg ՜1™) + T rfa^P ghg^m g^k) 

+ T r(g -1D(gih)(Pgk)g~1m) +  T r ig ՜1 D ^ k)(Pgh)g~l m) 

-T r{g ~ l D ^ m)(Pgh)g~l k)\vol(gb).

Some terms in  the last formula cancel out because vol(go) is fixed for G? metric. 

The rest o f the proof is sim ilar to that o f Lemma 3.1, and so is om itted. □
L i the following, as (non-linear) mappings at the base point g, we assume tha t 

Pgh, (Pg)~'h, (D(gt')Ph)*(m) are compositions o f operators o f the following type 

(see (2j):
(a) non-linear differential operators of order I <  2p, tha t is,

Л (з)(х) =  A{x,g[x), (V$)(aO,..., (V ^ )(x )),

(b) linear pseudo-differential operators of order < 2p, such that the to ta l (top) order 

o f the composition is < 2p.

Now consider Pg as a pseudo-differential operator defined on F {S 2T * M )  such tha t 

i t  has the following forms for special tensors.

(4.3) Pg(Ric) := eyRic.

(4.4) P g i^ l iR jp )  ■= -2R icg -le9Ric

(4.5) Рд(Ѵ?і;Я) :=  -4(Ric)eaRic

(4.6) Pg(ARij) := ge9Ricg~1Ric

Now we can state the following result.

Theorem  4.2. There is a pseudo-differential operator on T{S2T*M ) such that the 
Ricci flow is a geodesic of G^0 metric on the manifold of Riemannian metrics.

Proof. The result can easily be deduced from equation (4.2) w ith  g' — —2Ric and 

formulas (4.3)-(4.6), since

P„(— ^  = -(В„,.,Р,(Яіс))*(Яіс))
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-R icg~ l Pa(Ric) -  P f,{R ic)g~ l R ic  -  2 (D {g<Itic)P g)R ic , 

and for the adjoint operator Pg(Ric) we have

I g°2((D{a,m)P)Ric>Ric)vol(gQ) = ք  «/շ(me-7Ric,Ric)vol(g0)
Jm  Jm

=  I  T r(G ~1 mePRicg՜*Ric)vul(go) =  j  (m,geaRicg՜*Ric)vol(go)
Jm, Jm

=  (  t/ շ է ո ,  (D (g,.)p g {R ic )Y  (R ic ))vo l(g 0) ■
J m

Theorem 4.2 is proved. □
O th e r R ie inann ian  m e trics. The Ricci flow as a curve is not a geodesic of Riemauniaii 

mctrics on 9Л defined in [8, 20]. In {11], we have shown tha t the Ricci flow is not a 

geodesic of the known Ricmannian metric on W t Let go be a fixed Riemannian metric 

on M . In  fact we have the following.

(1) For the metric defined as follows:

<  h,k > g: =  f  Т г(д й 1 hg^hk)vol(go)
Jm

for h, к  € ТдШ, the geodesics w ith in itia l conditions (g,a) are o f the form 
0(t) =  g +  ta (see [20]). I t  is obvious that the Ricci flow is not a geodesic of 

th is m etric. Since the velocity vector for geodesic is constant, that is, ^  =  a. 

For more general metric defined by

< h t k>2՝. — [  Tr(gQl hgQl k)vol(go) +  a [  Тт(д^1Н)Тт(д^к)иоІ(до),
Jm  Jm

where < * > - - ,  the geodesics are the same as above (see [20]). Therefore the

Ricci flow is not a geodesic o f this general metric, too.

(2) Consider the following Riemannian metric on 9Я:

< h, к >g = ք  Tr(gQi hgQl k)vol(g).
Jm

The geodesics are solutions o f the following second-order equation (see [20]):

where vol(g) =  p(g)vol(g0), к  =  k(x) is a positive function on Л/ and ф =  
lnp(g). I t  can be shown that the Ricci flow is not a geodesic of this metric,
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too. Indeed, since

, . . _ . . . dR ic  1 .,, V _ i
'2scnlp(g) R ir. +  p(g) =  - k(x )g0g g0,

we have

9R ic  1 1 , ,  ,  - i  И Р  
=  —г Т п к \т )до9 g o ~ 2 R R rcd t p(g) 2

B u t under the R icci flow we have (see [1|):

֊Խ  = s " ( ֊ ^ A  + ѵ?,.лм -  vl,hkp + ѵ ^ а д .

Therefore the R icci flow is not a geodesic on 9Jt.

(3) For the m etric defined by

< h ,k > 9: =  [  T r(g ~ *h g ~ 1k)vo l(ga ))
J m

the geodesics w ith  in itia l condition (g ,a ) have the form  g {t) =  gelA , where 

A  =  g~ l a (see [20]). The velocity vector o f geodesic is

| f  =  АдсіЛ =  - 2 Г 1ІІІсде‘л>

which does not coincide w ith  the R icci flow  =  -2 R ic . For more general 

m etric defined on 971 by

< h,k >g,a: =  I  Tr(g~1hg~l k)vol{go)+a [  T r(g~ l li)T r(g~ i k)vollgo)
J m  J m

the geodesics are exactly the same as above, th a t is, g (t) =  gclA . Thus, the 

R icci flow  can not be a geodesic.

(4) Consider the follow ing m etric on EOT

< M > J :  =  I  T r(g ~ 1 hg~ 1 k)vo l(g ) +  a  [  T r { g - ]h )T r {g - l k )vo l(g ).
J m  J m

The geodesics o f th is  m etric coincide w ith  the geodesics o f <  h ,k  > ° , th a t is

w ith  those o f the canonical m etric on 9Л (see [20]). In  [11]. we have shown

th a t the R icci flow is not a geodesic o f the canonical m etric  on 9Л.

R e m a rk  4 .1 . The R icci flow is not a geodesic o f the three special m etrics defined by 

pseudo-differential operators in  [2].
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5. S l ic e  a n d  R ic c i  s o l it o n s

The existence o f a slice fo r the m anifold o f Ricm annian m etrics a t firs t have been 

studied by E bin in  |8). He proved th a t the m anifold o f Riem annian m etrics has a 

slice such th a t i t  is in fin ite  dimensional sub-m anifold o f SO?. Observing th a t the Ricci 

flow  and R icci solitons are curves on 93t, we show th a t fo r every m anifold Л / w ith  

R iem annian m etric go which has R icci solitons, the m anifold o f Riem annian metrics 

has a slice such th a t i t  is a fin ite  dimensional sub-m anifold o f 971.

Indeed, as we know the R icci solitons g (t) =  <?{t)ip(t)* g (0) w ith  in itia l m etric go 

are equivalent to  existence o f a vector fie ld  X  and a scalar Л, such th a t

- 2 R ic  — At/o_- 2Lxgo

On the other hand, according to  canonical s p littin g  around go, there exist a slice 

S ga С 971 such th a t

ТдаШ — Tg0 Sg0 ф Тд0Од0.

C om bining the above equations and discussion in  Section 3, we obta in the follow ing 

result.

T h e o re m  5 .1 . R icci so liton is equivalent to  existence o f a fin ite  dimensional slice 

fo r  931 and then the tangent space a t in itia l m etric  is Xgo, where A is a real scalar.
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