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Abstract. The Ricei flow is an evolution equation in the space of Rienannian metrics.
A solution for this equation is a curve on the ifold of Ri ian metrics. In this

paper we introduce a mcetric on the manifold of Riemannian metrics such that the
Rirci Aow heenmies a geodesic. \We show that the Ricci solitons introduce a special

alice on the manifold of Riecmanuian metrics.

MSC2010 numbecers: 53C44, 58D17.

Keywords: Ricei flow; manifold of Riemannian metrics; Ricci solution; slice; geodesic;
pseudo differential operators.

1. INTRODUCTION

The collection M of all swovth Riewnunian metrics on a coinpact smooth n-
dimensional manifold A is an infinite dimensional Fréchet manifold. Geometry of
this space has been studied at first by D. Ebin [8], where he praved the existence
of a slice in the space of Riemanninn metrics. The basic fucts about the manifold of
Ricimannian metrics 91 can be found in {8, 10, 12]. In {4. 5|, B. Clarke proved that
the geadesic distance for the natural wetric is a positive topological metric on I,
and determined the metric completion of 9. The existence of a vanishing geodesic
distance for some infinite dimensional manifolds has been established in [3, 16. 17].

The Ricci low is a valuable geometric flow introduced by R. Ilaunilton in the
early 1980 [14]. Following the paper by J. Eells and J. Sampson (9], he introduced an

cvolution equation for a family of Riemnnuian metrics as follows:
] e
790 = —2Ric(g(1)).  9{0) = go,

where Ric{g(t)) denotes the Ricci curvature of the netric g(t).

TLe short time existence of solutions of the nbove evolution equation hns been pyoved

by R. Hamilton [13, 14], by using Nash and Moser implicit function theorein. Later

D. DeTurck |7] gave a shorter proof based on linearization of differential operators.
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In [11], the authors have proved this result by considering geometry of the manifold
of Riemannian metrics 90t

Ricei solitons are special solutions of the Ricci flow (see {1]). Namely, a solution
g(t) of the Ricci flow on A{ is a Ricci soliton (or self-similar solution) if there cxist a
pwsitive time-dependent function o(t) with o(0) = 1, and an 1-paramecter family of

time-dependent diffeomorphisms ¢ : M — M with g = id, such that

g(t) = o(t)(t)* 9(0).

It is a very useful tool in the sdudy of the differential geometry and physics (see,
e.g., [0, 18, 19, 21]). Observe that the solution of Ricci flow is a curve in the space
of Riemannian metrics. In this paper, guided by the results of |2|, we show that the
Ricci flow can be considered as a geodesic of a Riemannian metric on M Also, we
show that the Ricci solitous are applicable to give a special slice on M.

The paper is organized as follows. In Section 2, we present the necessary notation
and somne preliminary facts. In Section 3, we recall some results of D. Ebin |8 on the
manifold of Riemannian metrics, and prove a useful lemma concerning Levi-Civita
connection. In Scetion 4, we prove the main results of the paper (Theorems 4.1 and
4.2), giving a Ricmannian metric on M such that the Ricci flow is a geodesic on M.
In Section 5, the relation between Ricel solitons and slices on M is described. We

show that Ricci soliton is equivalent to existence of a finite dimensional slice for M.

2. NOTATION

2.1. A metric on tensor spaces. A Riemannian metric ¢ : TAf x5 T'AM — R will

equivalently be interpreted as musical isomorphisms:
b=g:TM=T"M f=¢ ':T°M = TM
The metric g can be extended to the cotangent bundle T*Af = T;'M by setting
97" (. B) = gi{ex, B) = a(4B)
for a, 8 € T* M, and the product etric
r s

d=Qee®qs’

extends ¢ to all tensor spaces Ty Af. A useful formula is
o3(h. k) = Tr(g~"hg~"k)

for symmetric h, k € T{A.
39



Il GHAHREMANI-GOL. A, RAZAVI

2.2. A metric on tensor ficlds. A metric on the space of teusor fields can be
delined by integrating the appropriate melric on the tensor space with respeet to the
volume density:

(k) = [ 41h(o). kiz)uol(a)(a)
for h ok € T(TTA), where vol(g) is the volume density \/;i-cmd_-rl A..Ade® in
local coordinates {2'} for Af. According to Section 2.1, if h and k are tensor ficlds of

0 ! !
type ( 2 ) and A or k is syminetric, then we have

a0 k) = f Tr(g™ h(r)g™ " Mx)eol(g)(z).
A

2.3. Directional derivatives of functions. We use the following ways to denote
directional derivatives of functions, in particulnr in infinite dimensions. Given a

function F(.z.y), for instanee, we will write:
DiwF or dF{@){(h) s shoreut for @ [oF(x + th,y).

[ere (2, 2t) in the subscript denotes the tangent vector with foot point z and dircetion

h. Here the calculus in infinite dimensions as explained in [15] has been applied.

3. THE MANIFOLD OF RIEMANNIAN METRICS

In this section we recall some fundamentals on the manifold of Riemannian metries
and the natural L2 metric. The manifold of Riemannian metrics 90 is the subset of
all sections in S27T* M of svinmetric rank-2 covariant tensor fields that are positive
definite an each 75 Af for p € M, and M is an open convex positive cone in I(S2T* M),
which is an infinite-dimensional Fréchiet manifold (see [13]).

We first recall some results of Ebiu [8]. Let D be the group of simooth lunctions
on M. and let

VoM D oM, (9. f)— f*9
denote the usual "pull-back"action of D on M, For g € M, let

U, DM fer [y

denote the orbit map at g. Then ¥y, is a smooth map with derivative at the identity
e € D given by

a, = Ty X(M) - S3(M). X - Lxy,
where Ly is the Lic derivative with respect to the vector ficld X, We ean describe

the canonical splitting of S2(M). Let O, = {f*y|f € D} C ¥,(D) € M be the
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orbit through g. Then Oy is a smooth closed sub-manifold of M, with tungent space
at g giveu by Ty =ranga,. Observe that there exists, orthogonal to (), a slice
5y € M, which is also a siwooth cluosed manitold of M with tangent space at g given
by T3Sy = S9(g). Here S8(g) = {h € S2{M)|A,h = 0} is the space of €™ divergence
free Lwo-covariant symmetric lensor fields on Af. Thus, the eanonical splitting of

Sa(A) can be written as follows:
TPt = ToS, & Ty0,.

The curvature and the geodesic spaces in M relative to the canonical metric were
studied in |10, 12]. Other weak Riemannian metrics on M have been introduced in
[20], and formulas for covariant derivalive, eurvature tensor, sectioual curvature and
geodesics liave been obtained. Metrics on 9 that are stronger than L2—metric has
recently been described in |2]. Using a pseudo-dilferential operator they introduced

the following general metrics:
Gl(h k) = f g1, kyvol(g) / Tr(g™" Ly (h).g ™' K)vol(g),
M M

where Iy : (82T M) — I[(S2T*M) is a positive, symmetric, bijective pseudo-
differential operator of order 2p,p > 0, depending smoothly on the metric g. They
obtained a geodesic cquation for the general metric and all particular cases, and
among otler results, they showed that under certain conditions ou the operator £,
the geodesic equation is well-posed.

The next lemma will be used in Section 4, in the proofs of the main results of the

paper.

Lemma 3.1. The Levi-Cinita connection induced by the Sobolev metric G;' on the

manifold of Riemannian metrics is given by the following formula:
'’

1 F
=Pl [=hg™ Pk = Pykg ' h + Doy Pyk + Digxy Polt = (D) Poh) (k)))

L]
-

Vik

+ %[Tr(g'lh)k + Tr(g~ k)b = To(g™  Pyhg ™ 'K) Pyt g).

Proof. The Levi-civita connection on any Ricmannian manifold is detenmined by the

following six terms formula:

2GH(Vnk, m) = hGi(k,m)+kGh(h.m) - mGh(h k)

—GU(h, [k.m]) — Gh(k. [m, h]) + Gy(m. [h.K]).
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e = (. S0, we can
It suffices to look at constant vector fields h and k satisfying [P k)

write

WGh(k.m) + kG (h.m) = mC;(h.k)

QGg(V;.k, m) =
1)

(~Tr(g~ hg ™ Pykg~*m) = Tr(g~*kg™ Th9™
—I‘TI‘r(g“mg‘nghg’ k) — Tr(_q'll"ykg"lhy_lm)
—Tr(g” ' Pyhg™ kg™ m) + Tr(g"ll’ghg'lm.‘)—lk)
+Tr(g "' Diguny(Pak)g~"m) + Tr(g " Digi( Pol)9’ 'm)
~Tr(9™ ' Dygam(Poh)g~ k) + %Tr(g_'ngy"lm)T"(-"_1")
+%‘1‘r(g-‘Pghy-‘m)'rv-(g-‘k) > %’f‘rw"f’ghsf'k)'f"'w“m)lwl(g)-

Notice that some terms in the last formula cancel out because for symmetric ki, k. m

one has

Tr(hkm) = Tr((hkm)T) = Tr(mTkThT) = Tr(hTmTkT) = Tr(hmk).

Therefore, we Lave

2GP(Vpk,m) = f [Tr(q"lzg_ll-’gkg_‘m) - TT'(;}_'ng!]—'hy"-m)
M
+Tr(97" D) (Pyk)g~'imn) + Tr(g~} Dyay(Pyh)g™'m)
~Tr(9™ "' Diym)(Poh)g™"k) + %Tr(y' 'Pokg™ m)Tr(g™"h)
1 ol . 1
+§Tr(g "Pyhg ') Tr(g~ k) — §T1'(g"ll’ghg"lA‘)Tr(g'lm)]val(g)
= ~GP(P;'(hy™' Pk).m) - Gy (P; (Pykg™ ). m)
+G](P; (Dy iy (Pyk)), m) + Gl (P (Digy (P,1)), m)
Ay - 1
1 ~/M T1(97™ " Dyg.m)(Pah)g™ k)rol(g) + ElG;(Tf'(!l"h)’f.m)
+G, (Tr(g~"k)h,m) - Gy (Tr(g™ Pyhg™ k)P g n)l.

We assume that there exists an adjoint in the following sense
o , — 0 .
/M 92((Dgan) P)h. k)iol(g) = /M g2(m, (D, Ph)* (k))wol(g),

which is smooth in (g, k. k) and is bilinear in (h. k).
12



THE RICCI] FLOW AS A GEODESIC ON THE MANIFOLD
Thus, we can write
2G5(Vak,m) = -Gy (P (hg™' Byk),m) — GP (P (Pyky ™ h),m)
+Gg (Py " (Dig.ny(Pok)).m) + GF (P (Dyy sy (Pyh)), m)
» ‘ —
~Gy (Dig.)Poh)* (k). m) + 5|GL (Tr(g~ h)k, m)
+G[ (Tr(g~'k)h,m) — G5 (Tr(g™' Pyhg™ ' k)P ' g, m)).
Finally, we have
Al b - ,
Upk = §Pg Y—hg™' Pyk — Pykg 'l + Dy 4y Pyk + Dy xyPyh — (D, Poh)* (k)]
1 , _ _ )
4 I[Tr(g ‘h)k + Tr(g™ k)b — Tr(g ' Pyhg k)P, *g].

Lemma 3.1 is proved. - g

Remark 3.1. The above formula, applied to the geodesic equation Vg’ = g” yields:
_ 1 . 1| e 1 b
9" = Pi'[-3(Diy.)Pey)*(9") — 50'97 Pog’ ~ 5Py0's 7
1 B} ] : N
+5T1(g "¢ VPog’ = 3Tr(9™ " Pyg's ' g")a + (Dig. ) Po)d),

whicli coincides with the geodesic equation obtained in 2| using minimizing energy

function.

4. A VARIANT OF RIEMANNIAN METRIC USING A PSEUDO-DIFFERENTIAL
OPERATOR

Let go be a fixed Riemannian metric. The formula
Gh(h k) = / _q?(l",h. k)vol{gn)
M
(4.1) = / Trig™".Py(h).g~" k)val(ay),
M

where P, : [(S?T*M) — T(S%T* M) is a pusitive, symmetric and bijective pscudo-
differential operator of order 2p, p > 0 depending smoothly on the fhetric g, defines a

Ricmannian metric on the manifold of Riemannian nctrics.

Theorem 4.1. The geodesic equation for G metrics defined on the manifold of

Riemannian metrics M is given by the following formula:

l fyw ’ 1 = [
¢" = Py~ 5(Di. ) Pya)"(9) - 5997 Pag
Tpie iy, o
(4.2) ~ 379y 19‘+(D(_f1..q')Pg)g’}
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Proof. In view of Lemma 3.1 and Remark ??, for G4 we have

2G (Vnk.m) = G (k,m) + KGE, (h.m) = mGl, (A, k)

= /M[—Tr(g_lhg_lpgkg‘lm.) —Tr(g kg ' P,hg™'m)
—-Tr(g_lmg'] Pyhg~ k) — Tr(g™' Pykg™ g™ m)
~Tr{97 ' Pyhg~ kg™ 'm) + Tr(g~ ' Pyhg™'mg~'k)
+Tr(y ' Dign)(Pyklg ' m) + Tr(g' ' Digiy(Pyh)g 'm)
~Tr(g ' D(gm)(Pyh)g 'k)]vol(go).

Some terms in the last formula cancel out because vol(go) is fixed for GB, metric.
‘The rest of Lthe proof is similar to that of Lemma 3.1, and so is omitted. 0O

In the {ollowing, as (non-linear) mappings al the base point g, we assume that
P,h,(Pg) 'h. (D, Ph)*(m) are compositions of operators of the following type
(sce |2]):

(a) non-linear differential operators of order { < 2p, that is,

Alg)(x) = Alz,g(2), (V) (=), ..., (V' g)(z)),

(b) linear pscudo-differential operators of order < 2p, such that the total (top) order
of the composition is < 2p.
Now consider P, as a pseudo-differential operator defined on F(S2T* M) such that

it has the following forins for special tensors.

(4.3) Py(Ric) = e'Ric

(4.9) Py(¢™V2 Ryp) = =—2Ricg 'e’Ric
(4.5) P)(ViR) := -4(Ric)e’Ric
(4.6) P,(AR;;) := ge*Ricy™'Ric

Now we can state the following resuit.

Theorem 4.2. There is a pseudo-differential operator on T(S2T*M) such that the

Ricct flow s « geodesic of G?. metric on the manifold of Riemannian melrics.
o

Proof. The result can easily be dedunced from equation (4.2) with g’ = —2Ric and
formulas (4.3)-(4.6), since

P = —(Diy, Py (i) (Rie))
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~Ricg™ ' Py(Rae) - P,(Ric)g™'Ric — 2Dy, p.. P;) Ric,

and for the adjoint operator 1% (Ric) we have

¢
/ yg((D(_,,‘m)P)Ric,I?i(:)twl(yn)=/ gz (me” Ric, Ric)vol (gn)
M

i

= TG Ve’ Ricg™ Ricyvol(go) =/ (m, ge? Ricy™ " Ric)vol(gy)
S A

- /M 98(m, (Dyg, Py (Ric))* (Ric))vol(go)-

Theorem 4.2 is proved. m]
Other Ricmannian metrics. The Ricei flow as a curve is not a geodesic of Riemaunian
metrics on M defined in 8, 20]. In [11], we huve shown that the Ricei flow is not a
geodesic of the known Ricmannian metric on 1. Let gy be a fixed Riemannian metric
on M. In fact we have the following.

(1) For the metric defined as follows:

<h k>, = / Tr(g; 'hgy ' k)vol(go)
M

for h,k € T,M, the geodesics with initial conditions (g, ) are of the form
g(t) = § + ta (sce [20]). It is obvious that the Ricci flow is not a geodesic of
this metric. Since the velocity vector for geodesic is constant. that is. %2! =a.
For more general metric defined by

<hk>y: = / Tr{gy 'hao 'K)vol(g) + a f Tr(gy "W)Tr(gy ' k)ool(ga),
M AM

where o > — L. the geodesics are the same as above (sce |20]). Therefore the

Ricci flow is not a geodesic of this gencral metric, too.

. - . . . ’
(2) Consider the following Riemannian metric on 9:

<hk>, = / Tr(gg ‘hag ‘k)vol(g)-
M
The geodesics are solutions of the following secand-order equation (see |20]):

d dg\ _ X
a (p(g);;) = k!‘l »

where vol(g) = p(g)rol(g.), k = k(x) is a positive function on M and © =
Inp(g)- It can be shown that the Ricci flow is not a geodesic of this metric,
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too. Indeed. since

cl/u)q *Fq 1 i
e =p
aroe T "% 2+ (*)90g g0
n 1 _
2scalp(g) Ric+ plg) = = = Sk(z)g909™* g0,
we have
3Ri(7 1 ! 1 ; B
— = —5k(z)geg "go — 2RRic
ot rlg) 2

But under the Ricci flow we have (see [1]):

o
ot

Therefore the Ricci flow is not a geodesic on M.

Hh = .‘lm("'v:";.kﬁw t V?.A-qu ) vz,-hkp 1 V?;,,.Rik)-

(3) For the metric defined by
<hk>y = / Tr(g_lhg_lk}uol(g(,),
M

the geodesics with initial condition (g, e) have the form g(t) = ge“‘, where

A =g 'a (sec [20]). The velocity vector of geodesic is

3; AGett = —25 ' Ricget,
which does not coincide with the Ricci flow ';';',! = —2Ric. For more general
metric defined on 9 by
<hk>g4 = j Trig 'hg 'k)vol(go) +n/ Tr(y‘lh)Tr(g_lk)vol{gn)
MM M

the geodesics are exactly the same as above. that is, g() = gc'4. Thus, the
Ricci flow can not be a geodesic.

(4) Consider the following metric on M
<hk>p: = J.IM Tr(g™ "' hg™ " k)vol(g) +(r/ Tr(g™'h)Tr(g™"k)volly).

The geodesics of this metric coincide with the geodesics of < h. k >° that is
with those of the canonical metric on 9 (sce [20]). In [11]. we have shown

that the Ricci flow is not a geodesic of the canonical metric on 9.

Remark 4.1. The Ricci flow is not a geodesic of the three special nietrics defined by
pseudo-differential operators in [2].
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5. SLick aND RICCI SOLITONS

The cxistence of a slice for the manifold of Ricmannian metrics at first have been
stucdied by Ebin in |8]. He proved that the manifold of Riemannian metrics has a
slice such that it is infinite dimensional sub-manifold of M. Observing that the Ricci
flow and Ricci solitons are curves en M, we show that for every manifold A with
Riemannian metric go which has Ricci solitons, the manifold of Riemannian metrics
has a slice such that it is a finite dimensional sub-manifold of M.

Indeed, as we know the Ricci solitons g(t) = a(t)p(t)* g(0) with initial metric g

are equivalent. to existence of a vector field X and a scalar A, such that
—2Riwc = r\!lu.— 2ny0

On the other hand, according to canonical splitting around ggy. there exist a slice
Sy0 & M such that

T, M = T, Se & TyOy..

Combining the above equations and discussion in Section 3, we obtain the following

resull.

Theorem 5.1. Ricci solilon is cquivalent lo existence of a finite dimensional slice

for M and then the tangent space at initial metric is Ago. where A is a real scalar
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