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Abstract. In this paper we obtain sufficient conditions for the bi-harmonic differential
operator A = A} + ¢ to be separated in the space L (M) on a complete Riemannian
manifold (A, g) with metric g, where A g is the magnetic Laplacian un M and ¢ > 0
is a locally square inlegrable function on Af. Recall that. in the terminology of Everitt
and Giertz, the differential operator A is said to be separated in L2(Af) if for all u €
L2(A1) such that Au € L2(M) we have ALu € L2(M) and qu € LZ(M).
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1. INTRODUCTION

The separation problein for differential operators was first introduced in 1971 by
Everitt and Giertz |10, then this problem for different differential expressions was
studied by many authors, such as Boimatove |4|, Brown [6-7|. Mohamed and Atia [16-
17]. Zaved et al [19]. Atia et al [1-3]. etc. In [14]. Milatovic has studied the separation
property for Schrodinger operators on the Riemannian manifolds. Recently Milatovic
[15]. has introduced the inagnetic Schrodinger operator of the form L = Ag + q on
a complete Riemannian manifold (M, g) with metric g, where Ag is the magnetic
Laplacian on Al and q > 0 is a locally squarc integrable function on Af. Sufficient
conditions for the operator L to be separated in L? (Af) were obtained in [15]. Atia ot
al |2] have studicd the separation property for the bi-harinonic differcntial expression
of the form AZ + ¢ with E = 0.

In this paper we generalize the results of |2] to the magnetic bi-harmonic differential
expression of the form A = AL + g, where E # 0. Let (M, g) be a Riemannian
manifold without boundary (that is, A is a C*-manifold without boundary and
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(9% ) is & Riemannian metric on M), and let ditnM = n. We will assume that A is
connected.

Throughout the paper we use the following notation. By du we will denote the
Ricmannian volume clement of M, by L? (M) we denote the space of complex-valued

square integrable functions on Af with the inner product:

(1.1) (wv) = [ (uf)dp,
/

and ||| denotes the norm in L2 (M) corresponding to the inner product (1.1). We
will use the notation L2 (A'T* M) for the space of complex-valued square integrable

1-forms on A with the inner product:

(1.2) (Vo) L2 nipe iy =/<W'W> dps,

M
where for 1-forms W = Wde? and ¥ = Widr*. we define (1. ¥) = o™V W,
where (g7") stands for the inverse of the matrix (ajx), and ¥ = Tpds*. (We use
the standard Einstein summation convention). By [|-|| 2417 5yy e denote the norm
in L2 (A'T*Af) corresponding to the inner product (1.2). By C> (Af) we denote
the space of smooth functions on M, by C2 (M) — the space of smooth compactly
supported functions on A, by Q! (M) — the space of smooth 1-forms on A/ and by
Q! (M) — the space of smooth compactly supported 1-forms on Af.

Recall that a magnetic potential is a real valued 1-form £ € Q! (Af), and note
that in any local coordinates &', 22,. ...z, the form E can be written as E = Bdal,
where E, = Ej(z) are real valued C™—functions of the local coordinates. The
operator d : C> (M) — Q! (M) stands for the usual differential and by dy; : C> (Af)
— 02! (M) we denote the deformed differential defined by dg(u) = du+iuE, for every
u € C> (M), where : = /=1. We denote the formal adjoint of dg by di - ' (M) —
C*° (M) which is defined by the identity: (dgu,w)psiqi7-pp = (udpw), Vu €
Cx(M). w e 2(M). By Ap = dpdg : C® (M) = C= (M) we denote the
magnetic Laplacian on M. with magnetic potential E. In this paper we consider
the bi-harmonic differential expression:

(1.3) A=AN% +q,
where g € LZ, (M) is a real-valued function, called the electric potential. Also. we
use the notation
(1.4) Dy = {u€ L>(Al): Au € L2(A1)}.
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Definition 1.1. Using the terminology of Everitt and Giertz jL1]. we say that the
differential expression 4 = A2 + ¢ is scparated in the space L2 (M) if for all w € D,
we have Al € L2 (M) and v € L2 (M).

Definition 1.2. Let A be as in (1.3). We define the minimal operator S in L2 (M)
assuciated with A by the formula Su = Au with domain Dom(S) = C (M).

Remark 1.1. Since § is a symmetric operator, it follows that S is closable (sce [12],
Scction V.3.3). In what follows, we will denote by S and §* the closure and the
adjoint of the operator 8 in L2 (Af) . respectively.

Lemma 1.1. If (A g) is a complete Riemannian manifold with a metric g and
a positive smooth measure dy and if 0 < g € L} (M). then the operator § is
essentially self-adjoint in L2 (Al) (see 15, 8. 13. 18]). Morcover. in this case we have
S=5" (see (9. 12]).

Definition 1.3. The set of admissible parameters P € R? is defined to be the set
of parameters (v, 8,7) € R? satisfying the following three conditions: (1) v > 0; (2)
B8>0; BYU<ad<lora=18=1.

2. TIIE MAIN RESULT
The main result of the present paper is the following theorem.
Theorem 2.1. Let (M.g) be a complete and connected C™ — Riemannian manifold

without boundary, with a positive smooth measure di and @ metric g satisfying the

Jollowing conditions:

(1) 0<q(@) € L3 (AN dq(a). dg(x) € L, (M),
(2.2) l%q(e) u(z)|| < C) "qf(:t;) u(r)|l,
(2.3) Ida() du(z)i < Ca fJa¥ () u(a)]

for every x € M and u € CX (M), where Cy > 0 and Cz > 0 are constants with
C) +2C; €[0,2). Then the differentinl ezpression A defined by (1.3) is separated in
the space L? (M)

32



MAGNETIC BI-HARMONIC DIFFERENTIAL OPERATORS

Proof. Let (o, 8,7) € P and u € C® (M) . By the definition (1.3) of the expression
A. for every u € C (M), we have

(O%v + qu, OFu +qu)

= (|a%ul® + 2Re (Aku.qu) + flaw)?

= ||a%ul® + 2Re (Adu. Au - Afu) + |qulf?

= —||abu]® +2Re (AL, An) + [lqul®

= (267" -1) ||A2,;;u||2 — 207" (A%u, A%u) + 2Re (AL u. Au) + [|qu)?

(287'-1) ||A?;u“2 ~ 287 'Re (A% u. Au - qu) + 2Re (A%, Au) + |qu]”
= (@3 = 1)||akul’ + 26 'Re (0% qu)

(24)  +2(1- B Re(Dbu, Au) +llgu]’.

ll4ul?

]

For any imaginary number z, we have
(2.5) —|2] £ Rez < |2].
Also, for eny two positive real numbers ¢ and b, we have

' ko 1.
s —=
(2.6) ab_,za +,“h,

where k is a positive real number. Hence, applying the inequalities (2.6), (2.7) and

the Cauchy-Schwartz inequality, we get

(1 - 8" "Re (AQE!J. Au) > —2[(1 -8 (Ai—u. Au)|
=21 - A7 {ARu Au)| 2 -2]1 - 87| [|[A%u]| || Au|
—[1=57Y (k)adaf + & naw?). .

N

v

(2.7)

Since ¢ 2 0, by the definitions of d and d;, we obtain

I

Re (qu, A} u) = Re(Agp(qu), Agu)

= Re((d*q)u + 2(dg)(du) + g(Dsn), Apu)

= Re((d’q)u, Apu) + 2Re((dg)(du), Apu) + Re (g(Apu), Apu)
(2.8) = Re((@n)n, Aeu) + 2Ro((da)(du), Dpw) + [la! Ay
33
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Next. by using the Cauchy-Schwartz inequality, the inequalities (2.5) and (2.6) with
k =+, and the conditions (2.2) and (2.3). we can write

Re (). bz4) 2 |(Pgu, Apw)| 2 — ||(@a)uf) [5zul
~Ci|letul| l2gull = ~C: llguil[|ot 2]

2

'A
qiu

v

(2.9) —C;% llqullg—Cx% ”q%AEulr.

and

2Rc ((dg)(du). Agu) 2 =2|(dgdu, Agu)| > —2 ||dedul| |A s
-2C; “q*u A gl = —2Cy ||lqull I q*AEull

v

(2.10) ~Corlaul? ~ G~ b A

"

Taking into account (2.9) and (2.10), from (2.8) we obtain
Re (Afu.qu) > (c,',% n (,‘27) Naref)® + (1 — (& "’T - Cﬂ-‘) “qi A,.;u'lz,
implying that
287 'Re (Akmqu) > —B7'7(Ci +2Cy) |lqu
@11) +871(2-Cit = 20m7Y) Hq%AEqr.
Taking into account (2.7) and (2.11), from (2.1) we get

(212) (14 1=~ E7) 4uf? > (1= 87'Cry - 287 Ca) llquli®

2
#8712 Cry ' =200 e uuf| + @671~ 1- |1 =87 K) Akl

If aff < 1, we choose k > 0 such that 1+ ]1 £t l k=1 = (aB)~", and multiply both
sides of (2.12) by a8 to obtain

JAW? > (8- Cir =20 laul? +a (2= Cir™ = 2Ce~) [ub ]
(213) +aB (267 —1- 1= 37 [k) || a%ul.
Next, we show that the following equality holds:

(2.14) aB (287 -1 [1- k) =1-(1 -} (1~af) .
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=
Indleed, since 1 + |1 - 87k = (aB)~". we have k = '—‘l'—"J Hence, we can
write
agli - 81
1

287 =1 -1-A7 k) =0wll 23 -1 =
af (28 [1- 87" %) ud(u 1 =

ﬁ(?,ﬂ" —2(1-—l+uﬂ—a/3|1-6"|2)
-nd

1-af
20 — 2078 — a8+ 0?87 — o282 (1 - 287! + 8-2)
= 1-ap
—aB—a®+2 - -l -a) N
= af —a® + az(l af) - (1 -a) =1—(l—0)2(1—nﬁ) P

1-od 1-af
Now from (2.13) and (2.14), we get
2
4w 2 a(@=Crv =26 llgul’ +a (2= Cor™" - 20077Y) o} A
(2.15) i (| —(-0)*(1 - aBy ') a2
If @ = 8 =1, we can take any k > 0 in (2.13) to obtain
lAul? 2 (1~ Ciy—2C) llqul® + || Ak
(2.16) +(2-C' - 2007 ||qéAEu||‘ |
From (2.15) and (2.16), we obtain
. a
(217) allqul® +bflo}agu| +eclakul’ < aul’.
where a = a (8 - (C) +2C2)7) ., b= a (2 - (C1 +2C2)7"") and
7 fl -(1- a)z(l —aB)! if aB<1

11 if a=ﬂ=1.'

If C) + 2C; € (0,2). then there exists an admissible triple of parameters (o, 4.7) € P
salisfying the inequalities:

(2.18) B2(C1+2C3)y. 292 C +20;. and o+ 8 <2,

which implies that @ > 0, b > 0, and ¢ > 0. If C; = Cy = 0, then from (7) and (8)
we get d?q(x) u(e) = 0 and dg(2) du(z) = 0, for every z € M and u € C° (M),
Conscquently, we have Ag (qu) = q(Agu), and for every u € C (M) . we can write

(2.19) Aul 2 = (Au, Au) = (Au + qu, Aju + qu
E E
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= ||Ari~u”2 + 2Re (A% u, qu) + [|lgull® = ||A?r~u||2 + 2Rc (qu. A% u) + lqu)|?

|akul® + 2Re(Az (qu), Dpu) + [lqu]l®
= “A}._-u”z +2Re (g (Apu), Agu) + llqu|?

. 2
= [|akul* +2 (et agul + lqul®.
It follows from (2.17)  (2.19] that the inequality (2.17) holds for all u € C2® (Af),
witha 20,52 0. and ¢ 2 0if C; +2C; € [0, 2).

Now we proceed to prove that under the hypatheses of the theoretn the inequality

(2.17) holds for all « € Dy. To this end, observe frst that from the completeness of
(M. g). it follows that the operator § is essentially self-adjoint and Dmn(§) = D, Let
u € Dy. then there exists a sequence {u,} in C* (3f) such that u, - u and Au, -
Suin L? (M) as n = o0. Applying {2.17) with © = 4, — u,,, we conclude that the
sequences {qu,}. {A%u,} and {q#AEu,.} arc Cauchy sequences in L2 (M) . Since
N2 gl = (Aguy, Apuy,) = (Akup.u,) < ||A%w || lua]l . and {A%u,} and {u,}
are Cauchy sequences in L? (M), it follows that {Aguy,} is also a Cauchy sequence
in L2(Af). Taking into account that the operator A is essentially self-adjoint on
C2 (M) (see [17]). we have

(2.20) Agu, = Agu.
implving that
(2.21) g2 A gpup = q!wlyu und Af;;u,. - Ady,

in L2(M)asn = x

Finally, taking into account that {qu,} is a Cauchy sequence in L? (M) and
C (M) is dense in L2 (M), it follows that

(2.22) qu, — qu,

in L2(Af) as n — oc. Now, replacing u by u,, in (2.17). passing to the limit as 7 = oc
in all terms, and using (2.20) (2.22), we conclude that the inequality (2.17) holds for
all ¢ € D. This means that the differential expression A defined by (1.3) is scparated

in the space L? (M). This completes the proof of the theorem. a
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