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1. INTRODUCTION AND MAIN RESULTS

In this paper,” a meromorphic function will always mean meromorphic in the
complex plane C. We adopt the standard notations in the Nevanlinna value distribution
theory of meromorphic functions such as T'(r, f), m(r, f), N(r,f) and N(r, f) as
explained in [1, 16]. For any non-constant meromorphic function f, we denote by
S(r, f) any quantity satisfying S(r, f) = o(T(r, f)). possibly outside a set of finite
linear measure that is not necessarily the same at each occurrence.

Let f(z) and g(z) be two nonconstant meromorphic functions in the complex plane
C and let a be a complex number. If f —a and g—a have the same zeros with the same
multiplicities, then we say that f and g share the value a CM (counting multiplicity).
If 1/f and 1/g share the value 0 CM, we say that f and g share oo CM. By Ny(r)
we denote the counting function of the O-points of f — g that are not the 0-points of

f,f—1,and 1/f.
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Counsider the first, second and fourth Paiulevé equations:

I " = 6w +z,
(I W’ = 2W+:w+a,
" (WI}E 3 3
(IV) " = — 4+ 3 +4z?+2(z2 - a)w+ =,
} o 2 L ( 0w =

where a and [ are arbitrary complex constants. It has been proved by A. Hinkkanen,
I. Laine, S. Shimomura and N. Steinmetz, independently, that all the solutions of the
above three equations are meromorphic in the whole complex plane (see [3, 5, 14]).
It is easy to see that every solution of equation (I) is transcendental. The equation
(IT) admits a unique rational solution if and only if a € Z (see |10]). The equation
(IV) admits a rational solution as discussed by M. Mazzocco (see |9, 10]). Notice that
the solutions of Painlevé equations are generally transcendental. The non-rational
solutions of equations (I), (II) and (IV) are called the first, second and fourth Painlevé
transcendents, respectively.

In 2007, W. C. Lin and K. Tohge [8] studied the share-value properties of Painleveé

transcendents and proved the following result.

. Theorem A. Let w(z) be an arbitrary non-constant solution of one of the equations

(I), (II). (IV), and let f(z) be a non-constant meromorphic function which shares
four distinct values a; (j =1,2.3,4) IM unth w(z). Then f(z) = w(z).

A question of great interest is to obtain unicity results for solutions of differential
equations. There is little related research in this direction (see [13, 16]). except maybe
the results on the growth order and the deficiency of Painleve transcendents (see (3],
[11] - [13)).

In this paper we study unicity of meromorphic solutions of Painlevé equations
which share three distinct values. The main results of the paper are the following
theorems.

Theorem 1.1. Let f(z) and g(z) be non-constant meromorphic functions sharing
three distinct values ¢; (j = 1,2,3) CM. Suppose that f satisfies the first Painlevé
transcendents, then f(z) = g(z).

Theorem 1.2. Let f(z) and g(z) be non-constant meromorphic functions sharing

three distinct values ¢; (j =1,2,3)CM. Suppose that f satisfies the second Painlevé
71



X. B. ZHANG, Y. HAN AND J. F. XU

transcendents and a # 0, then f(z) = g(2).

Remark 1.1. If in Theorem 1.2 we drop the condition & # 0, then we need to impose
the condition ¢; # 0 (see Lemima 2.3 and the proof of Theorem 1.2).

. Theorem 1.3. Lef f(z) and g(z) be non-constant meromorphic functions sharing
three distinct values ¢; (j =1,2,3) CM. Suppose that f satisfies the fourth Painlevé
transcendents and 3 # 0, then f(z) = g(z).

Remark 1.2. If in Theorem 1.3 we drop the condition 3 # 0, then we need to impose

the condition ¢; # 0 (see Lemma 2.4 and the proof of Theorem 1.3).

2. SOME LEMMAS

In this section we state a number of known lemmas from [3, 6, 7, 16, 18] that
will be used in the proofs of our main results in Section 3. The first lemma, due
to A. Mohon’ko and V. Mohon'ko (see [6]), plays an important role in proving the
subsequent lemmas.

Lemma 2.1 ([6]). Let P(z.ug,uy,...,u,) be a polynomial in all of its arguments, and
let f be a transcendental meromorphic solution of the following algebraic differential

equation:

{21’} ' F{zif1'f,:“',f[“1)=u.

If a finite complex number ¢ does not solve (2.1), then

L (T] f i r.') =S, f).
Lemma 2.2 ([3]). Letw be an arbitrary solution of equation (1), and let c € C. Then

we have m(r, ﬁ] = O(logr).
Lemma 2.3 ([3]). Let w be an arbitrary solution of equation (II), and let ¢ € C.
Then we have m(r,w) = O(logr), and

1) if aa # 0, then m(r, Il—_c-} = O(logr) for c € C,

1) if & = 0, then m(r, z=) = O(logr) for ¢ € C\{0}, while

m(r, :.l..:} < %T{r,w] + O(logr).
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Lemma 2.4 ([3]). Let w be an arbitrary solution of equation (IV). and let ¢ € C.
Then we have m(r,w) = O(logr), and

i) 1 = O(logr) for c € C,

i) if B = ) for ¢ € C\{0}; further if w(z) satisfies
the Riccati differential equation ' = F(w* + 2zw), then m(r, =) = T(r,w) + O(1),
otherwise we have

m(r, ‘l’} 5 lT{f'.Lﬂ] + O(logr).
w 2

Lemma 2.5 (|7, 18|). Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, and oc CM. If

0 < limsup No(r) {l
r—rﬂcrﬂ'ET{ f} ¥5 2

where E is a set ﬂf r of ﬁnitﬁ linear measure, then f is not a frm:funmf linear

transformation of g, and f and g assume one of the follouing three relations:

N et —] et
O f=qgmr_ 9=~y
“ {l+1h_1 sy q
{'u)_i"EE _1 9253___,?-1 :

= -1 T ]
("'} f= —[t+l-a}1 jit = {t+1 =aF ="

where v 15 a nancan.stun! entire functmﬂ s and t(> 2) are positive integers such that

s and t + 1 are mutually prime and 1 < s < 1.

I
lim sup Notr) > L
r—oc,rgE T{r! .ﬂ T -

then [ is a fructional linear transformation of g.
Lemma 2.6 ([18]). Let f and g be two distinct nonconstant meromorphic functions

shnnny 0,1, andoo CM. If [ 15 a fractional linear transformnalion of g, then f and

g satisfy one of the follounng six relations:
(i) fe=1;
i) (f - Dg-1 =1
(iii) f+g=1
(iv) f = cg:
(v) f=1=c(g—1):
(vi) [(e=1)f +1][(c—=1)g - ] = -,

where ¢(# 0,1) is a constant.
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Lemma 2.7 (|7]). Let f and g be two distinet nonconstant meromorphic functions

sharing 0, 1, and ~0 CM. Then there exist two entire functions p and q such that

: _ef =1 f=t:'1"—l
(2.2) 'r_|\_='~‘ﬂ'—'l1 J_E‘q—l'

whereed Z1,e? £ 1, e ? £ 1 and
(2.3) T(r,g) +T(r,e*)+ T(r,e¥) = O(T(r,f)) (r & E),

where E 1s a set of r of finite linear measure.
Lemma 2.8 (|16]). Let fi(2). fa(2),: -, fu(2) (n = 2) be meromorphic functions,
and let gi(z),92(z), - . gn(z) be entire functions satisfying the following conditions:

(i) ¥ fi(2)e%®) =0,
J=1
(1) g;(z) — gx(z) are not constants for 1 < 3 < k < n,

(iii) for1<j<n,1<h<k<n, T(rf;)=o{T(r,e” %)} (r— o, r¢E).
Then f;(z2) =0 (j=1,2,:-- ,n).

3. PROOF OF THEOREMS

Proof of Theorem 1.1. We first assume that ¢; =0, ¢ = 1, ¢3 = o0. Then by Lemma

2.2. we have

(3.1) N(r

f— =T(r, J)+S(x, 1), *c=0;1786"

Suppose, to the contrary that f # g. and consider the following two cases:

Case 1. Suppose that f is a fractional linear transformation of g. Then, by Lemma
2.6, f and g satisfy one of the six relations in Lemma 2.6. It is not difficult to check
that at least one of the values 0, 1 and oo is the Picard value of f in all the six

relations, which contradicts (3.1).

Case 2. Suppose that f is not a fractional linear transformation of g. In view of

Lemma 2.5, we counsider the following two subcases:

Subcase 2.1. Suppose that

- No(r) _
0 < lunsu
r—no ré’pb T{T‘. ) 3 2

then, by Lemma 2.5, f and ¢ assume one of the three relations in Lemma 2.5.
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Suppose first that f and ¢ satisfy (i), and note that s and t > 2 are positive
integers satisfying (s,t + 1) = 1. Then we have T'(r, f) = tT(r.¢") + S(r, f) and
N(r, }) = (5= 1)T(r,e?) + S(r. f). which contradicts (3.1).

Now let f and g satisfy (ii), then we have T'(r, f) = tT(r.e7)+S(r, f) and N(r, f) =
(s — 1)T(r,e?) + S(r, f), which contradicts (3.1).

Finally, suppose that f and g satisfy (iii), and note that s and t > 2 are positive
integers satisfying (s,t + 1) = 1, which implies (s5,t + 1 — s) = 1. Thus, we have
T(r.f) = tT(r,e) +S(r,f) and N(r.f) = (t - )T(r.c7) + S(r.f). N }) =
(s = 1)T(r,eY) + S(r, f), which contradicts (3.1).

- Subcase 2.2. Suppose that

lim sup folw)
r—i-r:;.ri’h' T(r,f)

then we have

{3.2} ru[l"} = S{F,f]

Since f and g share 0, 1, and oc CM, by Lemma 2.7, we get
e? -1 e P-1

(3"3) f:f."q—]_ll ﬂ_f_‘_q—‘l‘

where p and ¢ satisfy the conditions in Lemma 2.7. If e? = C with a non-zero constant

C, then by (3.3) we have
(f-1)9 _
flg=1)

showing that f is a fractional linear transformation of g, which is a contradiction.

Hence, €7 is not a constant. Similarly, we can prove that e” and e Y9 are not constants.

Meanwhile, we can get

(e —1)(1 —e*"F)
(3.4) fi=g= . :

Next, let Ng(r) denote the counting function of the common zeros of e?P—1 and e7—1.

Then by (3.4) we have No(r) = Ng(r) + S(r. f). From this and (3.2), we obtain

{3.-5] Nol(r) = S(r, hl

Combining (3.3) (3.5), we can write
N(r.f) = N(r =) + S 1),

1
eP —1
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(v, SRyl Ty Lt
ﬂ'{h?'__j}—N{rmfn_qh_l]"'S{rﬁ!]"

Therefore. taking into account (3.1), we obtain
(3.6) I'(r,e?) = T(r,e?) + S(r, f) = T(r,e" ")+ S(n, [) =T(r, f) + S(r, [ )-

Suppose that f is a transcendental meromorphic solution of equation (I), then we can
substitute (3.3) into (I) to obtain
=6 + [(3¢2 + ¢") — (p? +p") — 2p'¢)e?*%9 + 6?1 — (32 + 3¢ + ¢")e™

(3. + (2 +2p" — ¢% - ¢" — 12)eP*9 4 (12 + p? — p")e?

=]
e

+(¢" +q¢*+32+6)e?—(2+6)=0.

We rewrite (3.7) as follows

3.8 x

where T'(r,p;) =S(r,f) U =0,1,:-- 7)), po=2+6F 0.
Note that g;,gnh —gr = vp+pug for j=1,--- .5 and h # k, where u, v are integers

and at least one of them is different from zero. Now we proceed to prove that
(3.9) T(r, 1) > T(r, f) + S(r, f):

By the first fundamental theorem, we need to consider two cases: v > 0. u > 0 and
v < 0,p = 0. Suppose first that v Z 0, u =2 0, u+ v > 0. If v > u, then from (3.6) we
get

T(r, ™) > (v — p)T(r, ) + S(r, f) = T(r, ) + S(r, f)-

If v < p, then since T'(r,e?) < T(r,e*) 4+ T(r, e~ 1), by (3.6) we have T(r, e?*?) >
I'(r. f)+S(r, f), and hence (3.9) holds. If u = v, then T'(r, e*?*#9) = vT'(r. f)+S(r, f).

Next, suppose that ¥ < 0,4 2 0, u — v # 0. If —¢ = u, then it is not difficult to
check that (3.9) holds. If —» < u, we have

T(r,e"P™) > uT(r,e?) + vT(r, eP),

and by (3.6) we obtain (3.9). Similarly, we can prove (3.9) in the case —v > p.
Finally, in view of Lemma 2.8, (3.8) and (3.9) we conclude that px = 0 (k =

0,1.---.7), which contradicts py # 0. Therefore, we have f(z) = g(z).
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This cowmpletes the proof of the theorem in the special case where ¢y = 0, ¢y = 1,
C3 = 0O0. For the genernl case, we consider the transformations

F{I}=I_nicﬂ_r:‘|

g—Cica—Cy
g Gz} = :
J-—cae-¢ [ g—c303—c

and observe that F and G share 0. 1, oo CM. By Lemma 2.2, we can write F and G

in the formn, similar to (3.3). Hence we can get

ci(cz —ca)(e9 — 1) — ca(ca — c1)(e? — 1)
3.10 =
(3:10) ! (c2—c3)(e9—1)—(c2—cy)(e? —1)

Substituting (3.10) into (II), and using arguments similar to that of applied in the

special case ¢; = 0, ¢ = 1. ¢3 = 00, we can prove that F = G. llence, we have [ = g.
Theorem 1.1 is proved. a
Proof of Theorem 1.2. Suppose that f is a transcendental meromorphic solution of
the equation (1I), then we can substitute (3.3) into (II) to obtain
26 + ae® — 6™ + [z — (p7 +p" + 20'¢) +3¢" + ¢"]ePT

(3.11) +(2p" — ¢"' — ¢* = 2z)e?t9 - (3% + " + = + 3a)e®

+{ﬁ+z+p’2-p”]r”+i.'t;-'"+f,r'2+2:+3n}r"' —(z4+a+2)=0.
We can rewrite (3.11) as follows

po = plﬁ:“’ + ;e + pie® + p1€P 0 4 peePt 9 4 peed

- L.
19 +pre” + pre’ = ) pje”.

=l

where I'(r,p;) = S(r. f) ( =0,1,-- 8).pm=z+a+2#0.

The rest of the proof is similar to that of Theorem 1.1. and so 1s omitted. O
Proof of Theorem 1.3. Suppose that f is a transcendental meromorphic solution of
the equation (IV), then we can substitute (3.3) into (IV) to obtain

(3.13) N
3¢ 4 206 + 82¢P*9 + [4(22 — a) + 7¢° —p? + 2" — 2p" - bp'|e* T

+[8(z2 + a) + 297 - 20/ +2(¢" + 47 = 2")]e*" T — 8(= + B)e™ — 127
8P —Tq% - 2¢" +p7 +p" - 4(z* — )"t

+ [4(z2 — a) + 242 + 18+ 2(p7 - p")]e?® + [7q2 +2¢" + 4(2* — a) + 128]e™
+ [242 — 20'¢’ +16(z% — @) + 2(¢% +¢" — 2")]¢"

—[242+ 12+ 8(z* —a) + 2p” — 2p"|e? — B2 + 83 + 8(z2 — a) +2¢" + 2q"]¢?

+4(z2-a)+8:+28+3=0.
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We can rewrite (3.13) as follows

o = M elP 4+ p'gf‘"“ + ,'J;g,fap+q + F4E2n+?q -+ ﬂ5ﬂ2p+q + purrap + ﬂ-:rf:d""

(3.14) p .
+ pee®t2 & pye + proe®® + p11ePt T + praeP + prae? = ) _ p;e”,

j=
where T'(r, p;) = S(r, f) ( =0,1,--+,13), pp = 4(2* — ) + 82+ 26 +3 # 0.
The rest of the proof is similar to that of Theorem 1.1, and so is omitted. Theorem

1.3 is proved.

4 HIGHER ORDER ANALOGUES OF THE FIRST PAINLEVE EQUATION

[t is known that the Kortewey-de Vries equation can be reduced to the following

algebraic differential equation (see [2])
d"t1(w) + 4z = 0, (20 P1)

where d"t}(w) = D }|((D® — 8wD — 4u")d"(w)]|, D = é‘; and D ! denotes the inverse
of D, that is, D™1(:) = [ -dz and d'(w) = —4w.
For n = 1, we have d?(w) + 4z = —4w"” + 24w? + 4z. Therefore

W' = 6w? + z, (2P),

which is nothing but the first Painlevé equation, and the equation (2,F;) is called
the higher order analogue of the first Painlevé equation of order n. .

In [4]. Y. Z. He has proved some value distribution properties of the meromorphic

solutions of equation (2,/P;). Observe that for equation (2,/)) rational solutions
cannot exist. Below we investigate the equation (2, /) and obtain a result, which
15 similar to that of the first Painlevé equation.
Theorem 4.1. Let f(z) and g(z) be non-constant meromorphic funclions sharing
three distinct values ¢; (j = 1,2,3) CM. Suppose that [ satisfies the higher order
analogue of the first Painlevé transcendents (2, Py), then f(z) = g(z).

In order to prove the theorem we need the following two lemmas (see [4]).

Lemma 4.1. Let w be an arbitrary solution of equation (2, Py ), then we have §(a,w) =
0 for all a € C.
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Lemma 4.2. The differential polynomial on the left hand side of (2., Py ) has only one
leading term of the form a, . W™, where

l

All coefficients in (2, P)) are constants except for the term 4z,

: ki | G2 0|
Gni1 = (-1)"116- 4" . >0
E! o n=2

Proof of Theorem 4.1. In view of Lemma 4.2, the equation (2, P;) can be written in
the form a, 41w +424-Q,(w, - - ,w?") = 0. where Q,(w,--- ,w?") =3 Aywho -

2 l - . = = .
(A(31))A2 g a differential polynomial with constant coefficients and its total degree

< n, for each term in €,,, and _:'::1 A; # 0. By Lemma 4.2 and (3.3) we have
e —1. . n41 P —1 el —1

4.1 a,, 0 }4n T

(4.1) Sl ) ,l(eq_l, (=) )+4¢_n_

r

Rewrite (4.1) in the form pg = 3 pje®, where T'(r.p;) = S(r. f) ( =0,1,--- ,m),
3=l

po = 4z + constant # 0. Note that g;,gn —gr =vp+pgfor j=1,--- .m and h # Kk,

where i,  are integers and at least one of them is different from zero. The rest of the

proof is similar to that of Theorem 1.1, aud so 1s owitted. O
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