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1. INTRODUCTION. DEFINITIONS AND RESULTS

We will use the following notation: by C we denote the set of all complex numbers.
by N the set of all positive integers, and C := CUoco, N := 0UNUoc. Throughout the
paper it is assumed without stating its explicitly that all the considered meromorphic
functions are defined on C and that they are non-constant.

For such a function [ and a € C, each point z with f(z) = a will be called an
a-point of f. For a meromorphic function f and a set S C C we define E;(S) (resp
E4(S)) as the set of all a-points of f, when a € S, together with their wmultiplicities
(resp. without their multiplicities). If E/(S) = E,(S) (resp. E;(S) = E,(S)). then we
say that f and g share S Counting Multiplicities or CM (resp. Ignoring Multiplicities

or IM). More formally, we have the following defnition.

Definition 1.1. Let f be a meromorphic funcﬁml and S c C. If zo € f71(S), then
the value of E¢(S) at the point zg 1s denoted by Eg(S)(20) - f~1S) = N and s equal
to the multiplicity of zero of the function f(z) — f(z0) at zo, that is, the order of the
pole of function (f(2) — f(z0))~" at 20 if f(20) € C (resp. of function f(2) if zg'1s a
pole for f).

1This research work is supported by the Council of Scientific and Industrial Research, Exts amural
Rescarch Division, CSIR Complex, Pusa, New Delhi-110012, India, under the sanction project no.
25(0229)/14/EMR-I1.
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Lahiri [12. 13], has introduced the notion of weighted sharing of values and sets. It
expedited new directions of research in the uniqueness theory. Below we define this

notion in a slightly different way in context of Definition 1.1.

Definition 1.2. For k € N and 2 € f7(S) we put E4(S, k)(20) = min{ E¢(8)(z0). k+
1}. Given S C T. we say that the meromorphic functions f and g share the set S up to

multiplicity k (or share S with weight k. or simply, share (S, k)) if F~YS) =g~ }(8),

and for each o € f~'(S) we have Ey(S,k)(20) = E,(S,k)(z0), which s represented
by the notation E¢(S, k) = Eg(S, k).

It will be convenient to let £ denote any set of positive real numbers of finite
linear measure. not necessarily the same at each occurrence. For any non-constant
meromorphic function h(z) we denote by S(r, h) any quantity satisfying

S(r.h) =o(T(r.h)) (r—roo,r€E).

Also. we denote by T(r, f; g) the maximum of T'(r, f) and T'(r, g), and by S(r, f;g)
any quantity satisfying S(r, f;g) = o(T'(r, f;9)) asr —> oo, 7 € E.

We adopt the standard notations of the Nevanhnna theory of meromorphic functions

as explained in [10]. For a € CU {oc}, we define

O(a; f) = 1 — limsup h;}rﬂf{]

In 1926. R. Nevanlinna proved two fundamental results on shared values. His

famous five value theorem gives an upper bound on the number of distinct values that
two different meromorphic functions can share IM. Taking multiplicities into account,
Nevanliuna proved that if two meromorphic functions share four distinct values CM,
then either they coincide or one of them is the fractional linear transformation of the
other. These results are in fact the gateway to the uniqueness theory of meromorphic
functions.

In [8], F. Gross first considered the problem of determining an entire function
uniquely by the single pre-image of a finite set S counting multiplicities. In 1982, F.

Gross and C. C. Yang |9] proved the following theorem.

Theorem A. Let S = {z € C: e’ + z = 0}. If two entire functions f and g satisfy
E¢(S) = E4(S). then f = g.

Let S < C, and let f and g be two non-constant meromorphic (entire) functions.

If E¢(S)= E,(S) implies f = g, then S is called a unique range set for meromorphic
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(entire) functions, or in short URSM (URSE). We will call any set § © C a unique
range sel for meromorphic (entire) functions ignoring multiplicity (URSM-IM) (URSE-
IM) for which E;{S] = E,{S] implies f = g for any pair of non-constant meromorphic
(entire) functions.

Note that since the range set S determined in Theorem A is an infinite set. the
above result does not give a solution to the Gross' problem.

In 1994, H.X.Yi [18] exhibited a URSE with 15 elements, and in 1995, P.Li and
C.C.Yang [16] exhibited a URSM with 15 elements and a URSE with 7 elements.
Up-to-date the URSM with 11 elements is the smallest available URSM obtained
by G. Frank and M.Reinders [7]. This result has been highlighted by a number of
researchers. Still there is another type of URSM with the same minimum cardinality
11, which is discussed in the last section.

Li and Yang [16] were the first who elucidated the fact that the finite URSM'’s
are the sets of distinct zeros of some polynomials. Consequently, studving these
polynomials is of great importance.

A polynomial P in C is called a strong uniqueness polynomial for meromorphic
(entire) functions if for any non-constant meromorphic (entire) functions f and g,
the condition P(f) = ¢P(g) unplies f = g, where ¢ is a suitable nonzero constant.
We say P is SUPM (SUPE) in short. On the other hand, if for a polynomial P in C,
the condition P(f) = P(g) implies f = g for any non-constant meromorphic (entire)
function f and g, then P is called a uniqueness polynomial for meromorphic (entire)
functions. We say P is a UPM (UPE) in short.

Let P be a polynomial of degree n in C having only simple zeros. and let S be the
set of all zeros of P. If S is a URSM (URSE), then from the definition it follows that
P is UPM (UPE). The converse, in general, is not true as evidenced the following

example, given in [4].

Example 1.1. Let P(z) = az + b (a # 0). Then it is clear that P(2) is a UPM, but

for f = -—Ee"’ and g = —EE_' we see that E¢(S) = E,(S), where S = {—2} is the
a

set of zeros of P(z) = az + b.

To find a condition under which the converse is true, H. Fujimoto [6] first invented
a special property of a polynomial, which he called the property (H). Fujimoto’s
property (H) may be stated as follows: a polynomial P is said to satisfy the property

(H) if P(a) # P(8) for any two distinct zeros a, J of the derivative P’
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Since the inner meaning of property (H) is that the polynomial P is injective on
the set of distinct zeros of P, which are known as critical points of P, in [4] we
have judiciously called property (H) as the critical injection property. However, this
property can also be called as critical injectiveness property. Naturally, a polynomial
with critical injectiveness property may be called a critically injective polynomial,
and in the rest of the paper we use this terminology. Fujimoto [6] found a sufficient
condition for a set of zeros S of a SUPM (SUPE) P to be a URSM (URSE) as follows.

Theorem B ([6]). Let P(z) = (2 —aq)(z —az)...(2 — an) be a critically injective
polynomial of degree n in C having only stmple zeros. Let P' have k distinct zeros and
cither k > 3 or k = 2, and let P’ have no simple zeros. Further, suppose that P is a
SUPM (SUPE). If § s the set of zéros of P, then S 1s a URSM (URSE) whenever
n>2k+6 (n>2k+2) whie S is a URSM-IM (URSE-IM) whenever n > 2k + 12
n> 2k +5).

Let us consider the following definition in connection with that of URSM (URSE).

Definition 1.3. [4] A set S € CU{o0} s called a unique range set for meromorphic
(entire) functions with wewght k if for any two non-constant meromorphic (entire)
functions f and g, the condition E¢(S,k) = E4(S, k) implies f = g. We write S is
URSMk (URSEk) in short.

Let k be a positive integer or infinity. We denote by Ey)(a, f) the set of a-points
of I whose multiplicities are not greater than k and each a-point is counted according
to its multiplicity. For S C C U {o0} we put Ey) (S, f) = Uses Ex)(a, f). The set
5 1s called a URSMy) (URSE ) if for any two non-constant meromorphic (entire)
functions f and g, the condition Ey (S, f) = Exy(S, g) implies f = g.

Note that when k = 0, the definition of URSMk (URSEK) coincides with that of
URSM-IM (URSE-IM). :

In 2009, X. Bai, Q. Han and A. Chen proved the following truncated sharing

version of Theorem B.

Theorem C. 3] In addition to the hypothesis of Theorem B we suppose that m is a
positive integer or oo. Let S be the set of zeros of P. If
(1) m=3 oroc andn > 2k + 6 (2k + 2),
(1) m=2andn > 2k+7 (2k+2),
(i) m =1 and n > 2k + 10 (2k + 4),
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then S is a URSM,,,, (URSE,,,).

To improve the URSM-IM version of Theorem B under smaller lower bound of .
in [3] the authors inposed an additional condition that the union of the sets of the
double a; points of f for j = 1,2, ... n is the same as that of q.

Below we are stating elaborately their result (see 3], Theorem 1.6).

Theorem D. (3| Let P as defined in Theorem B be a critically injective polynomial
of degree n in C having only simple zeros whose zero set is denoted | yS. Let P! have
k distinct zeros and either k > 3 or k = 2 and P’ have no simple zeros. Further,
suppose that P i1s a SUPM (SUPE) and E¢(S,0) = E,(S.0). Also, let the union of
the sets of the double o; points of f for4=1,2.....n is the same as that of g. Then
S is a URSM-IM (URSE-IM) whenever n > 2k +9 (n > 2k + 1)

The above theorem certainly gives a novel approach towards reducing the lower
bound of n whenever f and g share the set S IM. However, we think that under the
assumptions of Theorem D to expect that the set S is a URSM-IN (URSE-IM) is
hardly tenable. Rather, one can use the terminology that the set S is a Restricted
URSM-IM2 (URSE-IM2). Below we develop this idea.

Also, note that if in the statement of Theorem D we assumne that the union of the
sets of the simple a; points of f for j = 1,2,....n is the same as that of g, then we

simply will be in the case where f and g share the set (S, 2).

Definition 1.4. Fora € CU{o0} let [ and g share (a,0) and k be a positive integer.
We say that f and g share the value a Restricted IM with weight k. denoted by
Restricted IMk, if all the zeros of f —a and g — a with multiplicity exactly k coincide.
If f and g sharve the value a Restricted IMp for all 1 < p < k, then [ and g share
(a, k).

We say f and g share a set S C CU{oc} Restricted IM with weight k if for any a;.
a; € S the totality of zeros of f — a; with ezact multiplicity k coincides with that of
y—a;. Also, a set S C CU (oo} is said to be a Restricted unigue range set Ignoring
Multiplicity with weight k for meromorphic (entire) functions if whenever two non-
constant meromorphic (entire) functions f and g share S Restricted IM with weight
k tmplies f = g. We write S is Restricted URSM-IMk (Restricted URSE-IMk) in

short.

The main purpose of the paper is to show that Theorem B can be improved in

the context of weighted sharing of sets. In fact, in the application part of the paper
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we will show that our method is more effective and efficient than truncated sharing
version improvement of Fujimoto’s result. We also improve Theorem D by further
reducing the lower bound of n. The following theorems are the main results of the

PAPCT.

Theorem 1.1. [In addition to the hypothesis of Theorem B we suppose that S s the
set of zervs of P. If
(i) m=2 andn > 2k + 6 — 26(oc; f) — 20(o0; g) (2k + 2),
(ii) m=1and n > 2k + 7 — 26(o0; f) — 28(o0; g) — %min{e{m; f).©(o¢: g)}
(2 + 2),
(iii) m = 0 and n > 2k + 12 — 36(00; f) — 36(00; g) — min{O(o0; f), O(cc: g)}
(2k 4+ 5),
then S 1s a URSMin (URSEm).

Theorem 1.2. Under the same assumption of Theorem D iof
n > 2k + 8 — 20(o0; f) — 26(00; g) — min{O(o0; f), O(00; g9)} (2k + 3),
then S s a Restricted URSM-IM2 (URSE-IM2).

We now give some additional definitions which will be used in the rest of the paper.

Definition 1.5. [11| For a € CU {oc} we denote by N(r,a; f |= 1) the counting
Junction of simple a-points of f. For a positive integer m we denote by N(r,a; f |<
m) (N(r.a; [ |2 m)) the counting functions of those a-points of [ whose mulliplicities
are not greater (less) than m, where each a-point is counted according to its multiplicity.

The counting functions N(r,a; f |< m)(N(r,a; f |2 m)) are defined similarly,
where in counting the a-points of f we ignore the multiplicities.

Also, the functions N(r,a; f |< m), N(r,a; f |> m), N(r,a; f |< m) and N(r,a; f |>
m) are defined analogously.

Definition 1.6. [20] Let f and ¢ be two non-constant meromnorphic functions such
that f and g share (a.0). Let 2 be an a-pomnt of f with multiphicity p and an a-
pomt of g with multiplicity q. Define Ny (r,a; f) to be the reduced counting function
of those a-points of f and g with p > ¢, Ng{r. a; f) to be the counting function of
those a-points of f and g with p = qg=1, and W‘j(r a; f) to be the reduced counting
Junction of those a-points of f and g with p=gq 22 In the same way can be defined
the functions N 1 (r, a: g), NII_;J{r, a;q), -ﬁg{r,u;y], and also the functions N (r,a; f)
and Np(r,a;q) forae CU {o0}.
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Notice that when f and g share (a,m), m > 1. then Ng (r,a; f) = N(r.a: fl=1).

Definition 1.7. (12, 13| Let [ and g share a value a IM. Define N.(r,a: [, q) to be
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly, N .(r,a; f,g) = N.(r.a;g, f) and N.(r, a; f,9) = Ni(r,a; f)+NL(r,a;9).

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel. We
suppose that P(z) is a polvnomial of degree n and its derivative P'(z) has distinct
zeros 1. 3,..., 08k with respective m;lll;iplicities g0, ge- S0, P(z) = (z —
B1)9' (2 — B2)% ... (2 — Bi )%, where g, +@+...+qe=n—-1.

Unless otherwise stated, F and G will stand for two non-constant neromorphic
functions given by FF = P(f) and G = P(g). Henceforth we shall denote bv H the

following function

P2 o G 1\ 26
2.1 Hi= - — — -
[ } ( F" F ) ( (:’ G ) -

Lemma 2.1. [15] Let f be a non-constant meromorphic function and let

m

% apft
R(f) = 57—

2 b;f1

7=0
be an irreducible rational function in f with constant coefficients {ax} and {b;}, where
a, # 0 and b,, # 0. Then

I'(r.R(f)) = dT(r, f) + S(r. f).

where d = max{n, m}.

Lemma 2.2. If F and G are two non-constant meromorphic functions such that they
share (0,0) and H # 0, then

Ng (r0; F |=1) = NJ(r,0;G |=1) < N(r,H) + S(r, f) + S(r.9).

Proof. By the lemma of logarithmic derivative we have

m(r, H) = S(r, f) + S(r,9)(:= S(r)).
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Using Laurent expansion of H we can easily verify that each simple zero of F (and

hence. of G) is a zero of /. Therefore
Né}(r. 0iF |=1]= N};(r, 0;G|=1) < N(r,0; H)
< T(r. H) + O(1) = N(r, 00; H) + S(r, f) + S(r, 9).

Lemma 2.3. Let S be the sel of zeros of P. If for two non-constant meromorphic

functions f and g, Eg(S,0) = Eg4(S. 0) and H # 0, then
L.
N(r,o00; H) < Z {N(r,8;: f) + N(r.85;9)} + N.(r,0; F,G)
g=1

+N(r, 001 f) + N(r, %0, 9) + No(r,0; f ) + No(r, 0;9 ),

where Nolr.0: f) denotes the reduced counting function of those zeros of f which

I; = T ¢ L L L]
are not the zeros of F [](f — B;), and No(r,0:g ) denotes the similar function
i=1
corresponding to g.

Proof. Since Ef(S,0) = E4(S,0), it follows that F' and G share (0,0). Also, observe
that I = (f=B8)7 (f=82)" ... (f=73x)™ f . It can easily be verified that the possible

poles of H can be: (i) the poles of f and g, (ii) those 0-points of F and G that have
k

different multiplicities, (iii) the zeros of f which are not zeros of F [1(f -5, (iv)
=1

: e
the zeros of g which are not zeros of G [] (g— 8;), (v) the 8; points (7 = 1,2,...,k)
j=1
of f and g.

Since I has only simple poles, the result follows. U

Lemma 2.4. |6| Let the assumptions of Theorem B be fulfilled. Also, assume that
there are two meromorphic functions f and g such that for any two constants ¢y (# 0)

and ¢y
| o
=1
P(f)  P(g)
Then ¢; = 0 provided that n > 5.

Lemma 2.5. [14] Let N(r.0; f*) | f # 0) be the counting function of those zeros of
f'*) which are not zeros of f, where the zeros of f*) are counted according to their

multiplicities. Then

N(r,0; /)| f # 0) < kN(r,00; f) + N(r,0; f |< k) + kN(r, 0; f1Zk)+S(.f).
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3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Since E¢(S,m) = E (S, m), it follows that the functions F
and G share (0,m). We consider two possible cases: H £ 0 and H = ().
Case 1. Assume that H # 0.
Subcase 1.1. Let m > 1. If m > 2, then using Lemma 2.5 we obtain
(3.1) No(r,0;9 ) + N(r,0; G |> 2) + N.(r,0; F,G)
No(r,0:9 ) + N(r,0;G |> 2) + N(r,0:G |> 3)
< N(r,0;9 | g #0)+ S(r.g) < N(r,0;9) + N(r,00: g) + S(r, 9).

IA

[Hence using (3.1) and Lemmas 2.1 - 2.3, from second fundamental theorem for £ > 0

=

we get

k
(3.2) (n+k=1)T(r, f) < N(r,00; f) + Eﬁ{r. Bi: [)+ N(r,0;F |=1) +

=1

k
N(r,0;F |> 2) = No(r,0; f ) + S(r, f) < Y _ {2N(r.8;: f) + N(r. 8;:9) }

1=1
+2N(r,00; f) + N(r, 00: 9) + No(r,0;¢') + N(r,0: G |> 2) + N.(r,0; F,G) + S(r. f; 9)
< 2kT(r, f) + kT(r, g) + 2N (r. oc; f) + 2N(r,00; 9) + N(r.0: 9) + S(r. f: 9).
< (3k+ 5 — 26(cc; f) — 26(oc;9) +) T'(r, f19) + S(r. [5 9).
In a similar way we can obtain

(3.3) (n+k—1)T(r,g) <
(3k + 5 —26(ox; f) — 28(o0;9) +€) T'(r, f; 9) + S(r. f:9).
Combining (3.2) and (3.3) we see that
(34) (n—2k—6+206(c0; f) +26(oc;g) — <) T'(r, fi9) < S(r, [:9).
Since £ > 0, the relation (3.4) leads to a contradiction.
If m = 1, then using Lemma 2.5, similar to (3.1) we obtain
(35) No(r,0;9)+ N(r.0;G |> 2) + N.(r.0; F, G)
No(r,0:9) + N(r,0;G |2 2) + N.(r,0:G) + N(r,0; F | > 3)

IA

N(r0ig |9 #0)+ 5 > {N(r a5 f) = N(r,a5: /)
1=1
N(r,0;9) + N(r,00; 9) + %{ﬁ(r,ﬂ: f)+ N(r,o0; f)} + S(r. f) + S(r. 9).
33
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So. using (3.5), Lemmas 2.2, 2.3 and proceeding as in (3.2), from second fundamental

theorem for £ > 0 we get
(3.6) (n+k - 1)T(r, f)
< (2k+ %}T{r: )+ (k+1)T(r.,g)+ gﬁ{nnﬁ:ﬂ + 2N(r.oc:9) + S(r, f39)
< (.’h’r + 6 — gi-}{x-; f) — 28(o0; g) + E) T(r, f;q) + S(r, f; 9).
Similarly we can obtain
(3.7) (n+k—=1)T(r,9)
< (iﬂ' +6 — 26(o0; f) - gﬁimm) + E) T(r,f;9)+ S(r. fig)
Combining (3.6) and (3.7) we see that
(3.8) (n— 2k — 7+ 26(00; f) + 26(o0; 9)+
+% min{O(oc; f),O(o0:9)} — E) T(r, f;9) < S(r, f; 9).

Since £ > 0. the relation (3.8) leads to a contradiction.

Subcase 1.2. Let m = 0. Using Lemma 2.5 we can write
(39)  No(r,0:g)) + Na(r,0; F) 4+ 2N (r,0; G) + 2N (r, 0; F)
No(r, 0; y') + Eg[r 0:G) + Np(r.0;G) + Ni(r,0;G) + INL(r,0:F)

5
< No(r.,0:9)+ N(r,0;G |> 2) + N.(r,0;G) + 2N (,0; F)
< N(r,0:9 | g#0)+ N(r,0:G |>2) 4+ 2N(r,0; F |> 2)
< N(r,0;g) + N(r,00; g) + N(r,0; ) + N(r, 00; g)
+2N(r,0: f) + 2N(r,00; f) + S(r. f) + S(r, g)
< 2{N(r,0;9) + N(r.o00;g) + N(r,0; f) + N(r,0c; f)} + S(r, f) + S(r, 9).

Hence. using (3.9) and Lemmas 2.1 - 2.3, from second fundamental theorem for £ > 0

we gef
2 8 k
(310) (n+k—1)T(r, f) < N(r,00; f) +Zﬁ(‘-"qﬁ::f) + N (r,0; F) +
i=1 '
(3.11) +N 1 (r,0: F) + N1 (r,0;G) + Nig (r,0; F) = No(r,0; f) + S(r, f) <
k
< Z {2N(r,8;; f) + N(r,3;:9)} + 2N (r, 00; f) + N(r, 00; g) +T\F§{r,ﬂ: F)+
i=1

+2N1(r,0;G) + 2N (r,0; F) + No(r,0:9 ) + S(r, f) + S(r. 9)
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< (2k+ 2)T(r, f) + (k + 2)T(r, g) + 4N (r,00; f) + 3N (r,00; g) + S(r. f) + S(r, g)

< (3k + 11 — 46(co: f) — 30(00; g) + ) T(r, f:9) + S(r. £ g).

In a similar manner we can obtain

(3.12) (n+k—1)T(r,g)
< (3k+11-36(oc; f) — 48(c; g) + =) T(r, f; 9) + S(r, f; q).

Combining (3.10) and (3.12) we see that

(3.13) (n — 2k — 12 4 36(o0: f) + 36(; g) + min{B (oc; f), B(00: g)} — &) T(r. f: 9)

< S(r.f;9).

Since £ > 0, the relation (3.13) leads to a-contradiction.

Case 2. Now assume that H = 0. By integration we get from (2.1) % = tai,

where ¢g and ¢; are constants and ¢ # (). So, using Lemma 2.4 we get

P(f) = ép"?}'

Now noting that P is a SUPM we have f = g, implying that S is a URSMm. O]
Proof of Theorem 1.2. Let H # 0. From the definition of Restricted TM2 sharing, we
observe that here Ny (r,0; F) > N(r,0: F |> 3) and so (3.9) becomes

(3.14) No(r,0:9') + Ng(r,0: F) + 2Ny (r.0: G) + 2N (r.0; F)

< No(r,0i9) + Ne(r,0;G) + 2N(r.0;C | 3) + 2.%2{.&*[:-, aj; f) — N(r. aj; f)}
j=1
< N(r,0; f) + N(r,00; f) + N(r,0;9) + N(r,oc;9) + S(r. f) + S(r., 9)

Hence in view of (3.14) and Lemmas 2.1 - 2.3 for € > 0 the relation (3.10) becomes
(3.15) (n+k—-1T(r, f) <
(B3k + 7 — 30(2c; f) — 28(o0;g) + &) I'(r, f:9) + S(r, [; 9).
Similarly, we get
(3.16) (n+k = 1)T(r,g) <
(3k + 7 — 26(o0; f) — 36(00; 9) + <) T(r, f39) + S(r, £ 9).
From (3.15) we obtain
(3.17) (n — 2k — 8 + 26(oc; f) + 26(oc; g) + min{O(o0; f), B(c; 9)} — €) T(r. fi 9)
< S(nfi9)
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Since £ > 0, the relation (3.17) leads to a contradiction.
The rest of the proof is similar to that of Theorem 1.1, and so the details are omitted.
Theorem 1.2 is proved. O
Remark. To the best of our knowledge, so far two types of critically injective Strong
Uniqueness Polynomials have been invented such that their zero sets are Unique
Range Sets.

The first type of URS is considered by Frank and Reinders in [7] which is the zero
set of the polynomial:

e =" —1
Pj_H.[;;}z {H 11}[?1 2]2”. _n{ﬂ_i}zﬂ-"-l_l_ %EH_E—E {E#U,IJ.
From the results of [7], it is clear that here k = 2 and Ppg is a UPM if n > 5.

Also, from [[7], p- 191, Case 2|, it follows that whenever n > 7. Per(f) = cPrrlg)

inplies Prr(f) = Prr(g)- Hence, if we denote the zero set of Prr(z) by Skr, then
Sgr becomes a URSMm (URSEm) for the cases m = 2. m=1and m = 0, when it
contains 11. 12 and 17 clements (respectively 7. 7 and 10 elements).

The second type of URS is demonstrated by Yi in [19], which is the zero set of the
polynomial:

Py(z) =z"+az""" + b,

where n and r are two positive integers having no common factors, r > 2 and a and
b are chosen so that P has n distinet zeros. Here k =7+ 1 and Py isa UPM ifn > 6
(see [19], p.79 Case 3, last part). Also, from [[19], p.79, Case 3, first part|, it follows
that whenever n > 21 + 4, Py (f) = cPy(g) implies Py(f) = Py(g)- Hence, if we
denote the zero set of Py(z) by Sy. then Sy becomes a URSMm (URSEm) for the
cases m = 2. m = 1 and m = 0, when it contains 2r +9, 2r + 10 and 2r + 15 elements
(respectively 2r + 5, 21 + 5 and 2r + 8 elements).

4. APPLICATIONS

The following theorem was proved in the application part of [3].

Theorem E. In addition to the hypothesis of Theorem B, we suppose that m 15 a
positive integer or oc. Let S be the set of zeros of P. If
(i) m > 3 or oc and B(oc; f) + O(o0:9) >3+ k — 3,
(i) m = 2 and B(o0; f) + BO(oc;g) > H+ﬁ_—f'1ﬂ,
(i) m =1 and ©(oc; f) + O(o0; g) > 0k=2n
then S is a URSM,,,, .
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Notice that the proof of Theorem E given in [3] is not flawless. For example, it is
not difficult to observe that in the proof of Theorem 6.1 of |3|, the relation on the
third line after formula (ﬁl] (see I3|r p. 641), has been obtained on the basis of the

assumption that
T(T} < ET[*J" !mﬂ] = (2’5 =1} T 2]’F(1}(= T{r" f} - T{T. ff}] < l(ﬂh TN '.‘I}Tl:lr. f'._l";.:l.

which is true only when 2k+2 > n. Taking into account that for all three cases im > 3.
m = 2 and m = 1, we have O(oo; f) + B(o0; g) > 2, we conclude that Theorem 6.1
in (3] is not correct.

The next result is a corrected version of Theoremn E.

Theorem 4.1. In addition to the hypothesis of Theorem B, we suppose that m is a
positive integer or oo. Let S be the set of zeros of P. If

(i) m > 3 or oc and min{O(oo; £),8(00;9)} > t:r_i_u
(ii) m = 2 and min{©(oc; f),O(x:g)} > #!
(iii) m = 1 and min{O(oc; f), O(oc; 9)} > 10+2k—n_

then S 1s a URSM,,,) .

It follows from Theorem 4.1 that there exists an URSMj;) (URSMy)), say Sknr,

consisting of 7 elements with the assumption
3 R
min{©(2c: f),O(x;g)} > 2 (min{©(occ; f),B(x:9)} > E}}‘

and there exists an URSMy). say Srr. consisting of 9 elements with the assumption
min{O(oc: f),O(oc; 9)} > .

Notice that Theorem 6.2 in [3] also is not correct, because the proof contains the
same inaccuracy mentioned above.

Using the arguments of the proof of Theorem 1.1, one can prove the following

result.

Theorem 4.2. Iﬂ_ addition to the hypothesis of Theorem B, we suppose that S 1s the
set of zeros of P. If

(i) ;=2 and O(o0; f) + O(o0;9) >3+ K
(ii) m =1 and O(oo; f) + O(o0; 9)+ 3 mm{e[m f),8(:9)} > 5+k—-3,
(iii) m = 0 and ©(oc; f) + O(o0;9) + 5 min{©(o0: f), B(0c; ¢ g)} > 4+ &3

then S is a URSM,,) .
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It follows from Theorem 4.2 that there exists an URSM2 (URSM1), say Srg,

consisting of T elements with the assumption

O(oc; f) + O(o0; g) > g (©(o0; f) + B(0c0:g) + % min{6(oc; f).O(oc0: g)} > 2)

and there exists an UESM-IM, say Sg g, consisting of 10 elements with the assumption
A(o0; f) + B(oc; g) + 5 min{B(oo; f),O(c0; 9)} > 2.

Note that the last result corresponding to URSM-IM improves the result of S.
Bartels [5], and at the same time, it improves and rectifies Theorem 6.2 of [3].

Meanwhile, we note that the above discussion already rectifies the Concluding
Remark by Bai, Han and Chen (see [3], p. 642). Actually, the main lacuna was started
in the paper by Y. Xu [17], where the author first started to reduce the cardinality
of Sgr under some restriction on the deficiency conditions. Analyzing the proof of
Theorem 1 from [17] (see pp. 1492-1493), we easily find that the relation (3.12) in
the proof can be deduced from (3.11) enly when min{8(2c; f),8(c0; g)} > % In the

Application Part of [3] the lacuna has just been carried forward.

5. CONCLUDING REMARK AND AN OPEN QUESTION
Suppose that the polynomial P(z) is defined by (see [1]):
(5.1) P(2) = az" — n(n —1)22 4+ 2n(n — 2)bz — (n — 1)(n — 2)b°,

where n > 3 is an integer and a and b are two nonzero complex numbers satisfying
ab™=* # 2. We have from (5.1) that

(5.2) P'(z) = “[az" — 2(n — 1)2% + 2(n — 2)bz].
Note that P'(0) # 0, and so in view of (5.2), P (z) = 0 implies

az" —2(n—1)z2 + 2(n - 2)bz = 0.
Now at each root of P (z) = 0 we have

P(z) = 2(n—1)2*-2(n-2)bz—n(n-1)z2+2n(n - 2)bz — (n - 1)(n — 2)b?
= —(n-1)(n-2)(z-0b)>

So at a root of P (z) = 0, P(z) will be zero if P'(b) = 0. But P’(b) = nb(ab"~2 - 2) #

0, which implies that a zero of P'(z) is not a zero of P(z). In other words, each zero

of P(z) is simple. Also, we have P° = n(n — 1)az"-2 - 2n(n—1). So P'(2) = 0
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implies az"~* = 2. Now at a root of P"(2) = ( we get

P’(z} = nzaz""? - n(n - 1)z + 2n(n — 2)b
= 2nz-2n(n—1)z 4+ 2n(n - 2)b
= 211{:—{n—1]z+[n—2,\b}
= 2n{-(n—-2)z+ (n—2)b} = —2n(n — 2)(z — b).

We see that P”{b] # 0, and hence a zero of P’ (z) is not a zero of P’(z). This
implies that each zero of P'{z} is simple. Therefore, P’( 2) has k = n — 1 zeros.
With the help of Theorem 1 of [2]T we conclude that P(z) is a SUPM when n > 6.
Following the procedure as adopted by T. C. Alzahary in [1]. one can easily see that
P(z) produces a URSM when n > 11.

If a, B are two distinct zeros of P'(z), then P(a) P(8) implies (a + 3 — 2b)(cx —
B) # 0, and it is satisfied only when a + 3 # 2b. So. il o + B # 2b, then P(z) is
critically injective.

But till date this fact can not be ascertained. Hence there is a doubt about whether
P(z) is critically injective polynomial or not. though its zero set is producing a URSM.
So there remain an open question:-

What 1s the gﬂlenﬂ criterion for a SUPM of degree n having n zeros of the form

Plz)%= a,z" + v u,-zj, where n > m and none of mae—l] m) vanish, the
j=0
zero set of which is a URSM ¢
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