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Abstract. Lot G be a homogencous group, and let X, X3. . Xpy be left-invariant

real vector Relds on G that are hamogeneous of degree one with respect to the dilation

group of & and satisfy Hormander's condition. We establish a regularity result in the
Po

Orlicz spaces for the following equation: Lu(x) = ¥ «,, (1) X, X;ju(c) = f(r), where
i=1

a,,(z) are real valued, bounded measurable functions defined on G, satisfying the uni-

form ellipticity condition, and belonging to the space VAfO(G) {Vanishing Mean
Qascillation) with respect to the subelliptic metric induced by the vector ficlds X, X3,

R T
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]. INTRODUCTION AND MAIN RESULTS

Let' G be a homogencous group, and let X, X5, Xy, form a svstem of O
real vector fields defined on RY (po € N), which are left iuvariant with respect to the
left translations on G and are homogencous of degree onc with respect to the dilation
group of G. Also, assume that they satisty the finite rank condition at every point of
RV, that is,

rankL(X,...., Xp)(z) = N, r € RV,

where £(X),....X,,) denotes the Lic algebra gencrated by the fields Xy.. ... X,
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Innovation Programs of Iligher Education Institutions in Shanxi (No. 2015101).
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Our aim is to establish regularity resuits in the Orlicz spaces for solutions of the
following equation
(1.1) (= i ai(T) X, X;u(x) = f(z). £ €G,
ij=1
where po < N. A = (a,;(x)) are real valued. bounded measurable functions defined
in G. satistying very weak regularity conditions, namely, they belong to the class
V MO(G) defined with respect to the homogencous distance. Also, the matrix (ai;(x))

is asswned to satisfy the condition:

Po
0 =ay, v ER < Y ay(2)6E; S vIgP.

ig=1
forevervi,j=1,....pg. EER™. v >0and ae. T €G.
In 1967, Hérmander [12] investigated the operator Ly = Y tu, X7 + Xo, and

pointed out that the finitc rank condition implies the hypoellipticity of L,. In [8],
Follaud proved that homogeneous hypoelliptic operators on nilpotent groups have
homogencous fundamental solutions. Later, Bramanti and Brandolini (4] have obtained
L¥ estimates for the operator L on homogeneous groups. The Orlicz spaces originally
introduced by Orlicz |17] as generalizations of L? spaces in Euclidean groups, have
been extensively studied in the literature (see [1, 13, 14, 22] and references therein).
The theory of Orlicz spaces plays a major role in a wide range of areas (see [18]). A
number of papers are devoted to regularity theory of elliptic equations in the Orlicz
spaces (see [2. 13. 21]. Criteria of weighted inequalities in Orlicz classes for maximal
functions defined on homogeneous type spaces were obtained by Gogatishvili and
Kokilashvili in [10].

Definition 1.1. For a measurable function f € L}, (G), denote

., |
(1.2) nf(R) = sup — / |f{y) - fa.
B.cG |Brl I,
wherc fp, s the average of [ over B,. A function [ is said lo belong lo the class
BMO(G) (Bounded Mean Oscillation on G). if || f||. := supg np(R) < +oc, while we

say that f € VMO(G) (Vanishing Mean Oscillation), if limz_,q n(R) = 0.

dy, R >0,

The class of all functions 4 : [0, 5c) — [0.oc) which are increasing and convex we
denote by &.

Definition 1.2. A function ¢ € ® is said to be @ Young function if

lim QQ = lim —t- “ 0,

v ST . l-‘o‘.'"& olt)



REGULARITY IN ORLICZ SPACES FOR NON-DIVERGENCE

Definition 1.3. 4 Young function ¢ € & 1s said to satisfy the global V> condition,
denoted by ¢ € V3, if there exists a number o > 1 such that ¢(t) < = for every
t>0.

Definition 1.4. A Young function ¢ € P s said to satisfy the globa! A, condition,
denoted by ¢ € A;, if there ezists a positive constant K such that for every t > ()
(1.3) #(2t) < Ko(t).

Lemma 1.1 ([6]). Let ¢ be a Young function. Then ¢ € VoM Ag if and only if there
erist constants Ay > A, >$) and o) 2 ay > 1 such that for any 0 < s < ¢

s\™ o(‘) A\ s
14 Al = € el < An [~
(14) “(o) =90 "(,)
Morcover, the condition (1.2) implies thal for 0 < 8, <1< 8, < oc
(1.5) $(81L) < A0 9(t) and $(02t) < A; 05 6(1).
A simple example of functions ¢(t) satistying the A; N V3 condition is the power
function @(t) = t* with p > 1. Moreover, we remark that the A, NV, condition makes

the function grow moderately. For instance, ¢(t) = [|°(1 + |log|t||) € A, NV, for
p> 1l

Definition 1.5. Let ¢ be a Young function. The Orlicz class K®(G) s defined to be

the set of measurable functions g salisfying the condition:

/ #(lgl)dz < oo,
G
and the Orlicz space L*(G) is defined to be the linear hull of K°(G).

In this class we consider the following analog of the Luxemburg norm:

(1.6) lulls = inf{k >0 / ( “"" ,u <1}

Observe that, in general, K¢ ¢ L?. However, if ¢ satnsﬁcs the global A; condition,
then we have K'® = L?. Moreover. if g € L?(G). then f ¢(lgl)dx can be written in
the form (see [21]):

(L.7) /C ooz = f., (e e G lgl > AYdlp()).

Lemma 1.2 ([6]). Let U be a bounded domain in G and ¢ € Vo N Ay. Then
L™ (U) c L¥(U) C L*2(U) c L'(U),

where () 2 o > 1 are as in Lemme 1.1
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For p € [1. x| we define
Pu

20
IPullewe = 3 Xl I1P*llime) = > IXe X ull Loy
=1

1,1=1

Similarly can be defined || D™l for m = 1, 2.

Definition 1.6. Let ¢ be a Young function. The Orlicz-Sobolev space S*#(G) s
defined to be the set of those functions u € L?(G) whose derivatives D"u also belong
to L°(G) for all 0 < h < 2 such that |[ul|gre(e) = Z:_‘, D" ully 1s finite.

As iu the case of ordinary Sobolev spaces, Sg“’(G) is defined to be the closure of
Ci°(G) in S24(G).

In this paper, by using the same techniques as in [20, 21]. an approximation
arpument and the reverse lolder incquality, we obtain Orlicz estimates for solutions

of equation (1.1). The main result of the paper is the following theorem.

Theorem 1.1. 4ssume that ¢ € & is a Young function and ¢ € AoNVa. If f €
L%(G) and u € §%°(G) is a solution of equalion

Lu—pu=finG.
then there exist posifive constants py and ¢ such the! for any p > po, we have
(1.8 [ @0 + (10wl + ot < ¢ [ olif)da,
a G

where the constant ¢ depends only on G, v, py and @.

The paper is organized as follows. In Section 2. we introduce the notion of homnogenous
groups. In Scetion 3 we derive several lemmas. which are used to prove the main result.
Section 4 is devoted to the proof of the main result - Theorem 1.1.

2. HOMOGENOUS GROUPS

Given a pair of stnooth mnappings:

[(z.g)m»zoy : RYxRY 5 RN, e 27" :RY 2 RV

The space RY together with these mappings lorms a group with the identity being the
origin. Next, assume that there exist 0 < w; € w; < ... € wy, such that the dilation
Do) : (x1.....zx) = ("' 71, ... ¢°xx) is a group automorphism, for all o > 0.
The space RY with this structure is called 4 homogeneous group and is denoted by
C'. For more details on the subject we refer to |4, 19].
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REGULARITY IN ORLICZ SPACES FOR NON-DIVERGENCE

A homogeneous norm || - || on G is defined as follows. For any z € G\{0} we set
Izl = p & 1D(1/p)z| = 1.

where | - | denotes the Euclidean norm, and also let lIol = 0. Then we have
(i) |D(e)zll = ellz|| for every z € G. o> 0;
(ii) there exist constants ¢;,c2 2 1 such that for every z.y € G,

== < eullll;

llz o yll < ea(lixll + [lll)-
[u view of the above propees, it is natural to-lefine the quasidistance d(-. -) by
(2.1) dz,y) = [ly~ o z|.
Wt denote the ball with respect to d by
(2.2) B(z)=(ye G d(xy)<r}.
Note that B(0,7) = D(r)B(0,1) and
(2.3) |8, r)| = F7|B(0, 1)),
where z € G, r > (), and
(2.9) Q =wy 4 Tun,

which is called the homogeneous dimension of G. By (2.3). the doubling is valid.
that is. |B(x,2r)| € ¢|B(z.r)|, = € G. r > 0, and therefore (G,dr. d) is a space of
homogenous type.

In what follows, we will define another homogenous group §. whose underlying

wmanifold is R¥*! endowed with the cowmposition law
() OT)=(xoyt+7), (z,t)'=(z"1 1)

for any {z,t),(y.7) € R¥*!. The dilation on R¥*! is defined by D(p) - (r.1)
{D(e). ot) for all g > 0.

Example 2.1. Consider the Heisenbery group G(R? .0, D())), where
@1y} e (@ nch) = (@1 + 220+ ya, b + b + 2(zayy — Ty2)).

D(A)(x, y.t) = (Ar, Ay, A%t).

a0 . _ 0 AL P d
Xy = br +2ym‘ Xy = Ey--zra. [X3, Xg] = -Jb—‘

45




X. FENG

It 13 easy to check that X, . Xz are left invariant with respect to the left translations
on G and are homogeneons of degree one with respect lo the dilutton group of G.

Moreover. they satisfy the finite rank condition at every point of R3. that is,

rankL(X1. X2)(z) =3, z € R’

3. SOME LEMMAS

For convenicnce, in this seetion we assume that 2 € Cg®(Bg,) with some constant
Ry, > 0 is a solution of cquation (1.i). Let p = (14 a3)/2 > 1. In fact, in the

subsequent proof we can choose any canstant p with 1 < p < as. Now we define

A= | 1Dl + MP [ \f|"d,
o

Ja

where Af > 1is a large enough constant to be determined later. For any A > 0 we set
\
(3.1) uxr = u/(AgA). fn = f/{dod),

and observe that wy still will be a solution of equation (1.1) with fy instead of f.

Next. {or any ball B in G we define

1B = l_;ﬂ (/ﬂlD"txl'dJ + M"/nl!al'dt)

and EA(1) = {7 € G - |D?uy} > 1}. Since |[D?%u;| S 1 for z € G\ Ex(1), we focus on
thic level set Ex(1).
By using methods similar to that of applied in [21], we can prove the following

three leminas.

Lemma 3.1. For any A > 0 there exists a family of disjoint balls {B,.(T)}i>1 with
I, € Ex(1) and p, = p(z;, A) > O such that
IA[Bp, (zi)] = 1. I[Bp(z))] < 1 for any p > p;.

and

Ex{1) C U By, (i) U negligible set.
i1

Lemma 3.2. Under the conditions of Letama 3.1 we have

gred (/
T 2V =1 em,, (r 1% 3119}

L / Ifs[Pde).
{r€R,, (2.):1/x]>1/{201)

46
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REGULARITY IN ORLICZ SPACES FOR NON-DIVERGENCE .

Lemma 3.3. If ¢ € & satrsfies the global A, NV condition. then for any by, by > 0

we huve

\ \ .
S loPee ) digban] < (b1 b2.6) [ bz
o M (reGial> ) &

Lemma 3.4 ([9]). Let g € L4(DBar) for some R >0 and g > 1. and let f € L"(Byp)
forr > ¢. Assume that the following estimate holds
1 1 d 1
— - gldr < ¢ (— gdz:) + = fldz + 6— T,
|3 Ja, |Ba| Jy, [Ba| S, {B.| E,y
wherec > 1 and 0 < 8 < 1. Then there exist C = C(G,¢,q,7.8) and e = (G, ¢, q.7. 8)

such that g € LP(B)) for p €%q.q +¢) and

B ) (_'_/,. (;/ s )
(lﬂul n'th se lnzl‘n,“‘{) s |3, n,/ !) J

Lemma 3.5 ([4]). Let Q be e bounded domain in G and &' CC Q. If u € §29(Q)
and Lu € S () for sume positive integer k, 1 < p < 00 and s > /2, then

lleell ax.~qary € edllLaellsooreiay + Nasll ooy }s

where 1 = max(p, §), a € (0,1), ¢ is a positive constant end Q 15 as in (2.4).

Lemma 3.6 (|7]). Letp > 1 and u € S*P(B,). and let Py be the class of polymomials

of homogeneous degree less that 2. Then there exists a polynomial P € P, such that

v iz

(3.2) (E;_I /R O P)(;r)|"dx) Yot ('IEITI /r | ID%u(e)Pde )

foralll < p < % and g = '_?%%_p‘ where Q 1s as in (2.4) and ¢ & a conslant

independent of B, and u.

Lemma 3.7. For any = > 0 there erists a small enough number 6 = 4(¢) € (0,1)

such that if u € Co°(Bn,) is a solution of equation (1.1) in G. and
)l

3.3 — A—Ap |dr €8,
(3.3) TER 9%, f N
1 ’ |

— D? "L.<1.—/ fItdz < 4",

Bl Jo, P04 1 g fy, M
then there ezists Ny > 1 such that
(3.4) / |D*(u — v){’da < &

B,
and
{3.5) sup |D%v] € Ny,
B,
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where v is a solution of equation 30, (@ )m XiX;v = 0 in By.

Proof. We first consider the following Dirichlet problem

(3.4)

f S s ), Xy X jw(r) = Af"'z.;—l i (r) — (0i;)p ) XiXju, ilx € By,
[ ur(T =0 if z € 0D,;.

In the paper |3], J. Bony proved that there exists a solution for the above problem.

Then ¢ = u + w satisfies
((F (e)p,XiXso(x) =0, ifxe By,
1 v(x) = u(z), if z € 48,.

Applving the L? estimates given in |4] to (3.6), we can write

(3.7)

o

/ | D*w[*dxr < / | f+ 3 (ay(2) - (ay;)m,) Xi X;ul?dx
D, JB, 1 j=1
(3.) <c{ / e+ Z/ l(ai (2= N AR ul"dr)

<ec (v“ +/ |D2u|"d$) <e
\ B,

Let P € P;. By using the local L? estimates given in [4], we obtain

| / a
—- |D%ulPdz < ¢ (— PlVdr + — ")
\Ba| Jp, [Baj a.l |B | /B, "

|u — P|Pdx + ¢b”.

,3.9
|E ‘I Ba

l~;": we get

(310) ) P et 2
i - I'd‘.‘. <
(|B4| fu u =Pl ) 13 j ), 1D ulde,

while for p > (-—,97 we have

1 \\/? | 2
3.11 A «I"‘L:) ol 2y| 2% )
it (|B4| B, A . r(‘”" /.;14 P

Hence we obtain the weak reverse Holder inequality

| /p 1 91-2:
3.12) (-—— D? "!::) < (_ 2
(312 B ), \Prds) <5y [, 1Pl

In view of (3.9)-(8.12) and Lemuna 3.4 we conclude (hat (here exist positive constants

By Lemma 3.6, for 1 < p <

£g and C such that

1
3.13 e il
61 (3 .

S i | . e
|D%u ”dﬂf) <6 (iu—dl |D)n|"d.'u) +o8? <C.
B,
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Next. it follows from (1.2) and (3.3) that

pirten) "*0
([ @) - Gyt “F e

ﬂ(v+¢..l 311

S (o™ / s () ~ (a.,)u,ldx) ot

Ilence by (3.8) and (3.14) we can write

(3.14)

\
. L ] 4 -
f |D*wlPdz < ¢ (/ |f|”d.'r+uz_ / i(aij(z) — () B )X X; u|”d:r)
< r{ﬁ’ . (‘:i-"/ |Gu($ (a'J)B.] e :r) ',“0 ()C" 'D2u|p+£ndr)’:

< ¢ (5"+6"’£"3),
\ /

which implies that (3.4) holds by choosing ¢ (6“ + 6"—1‘}5) <E.

Next. we show that (3.5) is valid. Indecd, let P € P, be chosen so that (3.2) holds
for 9 = v — P. Then ¢ satisfies the equation Z‘ ,_l(a.,)g, XiXjv =0 in By Note
that & € C(By). and using Lemnma 3.5 for k =2 and B, = ¥ €C Q2 = By, we

obtain
(3.15) [Ullaa.nB,y S cllFllLe(a,).

By {3.15) and Lemma 3.6, we get
1920l g,y < [1Blla2aca,) < cld]

Lr(B,;)

(3.16) Y
(w,ll,,,' Wa)ffes )

with a constant ¢ independent of v. Finally, it follows fromn (3.4), (3.16) that (3.5)
holds, and N, is independent of v. O
By applying the scaling method on homogenous groups. from Lemma 3.7 we cau

deduce the following result.

Lemma 3.8. For any € > U there ¢osts a small cnough number § = 6(<) € (0.1)
such that if w € C3°(Bp,) 5 a solution of equation (1.1) in G, and
1

390 W S a-a B
( ) [Ba0p, (2)] Bm,,,(,,)l By, (s )ldx <

——' 1
3.18 DPulfPde <), — Pl < g
(3.18) [Bavp (2| S, (20 1D} 1Baop, ()] S, () Il

19



X. FENG
then there erists Ny > 1 such that

i 2
(3.19) / ID3(u} - vi)IPdz S e, sup [D°wi| £ M.
I Biop (x4} By, (2:)

where ¥ € S2¥(Bag,, (2:)) 15 a solution of equation S (@) Bay,, XiXjv = 0 in
Bzup' (.L").

Proof. Denoting

we can use the arguments of the proof of Lemma 3.7 to complete the proof.

Lemma 3.9. Let ¢ € A;NV, and [ € L%(G). Assume that u € C§°(Br,) unth some
constont Ry > 0 is a solution of equation (1.1). Then there exists a postlive constant
¢ such that

j S(|D*u))de < ¢ [ o(1f1)da.
G G

Proof. Siuce ¢, € VM O(G), we can choose p, small euough such that (3.17) holds.
By Lemma 3.2, it is easy to see that, (3.18) is valid. It follows from (3.1), (3.19) that,
forany A >0

Hz € Bsy, (z:) : |D*u] > 2N1AA} = {2 € Bsp (z:) : |D?ua| > 2N, )
< Uz € Bsp, (m3) - 1D ua = ¥))| > N} + Wz € Bsp (x3) < |D?0] > N}
Hz € B (3) : D (ua — 3| > M} S ;\3? f {D?(ux — o)) |Pdz

1oy, L7,

A

ce| By, (z.)].
Setting o = AXg, we can use Lemma 3.2 and (3.1) to obtain

|{z € Bs,, (z:) : |D?u| > 2N}

(s 4 5

i ( f \D*ulPdr + MP / |firda ) .
1P \J(zeB,, (+:)1D%ul>u/2) Hred, (x> n/(2M))

Then recalling the fact that the balls Bs,, () are disjoint,

U Bs,, (z:) U negligible sct D Ex(1) = {z € G : |D?u,| > 1},

rd)

and that E5(N) € E,(1) for any N > 1, we obtain

{z € G : \D*u| > 2Nyu}| < ZH‘I € Bsp (z:) : |D?ul > 2Ny}

< = \D*ulPdz + MP [

@ ( g
ur \J{ee@nD?5) 50 2) S{aeGifN>pn/iaan) 111 ) p
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Furthermnore, recalling (1.7) and Lemma 3.2, we can write

oC
Jouptuar = [” iz € G D2ul> 2Miahalo2Nu)
(43
% 1 \
el Z{f ID™ulPdz | di¢(@N 1))
o M \JzeGDVu|>ps2 J
+eMP / 3 / |fIPdz | d[¢(2N11)]
o B’ \Jreqf)>n/2M)
<

are fa &(1D?u|)dz + ¢ /c o(1f)dz,

where ¢; = ¢;(G, ¢) and ¢; = oG, ¢,e, M). o=
tinally, choosing a suitable € such that c;e < 1/2, we obtain

/ o(1D%u))dz < c [ o(1f1)dz.
G Jc

4. PROOF OF THE MAIN RESULT

In order to prove our main result, we first establish a lemma by using the method
applied in (15, 16].

Lemma 4.1. Let the functions ¢ and f be as in Theorem 1.1, and let u € C§°(Bp, /1)
be a solution of equation Lu — pu = f in G. Then there erist positive constants i

and ¢, depending only on G. ¢, v, Ry, such that
w2 [ auiiz + 0+ [ svuiae + [ 41Dz
G G G

<e /G SlILe — pulldr = ¢ /C 81/

Jor any p 2 po. where ag is as in (1.4).

(4.1)

Proof. Define (z) = u(r,t) = w(z)p(t)cos(/nt), La(z) = Lu(z) + (il)s, where
v € C5°(—Ru/2, Ry/2) is a cut-off function. It is easy to check that the coeflicients

uatrix of the operator L
A . Amm 0\
Am+1)xtnt1) = ( 0 1)
satisfies (1.2) and the VMO condition. Moreover, we have Lii(z) = f, where
f = w(t)eos(Vat)(L — p) + u(z)¢" (t)cos(v/at) — 2/mu(z) () sin(V/it).
For convenience, we denote D?,di(z.t) = {D?@(z), (X u)t, i}, where

D& = D4 = (XiXju}¥ ). (Xu)t = {(Xiu)e}X,.
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It follows from Lemma 3.9 that
(4.2) [supines < [ oifhas,
where dz = drdt. According to (1.5). we get
¢(|D?u(z)]) < K(Ile(t)eos(iat)])= (le(t)cos(y/7it) D? u()]).

Since XiX ju = p(t)cos(\/pt)XiX ju(z) and cost is a periodic function, we have
(4.3)

[ sv*uta)as

Je ' ,

= ( > / (ip(*)cos(ﬁt)l)“‘dt) f —l:(lw(t)r.‘os(\/ﬁt)|)"‘¢(|D2u(:r)|)drdt

< (‘/ b (t)cos(y/5it) D%u(z)|)dedt = C/cp | D2 a|)dz < C/ (D%,
where Lhe constant € depends only on N, ¢. Similarly, we can obtain

L o(|Du(z)|)dr £ C‘/ &(|e(t)cos(\/ut) Dulr)|)dxdt

< CZ/ ( ,_|Xm t(z) — Xiug'(t)cos(\/nt)| )d:z:dt

i=]1

W (/;&b(lﬁﬂ(z)l)dz+/G¢(|D_,u|)d;r),

(@d)  pon? /G o(|Du(z)l)dz < € L H(Xu)t(z))dz < C f (D3, 1(z))dz.
y S

which implies that

Since

/G o(lu(z)l)de

sc [« #lw:) — u(2)(2" (€)eos(y/Rit) — 2/’ (t)sin(/at)dadt,
then by choosing p > p large cnough we obtain '
(45) w [ 91Dz < 0 [0t atnds

Combining (4.2)-(4.5) and taking s > 119 > 0 large cnough, we conclude thal
b [ tdz + /2 [ gl + [ #10%uis
e JG G

s C/stb(lszﬂ(z)l)dz < C'L o f])dz.
52
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Morcover, noting that
~ i (Ominl Jiit) = u(z)(('(Heos( V) — & (t)cos(/at)),

we have
[ eufnizsc ( [ oL - puiyar + /c (ul)

Finally, combining the last two inequalities, and taking 2 2 po > 0 large enough, we
complete the proof of Lemuma 4.1.
To prove Theorem 1.1, we also need the following result from [5].

Lemma 4.2 ([5]). Let (X.d%:) be space of homogenous type. Then for every ry > 0
and KX > 1 there erist p € (0,70) ¢ positive integer M and a sequence of points
{#)5: C X such that

20 oG
UBimie)=X: Y xppexolz) M VzeX

i=1 =1

Proof of Theorem 1.1. For zy € G let p € C3°(Bp, /2(xv)). Denote
v(z) = u(z)p().
It follows that
Lo(z) — pv(e) = fp+ 20, XiuXi+a,uXiXj=g.

Assume that u > po > 0. It follows from Lemma 4.1 that

s / o(lv))dz + p227? / &(|Vv|)dz + / é(|D*|)dr < C / o(lgl)dz

G G ] G
< C'(‘/(: fD(UXBRn,,(r..)l)d-T+_[Crﬁ(luxg,,m(,,,)l)dr+/ 6(|Dux By, u(20)|)dT).
: G

Taking into account that

JIG #(lpDul)dz < J/G &(|Dv|)dz + /G é(|uDp))de,

fG“lﬂD’"be SC( /G &(|D*v|)dz + /G #(|DuDpl)dr + /C ¢(FHD’ﬁUd.r),

we obtain

e { otz + [ oioDuliiz + [ ao?ui)is

< C(L 4’“.’/‘(5%/:(20)')(’:0 + [Jﬂa/‘l—/p¢(lu)(unﬂ/,(,n)|)d.r+ _/C¢(FDUXBR"/1(I..)|)(L’:),
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Ilence. using Lemma 4.2, we can write
wor [ (s + =/ [ oDudz + | S(1D%uliz
e [ .:FG
= u™ / ol |u|)ebr + u"’ﬂj o(| Dul)dz
UZ, B(x.,Ro/2) =

',';1 B(I.-Ro/a)
+[ 8(1D%ul)dz
UX, B(x: Re/2)

< | Sz + 3 u [ &(IDul)dz
1=1

J B(x:, 0 /2) = B{z,,Ra/2)

S D?u|)dr
+2mexau>

<cY( mmn+wmf
::: B(t(nni B(‘-Rﬁ)

mma+] 6(| Du)Le)

{(x.,Ra)
scmdﬁWMrw"@mea+demay

By choosing & > po > 0 large enough, we conclude that (1.8) is valid. a
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