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Abstract. The main purpose of the paper is to generalize the notions of the
Kothe-Toeplitz duals and Null duals of sequence spaces by introducing the concepts
of @EF-, BEF-, yEF-duals and N EF-duals. where £ = (E,,) and F = (I},) are two
partitions of finite subsets of the pasitive integers. These duals are computed for the
classical sequence spaces {a , ¢ and . The other purpose of the paper is to introduce
the sequence spaces X(E.A) = {x = {z1) (ZUEEk £ — Zi(—:Em,, x,):ll € X},

where X € {lox.c.cy} We investigate the topological properties of these spaces,
establish some inclusion relations between thein, and compute the .NEF—(or Null)

duals for Lthese spaces.
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1. INTRODUCTION

Let w denote the space of all real-valued sequences. Any vector subspace of w is
called a sequence space. Let l.,. ¢ and ¢y Le the spaces of hounded, convergent and
null sequences z = (z,.). respectively, endowed by the norm ||z|» = SUPg, |2k
We write bs and cs for the spaces of all bounded and convergent series, respectively.

Kizmaz [6] defined the difference sequence space

X(A) = {z = (zx) | Az € X},
for X € {l.c.co}. where Azx = (x4 — 74_1)5., and 2o = 0. Observe that X(A) is
a Banach space with the norm ||.r||a = supy,, |2k — #a-y), For a sequence space X,
the matrix domain X 4 of an infinite matrix A is defined by

(15 Xa={r=(rn)€w : Are X}.

which is a sequence space. The new sequence space X 4 generated by the limitation

matrix A from a scquence space X can be the extension or the contraction or the

overlap of the original space X. A matrix A = (¢n4) is said to be a triangle matrix
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ifa, =0 for k > n and an, # 0 for all » € N. If A is a triangle matrix, then one
can easily observe (hat Lthe sequence spaces X4 and X are linearly isomorphic, that
is, X4 = X.

In the summability theory. the A-dual of a sequence space is very important
in connection with inclusion theorems. The notion of a dual sequence space was
introduced by Kéthe and Toeplitz [8], and was extended to vector-valued sequence

spaces by Maddox |9]. For the sequence spaces X and Y, the set A (X, Y) defined by
MX,)Y)={a=(ax) €w : (axzr)pe, €Y Vz=(rc)€ X}
v -

is called the multiplier space of X and Y.
With the above notation, the a-, 8- ¥ and N-duals of a sequence space X . denoted

by X*. X?. X7 and X V. respectively, are defined as follows:

X =M(X,l), X" =M(X,cs), X" =M(Xbs), XN =M(X, )
Let E = (E,) be a partition of finite subsets of the positive integers such that
{1.2) max B, < mnk,;. n=1.2.--

For X € {l;. 1w, ¢, e} with 1 < p < 00, we define the sequence space X (E) hy

X(E):I.r—(n (Zz) ex
{ k=1

leFJ\

The semiuorws ||.[|,, £ on the sequence space (,(£) (1 < p < x). and ||l £ ou the
space X (F) for X € {l,c,p} are defined by formulas:

1!»

by c = (Z . 1€ p<os, Iz)loo,2 = sup Z my

\n= ;el-. / "2l ek,

It is worthwhile to note that in the special case £, = {n: n =1,2,- -}, we have
X(£) = X. Recently the Kothe-Toeplitz duals for these spaces were computed
by Erfammanesh and Foroutannia. In the past, several authors have studied the
Kothe-Toeplitz duals of sequence spaces that are the matrix domains of triangle
matrices in the classical spaces . I, ¢ and ¢. For mstance, some matrix dowains
of the difference operator have been studied in |2, 3, 10, 12|. In these papers the
matrix domains are obtained by triangle matrices, and hence these spaces are normed
sequence spaces. For more details on the dowmains of triangle matrices in some sequence

spaces, we refer the reader to Chapter 4 of [1]. Note that the inatrix domains considered
29
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in this paper are specified by a certain non-triangle matrix, so we should not expect
that the related spaces are normed sequence spaces.

I this paper. the concepts of the Kothe-Toeplitz duals and Null duals are generalized
and the a ks F-, 8EF-, yEF- and N E F-duals are determined for the classical sequence
spaces I, ¢ and ¢o. Also, the norined sequence space X{A) is extended to the
semi-normed space X(E. A), where X € {la,c,e0}. We consider same topological
properties of this space and derive inclusion relations. Morcover. we compute the
N EF-(or Null) duals for the space X (F. A). The obtained results are generalizations

of sume results of Malkowsky and Rakocevic [11] and Kizmnaz |7].
2. THE aEF-. 3EF-, yEF- aNxb NEF-DUALS OF SEQUENCE SPACES

In this section. we generalize the concept of multiplier space to introduce new
generalizations of Kéthe-Toeplitz duals and Null duals of sequence spaces. Furthermore,

we determmine these duals for the sequence spaces Ly, ¢ and ¢p.

Dcfinition 2.1. Let E = (E,)) and F = (F,) be two partitions of finile subsets of
the positive integers satisfying condition (1.2). For the sequence spaces X and Y, the
sel Mpg p(X.Y) definad by

My p(X.Y) = {a =(ay) Ew : (Z a; Z .r\ €Y Vr=(xx)eX l
\\rGFy W, k=i J

is called the generalized mudtiplier space of X and Y.

With the above notation. the aEF-, BEF-, yEF- and N EF-duals of a sequence
space X, denoted by X“EF xXPEF ¥1EF gnq XNEF respectively, are defined by

XOEF = pMpp(X. ), XPEF = Mpp(X.cs).

XVEF = Mpp(X,bs), XNEF = Mpp(X, ).
It should be noted that in the special case E, = F, = {n} for all n, we have
1\1&)‘-()(, Y) = M(X. Y}, and heuce

)(nHF‘ e XﬂEF — Xﬂ, X'yE'F - X’, xNF,‘F=XN.

Lemma 2.1, Let X. Y, Z C w and let {Xs : 6 € A} be any collection of subsels of
w. Then the following statements hold:
(#) X C Z implies M p(2.Y) C Mg r(X,Y),
(i2) Y C Z implies Mg p(X.Y) C Mg p(X.2),
(ki) X € Mg p(Mpe(X,Y).Y),
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(w) M. r(X,Y) = Mg r(Mp (Mg r(X. Y),¥).Y),
() Mp.r(Uses X6, Y) = Ngep Me.r(Xs, Y-

Proof. The statements (i) and (ii) immediately follow from the definition of generalized
multiplier space.
(iid) Let x € X. We have (.o @0 ier, t.):.'_l €Y forallae Myg(X V). and
consequently © € My p(Mpp(X,Y),Y).
(iv) By applying (ii7) with X replaced by Mg g(X,Y ), we obtain

Mer(X,Y) C Mg, F(Mee(Mep(X.Y).Y).Y).

Conversely, due to (iii), we have X C Mpe(Mg p(X.Y).Y). So, in view of part (i),
we conclude that
Mg p(Mpg(Mer(X,Y).Y),Y) C Mg r(X.Y).
(v) Observe first that in view of part (i), X5 C Usea N4 for all 6 € A implics
"‘{E.F(U X&-Y) C n A’E_p'(.x,s. Y)
$€A JeA
Couversely, if a € ;e 4 Mp.p(X5,Y). then a € M r(Xs. Y) for all § € A. Hence

(Z=2 q) ev.
1€FL €Ey 7/ Ranl

for all § € A and for wll 2 € Xs. This implics (Z,ep @ X icp, J.'I:‘l € Y for
all 7 € U;eq Xo, and hence @ € Mg p(Useq As-Y) Thus Nsea MEF(X5.Y) C

JWF:,F(U“_,, Xs.Y). O

Remark 2.1. If E, = F, = {n} for all n, then we have Lemma 1.25 from [11].

Letting 1 to denate either of the symbols e, 3, 7 or N. from now on we will use

the following notation
(“"f:P)fEF = X‘H‘Ei".

Corollary 2.1. Let X,Y Cw and { X5 : 6 € A} be any collcction of subsets of w.
and let t denole either of the symbols o, 8, 4 or N. Then the follounny statemends
hold:
(1) XEF c XBEF ¢ X"EF ¢y in particular, X EF is a scquence space.
(i1) X C Z implics Z1EF C It
(i) X c XHEE

J1
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(iv) X1EE = XHHEE
» VEF AEF
(" (UA;\’\A) ’nl.-i'\l -

Remark 2.2. If E, = F,, = {n} for all n. then we have Corollary 1.26 from |11].

Below, we determine the gencralized inultiplier space for some sequence spaces. To
this end. we first recall the {ollowing result from [4]. Also. from now on. we denote

the cardinal number of the set Ex by |Ex|.

Theorem 2.1 ([4], Corollary 2.5). The following statements hold.

(1) Let sup,, |Ea| < oc. then we have X C X(E) for X € {lx,c0}-

(i) fE.={Nn—-N+1.Nn-N+2...- Nn} for all n, then c C c(E).

(#i1) If. in addition, |E,| > 1 for an infinite numnber of n, then the inclusion relations

m parts (1) and (ii) are strct.

Theorem 2.2. If sup, |Ex| < oc, then the follounng statements hold:
(1) Mg gleo. X) =l (F). where X € {lx,c,e}.
(i) Mg r(lx.X) = co(F). where X € {c.cq}.
(#ii) If. m addition, E, = {Nn~ N + 1,Nn — N +2..-- .Nn} for all n, then
Mg gle.c) = c(F)
Proof. (i) Since ¢y C ¢ C L, by applying Lemma 2.1(ii), we obtain

MEg (0. o) € Mg p(co.€) € Mg p(ca: o).
So, it 1s cnough to verify the inclusions I (F) € Mg g(co, co) and Mg pleg, lx) C
I.(F). Assume first that a € [ (F) and & € cg. Then by Theorem 2.1 we have z €
"o(E), and hence limi—es (Eiep, 1 Licn, z;) = 0, implying that « € Mg r(co, co)-

Thus. we have [ (F) C Mg p(co. co)- =
Now et o & Lo (F). Then there is & subsoguenee (Z_,h ﬂ.) \ of the soquence
4 =

(Z;eﬁ u.):_‘ such that iz'e”h, a.| > j% for j =1.2,---. If the sequence = = (zi)

is defined by

3 “
- v :
By = e,

{ _‘-_'.iL. ‘I 1= min &‘
] otherwise,

for i = 1.2.---, then we have z € ¢g and E,“‘ s zien, a, = (=1)73, for all j.
.

32
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showing that Mg plan. i) C loo(F).
(i1) By Lemma 2.1(ii) we have

My pllsc. co) C Mg plla. c).

Hence. it is enough to verity the inclusions ¢ (F) € Mg g(ls, o) and Mg p(le, ) C
co(F). Assume first that a &€ cg(F). Then by Theorem 2.1 we have

lmoxo(z Ea:.)—ﬂ for all € ly,

\aeF’. icFy

that is, @ € Mg p(lec, o). Thus ¢o(F) € Mg pllos. (o)

Now let a ¢ co(F). T‘n there are a real number b > 0 and a subsequence

-~

(Zie”», u'),‘=1 of the sequence (Z.eﬁ "')k_—x such that |Z,€F.‘ gyl > b for all
for j = 1.2.--- . Defining the sequence r = (x;) as in part (i7). we have z € I
and (Y icr, 0 3 e r, 1.)::1 ¢ c, which implics ¢ € Mg p(la:,¢) and shows that
Afg‘p(lw,c) C p(F).
(i1z) Suppose that a € ¢(F). By applying Theorem 2.1, we conclude that

tl-'.'?u (Z a, Z 1‘.\ exists for all z € ¢

i€F, €E
So a € Mg p(e.¢) and ¢(F) € Mg r(e, c)
Now we assume a € c¢(F), and define the sequence = by z = J; .9 )1t
is casy to sce that € ¢ and (Z.eh MY ek, :r,)k L= (e s, e ) , €« Thus,
a &€ Mg g(e. ¢), showing that Mg g(e, ) C ¢(F). (]

Remark 2.3. If E, = F,, = {n} for all n, then we have Ezample 1.28 from [11].
As an immediate consequence of Theorem 2.2, we have the following result.

Corollary 2.2. (i) If sup, |Ex| < 80, then e/ EF = 1 (F) and IYEF = o(F).
(it) f En={Nn=N+1,Nn-N+2.-- Nn} for all n, then ¢VEF = ¢(F).

Now we proceed to obtain the o EF-. BEF- and yE F-duals for the sequence spaces

1y, ¢ and cy.

Theorem 2.3. Suppose that supy |Ex| < oc, and let 1 denote one of the symbols a.
B8, v. Then we have c(',EF =tEF = l;fr =4, (F).

Proof. We only prove the statcment for the case t = 8. the other cases can be proved
similarly. By Corollary 2.1(ii) we have 1277 ¢ 3EF  JEF Hence. it is enough to
34
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show that [,(F) € 1257 uud 5F ¢ 1,(F). Let ¢ € )(F) and ¢ € I be given. Then
by Theorem 2.1 we have z € [o(F). llence

i'zn,zx.

€Fa why
showing that (3 ,cr @ Dick, 1.)“_. € cs. Thus, we have a € M2¥* and [|(F) ©
IFF To prove the inclusion co'EF C [1(F), it is enough to show that for a given
a ¢ 1, (F) a sequence x € cg can be found to satisfy (3, @ Yk, r.):;' & cs. To

show the existence of a sequence r € ¢g with the abuve property. observe first that

< sup < 0.

3

k=l

3

1€F,

e

e

siuce u ¢ [ (F). we may choose an index subsequence (1) from N with rp = 0 and

Y 54

kmn, | [t€Fy

>h J=1.2,.--

Now we define the scquence 1 € ¢ such that the first element of the set Ey is equal to

Jls_qn 3 ic# @ and the remaining clements are zero. whenever n,_; < k¥ < n;. Then

we have
- 1 n,-1
pol 09 >RV EE IS ) SENES
k=n, , \1€F. i€F. Y k=n,_ . heF,
for j = 1,2.-- . Therefore (¥,eg, #i e r, a,,-)zl desand a g n:sr, showing that
BEF
«, C II(FJ 0O

Remark 2.4. If E,, = F, = {n} for all n. then we have Theorem 1.29 from |11].

Definition 2.2. A subsct X of w is said to be E-normal ify € X and |}, g 7| £
'4—4|€E., Yil- for k=1,2,.- -, together imply r € X . In the special case where E,, = {n}

for ull n, the set X s called normul.

Examplc 2.1. The sequence spaces ¢y and 5 are normal, but they are not E-normal.
Indeed, taking r = (1,—-1.2,-2,- - ). y = (1. %, ---) and E, = {2n — 1, 2n} for all n,
we have | Z.es.. x| < IZIGE., wland y € g, 1, while 7 € cy.

Example 2.2. The sequence spaces ¢o(E) and {.(E) are E-normal, but they are
not normal. Indeed, taking z = (1.1,2,2,---), y = (1,-1,2,-2.--:) and E, =
{2n — 1.2n} for every n, it is easy to see that |z;] < || and y € cu(E), L (E), while
z & co(E), 1c(E).

Example 2.3. The sequetice spaces ¢ and ¢(E) are neither E-normal nor normal.
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Theorem 2.4. Let X be a E-normal subset of w. Then we have

qu}F= xﬂEF' & x)EF

Proof. By Coroliary 2.1(i) we have X"EF ¢ XAEF  x"EF Heuce, to prove the
statement, it is cnough to verify the inclusion X YEF ¢ X9EF Jet > ¢ X 'EF and r €
X he given. We define a sequence g such that 3. o 5= (sgn 3 £, %) IZ-CE. 7|
for k = 1,2,- .. It is clear that [¥ .o 3| € |X.cp, 2:| for all k. Consequently
y € X, because X is E-normal. So, we obtain

3 (T a2 w)

k=1 \i€Fy 1€E,

< 00.

sSep
"

Furthermore, by the definition of the sequence y, we have 3% | ]Z' cR 2oKE, o <
oc. Taking into account that z € X is arbitrary, we conclude that z € X“EF,

This completes the proof of the theorem. O

Remark 2.5. If E,, = F,, = {n} for all n, then we have Remark 1.27 from [11].

3. GENERALIZED DIFFERENCE SEQUENCE SPACE

Suppose E = (F,,) is a sequence of finite subsets of the positive integers that satisfy
the condition (1.2). For cvery sequence space X, we define the gencralized difference
sequence space X (E, A) as follows:

4 L.

/ N
XE o) ={a=(n) : | Yz~ Y :,-.-) e,\'y
o e

wE, L1 Oy

where X € {lw. ¢.co}- The semiuorw [f.[|g,.a on X(E, 4} is defined by

(3~1) lelle.a =S‘:]) :30" Z Xyt

€E, VEDu.
It should be noted that the function ||.]| g.a canuot be a norm. Since if z = (1, ~1,0.0,
and E, = {2n — 1,2n} for all n, then |jz||z,a = 0 while z # 0. It is also important
to note that in the special case E, = {n: n=1,2,---} we have X(E,A) = X(A)
and fjefle.a = ll=lla.
If the infinite matrix A = (a,x) is defined by

-1 ifkeE,)

1 ifke E,
0 otheruise,
35
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then with the notation of (1.1). we can redefine the spaces lo(E), ¢(E) and eo(E) as

follows:

Ix(E. &) =(loc)a.  c(E.A)=(c}a.  co(E,A) = (co)a-
The purpose of this section is to consider some properties of the sequence spaces
X(E. A) and to derive some inclusion relations for these spaces. Also, we characterize
the N-duals of X (£.A). where X € {lx,¢,¢co}. We begin with the following result

which plays an essential role in our study of the spaces X (E, A).

Theorem 3.1, For X € {lx.c.ry} the sequence spaces X (E, A) are complele semi-

normed linear spaces with respect lo the semi-norm defined by (9.1).

Proof. The result can be obtamed by a direct verification. and so we omit the details.
It can easily be checked that the absolute property does not hold on the space
X(E.A). that is, |z]|le.a # §lz/lz o for at least one sequence in this space, where

|x| = (|zx|)- Thus. X (£, A) is a sequence spacc of non-absolute type.

Theorem 3.2. Let M = {7 = (Za) © 1 ,cp, Ty = 0.¥n}. For X € {lx,c.co} the
quotient spuce X (E.A)/M is lincarly isomorphic to the space X(A).

Proof. Cousider the map
/ X
T X(EA)—Xx@A), e —{ Yl
JEE, in:l

and observe that T is a linear and surjective map. So, the desired result follows from
the first isomorphisio theoreiwn. a

Note that if {E,,| > 1 only for a finite number of n. then we have X{A) = X(E, A).

In the following, we derive some inclusion relations for the spaces X, X(E). X(A)

and X(E, A), where X € {lo,c.cp}.

Theorem 3.3. The following statements hold.
(i) Ifsup, |E.| < oc, then X C X(E,A) Jor X € {lec. 0}
() fE,={Nu—-N+1,Non—-N+2,--. Nn} for all n, then ¢ C ¢(E, A).
(#12) If |En| > 1 for an infinite number of n, then the inclusion relations in parts (i)
und (i7) are strict.
(1v) We have X(E) C X(E.A), where X € {lno, ¢, ¢g}. Moreover, these inclusions
are strict.
(W) fE,={Nu—-N+1.Nn-N+2,-- Nnj} for all n, then X(A) C X(E.AQ).
where X € {loc,c,cn}. Moreover, these inclusions are strict when N > 1.
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Proof. Parts (1) and (i) can easily be obtained by applying Theorem 2.1,

(iii) Since by assumption |E,] > 1 for an infinite number of n, one can chivose a

sequence (n;) with [Ey,| > 1 for j =1,2,---. Define a sequence z = () 8s follows:
2, if k= mink,,
Ty = -3, if k=minE, +1 k=12, -
0, otherwise,

It is obvious that Zoél.'. z; = 0, henee z € X(E, A), while z € X for X € {Ix,¢.co},
showing that the inclusions in parts (i) and (i) are strict.
(iv) Putting E,, = {n} in parts (i) and (i1), it can be concluded that X C X{4). Let
= € X(E) be given. It is casygto check that (¥.c 5, .n-):' € X and (e, :r:.-):;l €
X{A). Thus, z € X(E, A), and hence X(E) ¢ X(E, A). Moreover, if the sequences
z = (2x) and y = (yr) are defined as follows:
r._j 3, iflr=mi.nF,‘_, | o eIl if k = min E,
L 0, otherwise, 1 0 otherwise.
then we have z € X{E.A) — X(F) for X € {Ix,c} and y € co(E. Q) ~ co(E).
(v) Taking into account that
Z TS Z Ti = (-'"’nN’ = -"7nN—l) + 2ZuN-1 — TuN-2) + -+ N(TuN_N41 — 70N-N)
€k, i€k,
+ (N —1)(Zan-~ —Tnn-N—1)+ -+ (Tan_2nvs2 = Tun—2v41).

it is clear that x € X(A) implies £ € X(E.A). Moreover, if N > 1 then we define

the sequence ¢ = () as follows:

n, if k=nN-N+1
sp=m¢ 1-n, if k=aN-N+2
0, otherwise,
and observe that r € X(E.A) — X(A). m
Below, we compute the N-dual of tlie difference sequence spaces X(E.A), where

X € {lc.¢,ep}- In order to do this. we first give a preliminary lemma.

Lemma 3.1. The following stafemnents hold.

(1) If « € Lc(A), then sup, HLI < 00.

(i1) If x € c(A), then 3k — £ (k = 00), where Axy — £ (k — 00).
(iit) If x € cy(A), then T& <4 0 (k — oc).

The proof is trivial and so is omitted.
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Theorem 3.4. The following equalities hold:

x
NEF(E A) =INEF (B A)=(a=(a) : (k o a.) €cgp =d.
ek bwl
Proof. We first show that ¢¥E¥(E. A) = d;. To this end, assuine a € cVEF(E, A),

and observe that

lim Y a S‘ x; =0,

kﬂm‘ﬁﬁ € By
for all r € ¢(E.A). We choose the sequence a: such that 3 ... @y = k for all k,
so x € ¢(E, A) and hence lingaox kY g, a0 = 0. Thus ¢NEF(E A) C dy. Now let
a € d,. Since (Eiem :z;.)zc=1 € c(A) for every £ € ¢(E, A), and there is a real number
£ such that

(T X w) e

JGbL JEEM-,
by Lemma 3.1 we have

r
llll"l Z a, L% T = hm k \“ a,ZJEEk Easith
— k
ILF.. JECE, ‘CFk

Therefore a € ¢¥FF(E A), and hence d, C cNPF(E. A).

Now we show that I¥#F(E, A) = d|. It is clear that ¢(E. A) C I (E, A). implying
that INEF(E A) c ¢VEF(E.A) =d). Let a € d, and T € {x(E.A). Then we have

v L]

(Tiex, .r,): , € {x(4) and sup, ﬂ#| < 90 by Lemma 3.1. Therefore

‘—‘)Q"t Xy L
]1520 S q Z T, = hm k Z =0,

€F,  1€F, i€F,
implving that a € IXEF(E A). O

Corollary 3.1. The following equalities hold:
c¥(8) =17(A) = {a= (a) : (kax) € co} .

Proof. The result follows from Theorem 3.4 with E,, = F,, = {n} for all n. O
Let X and Y be two sequence spaces. and let A = (anx) be an infinite matrix
of real numbers a,x, where n,k € N = {1,2, --}. We say that A delines a matrix
mapping from X into ¥, denoted by A: X - Y, if for every sequence z = (1) € X
the sequence Az = {(Ax),} exists and is in Y. where (Az), = Yopoq @natx for
= 1.2,---. By (X,Y) we denote the class of all infinite matrices A such that

A X Y.
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Theorem 3.5 ([11]. Theorem 1.36). We have A € (cq.ca) if and only if the following

conditions hold:

lim @, =0 (k: ]|2‘.._)'
n—o0

and

sup (z Ia,.kl/l < o0

k=1

Theorem 3.6. We have

(139

-~
cNEV(E, A) 0 a = (ax) : (kzm) €ly p =dy.
-

-
Proof. Let a € dy. Since (Ziel‘:g ;r,)z_il € rpld) for all 2 € cg(E, A), by Lemma 3.1
we have limg_o —Z-:L;kl = 0. Thercfore

5

lim S a; ; z5 = hmk S .‘-_”'L,_:o__
k—yop bt k
Wy ]eEl 1EFy

implying that a € ¢ ZF(E, A).
Now let @ € ¢y PF(E.A) and 7 € (E,A) be given. Then thete exists only one

sequence y = (yx) € ¢y such that 3 p *, = ZL, y,- Therefore

lun Z z aiy; = lxm Z a; z z; =0,

_7 =1:€F, -(f'. JCE,
for all y = (yx) € cp. Defining the matrix A = (a1;)22, by

_I£¢£Fn‘ if I(-”(k
AP l 0 if 7>k,

we have ling_ ZI‘-I ay;y; = 0 for all y € cp. Hence we can apply Theorem 3.5 to

conclude that A = (ax;) € (¢o,¢n) aud

kZa, _sll:p ZZa. —aupZa;‘J < 00

IEFy J=Li€Fy

sup

Corollary 3.2 (|7). Lemma 2). We have ¥ (A) = {a = {ag) : (kag) € I}

Proof. The result follows from Theorem 3.6 with £, = F, = {n} for all n. a
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