Hspectus HAIl Apmennn. Marematuxa, Tom 51, 1. 2, 2016. crp. 71-84.

EXISTENCE THEOREMS OF PERIODIC SOLUTIONS FOR
SECOND-ORDER DIFFERENCE EQUATIONS CONTAINING
BOTH ADVANCE AND RETARDATION

LIANWU YANG. YUANBIAO ZHANG, SHAOLIANG YUAN, HAIPING SHI

School of Mathematical and Computer Science, Yichun University. China
Packaging Engineering Institute, Jinan University, China
Guangdong Construction Vocational Technology Institute, Guangzhou. China
E-wmails: ycurnath@163.com, abiaoa@169.com, 19640840@gg.com, shp7971@163.com

Abstract. Using the critical paint method, the existence of periodic solutions for
second-order nonlinear diflerence equations containing both advance and retardation
is established. The proof is based on the Saddle Point Theoremn in combination with

variational technique

MSC2010 numbers: 39A23.

Keywords: Existence; periodic solution; second-order nonlinear difference equation:
discrete variational theory.’

1. INTRODUCTION

Let N. Z and R denote the sets of all naturals numbers, integers and real nunbers
respectively. For auy a. b € Z with a < b, define Z(a) = {c,a+ 1.-- -} and Z(z,b) =
{a,a+1, .-, b}. The symbol » will denote the transpose of a vector.

Recently, the theory of nonlinear difference equations has been widely used to
study discrete models appearing in many fields, such as computer science. economics,
neural networks, ecology, cybernetics, etc. For the general background of difference
equations, we refer to monograph |1]. The past twenty years. there has been much
progress on the qualitative properties of difference equations, which includes resuits
on stability and attractivity and results on oscillation and other topics (see, {2-8. 12.
13, 15, 17, 18]. Therefore, it is worthwhile to explore this topic

The present paper considers the following second-order nonlinear difference equation

containing both advance and retardation:
(1.1) A (pn(Aua-1)’) + f(n, tnspr, tin, Un-ar) = 0, 7€ Z.

1This project is supported by the National Natural Science Foundation of China (No. 11361067
11401121) and Natural Science Foundation of Guangdong Province (No. $2013010014460)
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where A is the forward difference operator Au, = Un4i — tn. A%u, = A{Aug), 6 >0
is the ratio of odd positive integers, {pn} is a sequence of real numbers, M is a given
nonnegative integer. f € C(Z x R°.R). T is a given natural, pn41 = p, > 0. and
fin+T.vy, va,v3) = f(n, 21, 02, 13).

Note that the equation (1.1) can be considered as a discrete analogue of a special
case of the following second-order nonlinear funclional differential equation with

retarded and advanced arguments
(12) pOp@)]) + fit ult + M), u(t),u(t — M)) =0, t€ R.
The equation (1.2) includes the following equation

(P(De()) + f(tu(t) =0, te R,

which appears in the study of fluid dynamics, combustion theory, gas diffusion through
porous media. thermal self-ignition of a chemically active mixture of gases in a vessel,
catalysis theory, chemically reacting systems, and adiabatic reactor (see. [9]).
Note also that equalions similar in structure to (1.2) arise in the study of periodic
solutions and homeclinic orbits of functional differential equations (see, |10, 11]).
Yu, Shi and Guo [18] have studied the question of existence of homoclinic orbits

for the following second-order difference equation
(1.3) Lu, —wup = f(R. Un4p, Un, Un—M)

containing both advance and retardation.

If 6 =1 and f{n.nym, tn, Un-pas) = Guin, the equation (1.1) becomes
(1.4) A (PrAun-1) + gatin =0,

which has been extensively investigated by many authors (see [1] and references
therein). for results on oscillation, asymptotic behavior, boundary value problems,
disconjugacy and disfocality.

I f(n, %pipr tn, tn-pm) = gnith, n € Z{U), the equation (1.1) reduces to the

following equation
(1) A (pa(Bun-1)") + gnu, = 0.

which has been studied in [1, 18| for results on oscillation, asymptotic hehavior and
the existence of positive solutions.
In the case where f{n,un4ar, tn,n_p1) = gug(tin) + Tn, the equation (1.1) has
been considered in |15) for oscillatory properties of its all solutions.
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Cai, Yu and Guo ([2], Theorem 3.1), assuming that 8 > & + 1, have obtained some
sufficient conditions for the existence of periodic solutious of the following nonlinear

difference equation

(1.6) A(pn(Buni)’) + f(Rua) =0. ne2

Moreover, to our best knowledge, [2] is the only paper which deals with the problem
of periodic solutions to second-order difference equation (1.6). When 4 < § + 1. can
we still find the periodic solutions of (1.6)?

By using various methods and techniques, such as Schauder fixed point theorem,
the cone theoretic fixed point theorem, the method of upper and lower solutions
coincidence degree Lheory, 2 number ol existence results of nontrivial solutions for
differential equations have been obtained in |11].

Another important tool that was used to deal with problems coucerning differential
equations is the critical point theory (see, [LU, 14, 16]). Because of applications
in many areas for difference equations (see. e.g., [1]), recently a few authors have
gradually paid attention to apply the critical point theory to deal with periodic
solutions of discrete systems (see |3, 12, 13, 17]).

For instance, in |12, 13] Guo and Yu have studied the existence of periodic solutions
of second-order nonlinear difference equations by using the critical point theory.
However. to the best of our knowledge, when & # 1 the results on periodic solutions
of second-order nonlinear difference equation (1.1) are very scarce in the literature
(see [2]), because there are only few known methods to establish the existence of
periodic solutions of discrete systems. Furthermore. since f in equation (1.1) depend:s
On up4ar and w, s, the traditional methods used in [12, 13. 17| are inapplicable in
our case.

The motivation for the present paper stems from the recent papers |3, 4, 11], and
the main purpose is to give some sufficient conditions for the existence of periodic
solutions for second-order nonlinear difference equations contaiing both advance and
retardation. The basic approaches used in the paper arc variational techniques and
the Saddle Point Theorem. For basic knowledge of variational methods, the reader is
referred to |14, 16].

The obtained results generalize and complement the existing results in the literature
{2]. The details are given in Remark 1.4 below.
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Let
= j P = ax .
p= Jin {p}) p= wox {p}

Now we are in posilion to state the main results of this paper.

Theorem 1.1. Assume that the following conditions are satisfied:
(F) there erists a funclional F(n, v, 1) € CY(2 x R?. R) such that
:
F(TI + T, v, 1.12) = P(n, 'y, Uq),
OF(n — A, va,v3) " dF(n, v, v2)

= f(nn v, V2, U:l);

3v2 81)2
(Fy) there exists a constant My > O such that for all (n,v1,22) € Z x R’
dF(n.v,va) OF(n, v, va)|

< My, ‘

iy B
(F3) F(n.vy,v2) & +0o uniformly for n € Z as \/vi + vj = +0o0.

Then for any natural integer m equation (I.1) has at least one mT -periodic solution.

Remark 1.1. The condition (F3) implies that there exists a constant A, > 0 such
that
(F3) |F(n,vi,v2)| S My + Mo(Jor| + [ual), ¥(n,v1,02) € Z x R%.

Theorem 1.2, Assume that (F)) and the following conditions are satisfied:

(Fy) there exist constants R) > 0 and a, 1 < a < 2 such that for n € Z and
Vii+d 2R,

OF(n,v,. 1) AF(n.v),v2)
< v, v + Fm

(Fs) there erist constants a; > 0, a2 > 0 and 4, 1 < v < e such that

i(‘.l)
F(n.v1,1) 2 ) (‘/ﬂf+v§) —az, (n,m,m)€eZx R

Then for any qiven nalural m equation {1.1) has at least one mT -periodic solutton.

0

v2 € 50+ 1)F(n, v, va);

Remark 1.2. The condition (Fy) implies that for each n € Z there exist constants

a3 > 0 and a4 > 0 such that
ELLEN))

(Fy) Fin,v;,v2) < a3 (\/14 +QJ + a4, (n,u,v2) € Z x R

Remark 1.3. The results of Theorems 1.1 and 1.2 ensure that equation (1.1) has
at least one mT -periodic solution. However, in some cases, we are interested i the
existence of nontrivial periodic solutions for (1.1).

The next two theorens countain sufficient conditions for existence of nontrivial periodic
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solutions for equation (1.1).

Theorem 1.3. Assume that (Fy) and the following conditions are satisfied:
(Fs) F(n,0,0)=0 for allne Z;

(F7) there erists a constant a, 1 < a < 2 such that for n € Z,

6F(n,11..v2)u 4 OF (n.v1. ) 50
8‘01 ! 3‘02 u3 3

(Fa) there exist constanis a5 > 0 and v, 1 < v € a such that

0«

6+ 1)F(n,v,09), (vi,0) #0;

\ 3(6+1)
F(n,m,m) 2 as (Vnz + 3 J (n,v1,v2) € Zx R?
Then for any given natural m equation (1.1) has at least one nontriviel mT -periodic

solution.

Theorem 1.4. Assume that the conditions (Fy) — (F3) and (F5) hold, and also

(Fy) there ezist conslants ug > 0 and 8, 0 < @ < 2 such that

( \%(JH)
F(mvl,vz)zaﬁ\‘/uf-kv%} , (n.v,m) € Zx R

Then for any given netural m equation (1.1) has at least one nontrivial mT -periodic

solution.

Remark 1.4. For M = 0, the equation (1.1) reduces to (1.6). In the case where
B > 6 + 1, Cai and Yu (see [2|, Theorem 3.2), have obtained some criteyia for the
existence of periodic solutions of (1.6). When 8 < § + 1, we still can find periodic
solutions of (1.6), and hence, Theorems 1.3 and 1.4 generalize and complement the

existing results.

The rest of the paper is organized as follows. In Section 2. we establish the
variational framework associated with equation (1.1) and transfer the problem of
existence of periodic solutions of {1.1) into that of existence of critical points of the
corresponding functional. Some related fundamental results are also recalled. Section
3 contains the proofs of the main results by using the critical point method. Finally

in Section 4, we give two examples Lo illustrate the main results.

2. VARIATIONAL STRUCTURE AND SOME LEMMAS

In order to apply the critical paint theory, we first establish the corresponding variati-
onal framework for cquation (1.1) and give some lemmas, which will be used to prove

our main results. We start by some basic notation.
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Let S be the set of sequences = (- u_p. -« Uo g, U0, 81 Uny - - ) = {Un ) nos ocr
that is,

S = {{un}|un € R. n € Z}.
For any u,v € § and a,b € R, au + bv is dehined to be

au+ bv = {au, + bvp} 42 .

Theu § becomes a vector space.
For any given naturals 7 and T, by E,,7- we denote the subspace of S defined by

EMT = [u € Slun+mT = Up, for any n € Z}

It is clear that E,.7 is isomorphic to R™". The subspace E,,r can be cquipped
with the inner product (u,v) = }:;’:’l u;vj, u.¥ € Eqny, which defines the norm
L
T ki
lluH = (E;":I u}) .u€ Enr.
It is obvious that £, is a finite dimensional Hilbert space and is linearly homecmorphic

to R™7. On the other hand, we define the norm [l -« on Emr as follows:

mT
(2.1) bl = [ 35 bugl* |
jet

for all u € Epy and 8 > 1.
Since the norms ||u||, and |Jx||, are equivalent. there exist constants ¢y, ¢z (¢z >

¢y > 0). such that
(22) cillulla < lull, S callullz, u € Emiy.

Clearly, ||u|| = ||u||2. For all u € Ep,y. define the functional J on Emgp as follows:

i mT . mT
J{u) = “ ol ZP-. (Au,_ )" + Z F(n, uner, tn),
n=1

mT
(2.3) = —H(u)+ Z F(n,unyar, un).
n=1
It is clear that J € C'(Emy, R), and using g = a7, 41 = Um741, for any u =
{un}nez € E,.r we can compute the partial derivative }u'— to obtain
aJ
ar =A (Pu(Auu—l)‘) + .,(n| UnyAf, Un, u"—ﬂr!)-
"
Thus,  is a eritical point of J on E,,7 if and only if

A (pa(Bun-1)%) + f(ntn¢ar Un, ta- M) = 0, 7 € Z(1, mT).
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Due to the periodicity of u = {u,},ez € Emr and f(n, vy, v2,v3) in the first variable
n, we reduce Lhe existence of periodic solutions of equation (1.1) to the existence of
critical points of J on 2,4 That is, the functional J is just the varistional frumew ok

of equation (1 1). Lel

»

2 -1 0 - 0 -1
-1 2 -1
0o -1 2

(o
< Q

c
(=
o !
[ \~]

|

—

be a mT x mT matrix. It is easy to check that the eigenvalues of P are given by

y 3
(2.4) ;\k=2kl—cus2—kr), 4=0.1,2  .mT-1.
mT
Thus, Ao =0,A; > 0,A2>0,- - A,r-1 >0, and we have
Amin = min{As, Az, Amr_1} = 2(1 — cos 2-7),

(2.5)

4 if mT is even,

Amax = AT S AT -1 = } g
max = max{Ay, Az At -1} { 2(1+cosgtpn) . if mT is odd.

Denote W = kerP = {u € E,p|Pu = 0 € R™}. and observe that W = {u €
Enrlu= {c}, c€ R}.

Let V be the direct orthogonal complement of E,..z to W. that is, Enr = V& W’
For convenicuce, we identify u € E,,p with u = (u),uz, - ,umr)”

. Let E be a real Banach space and let J € C'(E, R). that is. J is a continuously
Fréchet-diffeieutiable functional defined on £. We say that J satisfies the Palais-Smale
condition (P.S. condition for short) if any sequence {u*)} C E for which {J (u¥)}
is bounded and J' {u*)) = 0 as & — oo. contains a convergent subsequence in £

Let B, denote the open ball in £ about 0 of radius p and let 3B, denote its
houndary.

Lemma 2.1 (Saddle Point Theorem |14, 16|). Let E be a real Banach space, and let
E = E, ® E, where E, # {0} and is finite dimensional. Suppose that J € C'(E. R)
satisfies the P.S. condition and

(J1) there erist constants o, p > 0 such that J|ps,ne, < 0;

(J2) there exist e € B, N E; and a constant w 2 ¢ such that Joop, > w.

Then J possesses a critical value ¢ 2> w, where

c=inf max J(h(u)), T = {h € C(B,NE\. E)! hlpg.ng, = d}.
hel ue B,NE,
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and 1d denotes the identity opervtor.
Lemma 2.2. Assume that the conditions (F\) — (Fi) are satisfied. Then J satisfies
the P.S. condition.
Proof. Let {u*} C Eny be such that {J (u*’)} is bounded and J’ (u(*)} = 0 as
k — oc. Then there exists a positive constant Az such that |J (u'™)] < M.

Let u®) = /" 4+ ®) e ¥V 4+ W. Taking into account that for large enough &,

flull2 < ( J (“(k “) (11'(“(k))~"> Zf("- n+n-“‘n Snﬂu)un.

n=1

in view of (Fy) and (£3), we obtain

J"H’ (41;“‘) "v( Z f (n “n+M'"u)~"‘( )M) v+ v“‘)IL
n=l
s 2MOZ| (k)l + “ (k)“ 2)!.!0\/nﬂ‘+ 1) “U(u" .

On the other hand. we huw.

CICORTE S (AN
n=l
3 &+t

s PrSt flal, ()
(and-l( ) ) =0+ 1)H \u e

"

Since
! §75+! . T . g8+
ot (S )| mpmysran](Eoey)
and =
[ 5 55 (39 = ()" (4) € ra o0
we get -
(26) < i1 f“*ﬁ "m“zh <H (”m) < +1cg+1)"§‘i ””(k)”:H'

Thus, we have

6+1)‘+

min

O < (o),

implying that {#'*'} is bounded. Next, we prove that {w!*'} is bounded. Since

(27) Ma2J (u“‘)) =-H (u(k)) ZF(n u"+M,us.“)) =
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=-"(.,m)+§ [F (n,uff‘l,,,,ugfi)_p( b "'“')l z (1w wil')
n=|

"-—
in view of (2.6) and (2.7), we can write
mT

~ (%) : g
,.Z=; F ("’ Wobm .'Sl ’) 2 6f lcg+‘f\mu || (k)“
+§ FF(n.Ovyey + “'L.Q)M"‘s‘”’ m | OF(n gty o + “"‘}I-;-. ’ ‘
e 8&‘ Vngar © S,

S My + Lo “>|l +2Mo\/171?”v<*‘ﬁ_,

1 ) ; d
where & € (0, 1). It is not difficult to see that {'i: 'z (n., Wt b w:“ﬂ)} is bounds

- G
By (Fy), {w'®} is bounded. Otherwise, assume that R[5+ 00 85 .
Since there cxist 2(¥) € R, k € N, such that w*! = (:) % . M) € Emt: 101
k 5 oc we have

mf 2 5 mT 2 4 e
[[wt®t, = ( w ) = (2 |z} ) = vmT |z = +o0.
el awl

Since F( g 09 wf,“) = F(n, z(“).z(")) then F (n w®,, wl) ) - +oo us k =

oc. This contradicts the fact that { .3 (n u.f_‘; M- wt ))} is bounded. and shows

that ./ satisfies the P.S. condition. L:l.;llma 2.2 is proved.
Lemma 2.3. Assume that the conditions (F\), (F;) and (Fs) are satisfied. Then J
salisfies the P.S. condition.

Proof. Let {u®} C E..y be such that {J (u*’)} is bounded and J' (u*)) - 0 as

k — oo. Then there exists a positive constant Ms such that [J (v™)| < My, For &

(s <,

large enough, we have

Therefore
Jil Ju (k)" 21 (1) - 2 < (), ) =
T Fn-AMul ol
=§ [ (" u®)u u:)) rjj ( (" fov!: M) g

aF (n. ' u!.")

T
Sy ' 's.”) 0 Z [F ("‘ "r:u- “::») =
7
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¢ k) (&) i
1 aF (n 'y P, ) SO aF (n ult) ol o
-‘s o 31-'[ n+M 0"2 ~

Next, taking

2

I = {n € Z(l,mT)|\/ uff,)_") + (us.k)) b4 R.}.
(k) ’ )2

I = {n e Z{1,mT)| u"+M +(un ) < Ryepn

in view of (Fy). we can write

s gy 2 B ) -
; OF (n ""+M‘u" )) 1 aF (n uﬁ:"u.u&“) .
1 aF (n u"+n,.u$.”) B oF (n “t.‘lM'“S'H) : (,‘).
,é T r% Bu, Uniar Jvz LY
V‘ F {n u,., I n‘“) Z F (" uuolll "L“')
. ® nel,
1 OF (ﬂ "vHEM"“" J) (k) oF (n "f'l‘u' 1{,,(,.*)) .
o 'g‘ i Upias t+ o : 's,k)
mT
. (1 ‘ %) ,,Zl 4 (n Tt af- “5-”) s+l QZ;, [2 KRR (" u"*"""s' )) -
oF (n uf‘;M,u‘,l”) *) aF (n usl'f:l\,,us.k)) k).
— (h'] "tu-l-)\f E 31!2 : Hk :

) OFlam ) . OF(nv; va)
vy b Bva

v with respect

The continuity of %(6 + 1)F(n, vy, vg
to the second and third variables implies that there exists a constant My > 0 such

that

n dF(n, v, v dF{n, v, v,

GO+ D0 - ), DTt 5
for n € Z(1, mT) and \/v? +v2 < R,. Therefore, by (F;), we get

{8+1)
Hern et

My + ﬁ? "1‘-!-“'“2 2 (]

where My = (1 - %) aymT + z;l_—lmTA/&.
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Combining the last inequality with (2.4), we obtain

(1= Faucd e} g o], < 2

This implies that the sequence {||u(*|[,} is bounded on the finite dimensional space

E,..r, and as a consequence, it contains a convergent subsequence. Lemma 2.3 is

proved. a

3. PROOFS OF THE MAIN RESULTS

In this Section, we prove our main 1esults by using the critical point theory.

Proof of Theorem 1.1. Observe first that by Lemma 2.2, the functional J satisfies
the P.S. condition. Hence, in order to prove Theorem 1.1 by using the Saddle Theorem,
we need to verify the conditions (J;) and (J2). From (2.8) and (F}), for any v € V

we have

mT
J(v) = -I{v) + Z F(n, vnyar-va)
n=1
- 5_2_ 1’\-;3-: “”"Ml +mTM; + My Z (lvasae] + [val)

n=1

ikd AN t

i 7 ) e
Therefore, it is easy to see that the condition (J;) is satisfied.

[oll5% + mT M, + 2MoVmT|v]|2 - —oo as [lv]l; — +oo.

Ya

Ta verify the condition (J2), notice that for any w € W, w = (w;. w; WnT
there exists z € R such that w, = z for all n € Z(1.mT). Next, in view of (F}y),
there exists a constant Rg > U such that F(n,2,2) > 0 for n € 2 and {z| > "* Let

Mg = min F(n,z,z) and M7 = min{0, Mg}. Then we have
neZ |z|€ Ro/ V2

F(n,z,2) > M7, (n,2,2)€Z x RZ.

Therefore
mT m?

J(w) =Y F(n,wnim wn) = 3 Fin.2,2) 2mTMz, we W,

n=1 nu=1
inplying that the condition (J2) is satisfied. Thus, the conditions of (J;) and (.J2)
are satisfied. and the result follows. Theorem 1.1 is proved. a
Proof of Thcorem 1.2. By Lemma 2.3, the functional J satisfies the P.S. condition.
Hence to apply the Saddle Point Theorem, it is enough to show that J satisfies the
conditions (J;) and (J;).
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To this end, observe first that for any w € W. since H(w) = 0, we have

Jw) =3 F(n. wassitn),

n=l

and by (F3)
— )
J(w) 2 a L(\/"nnf +w$,) - agmT 2 —a;mT.
ne=l
Combining this with (Fj), (2.4) and (2.8). for any v € V, we can write
mT o
—— 1(J+]]
Iy € -SRI e v a Y (YRt @) +aamT
n=1
wT 2(E+1)
3 (6+1) 4 2
<-5Es + 1 l+|)\‘;§.; el 4 azed Z (vhp+ 02 +agmT
L |
l e l) doti i
< —"—g—’qf“ & E n[] + 2201 u,c}' p (In[l.,’ ) 4 agmT.
Let ¢ = ~amT. Since | < a < 2, there exists a constant p > 0 large enough such

that
Jwsp—1<p WweV |vlla=p

Therefore, bv Lemma 2 1. the equation (1.1) has at least one mT-periodic solution.
Theorem 1 2 is proved. 0
Proof of Theorem 1.3. Similar to the proof of Leuuna 2.3, we cau show that the
functional J satisfies the P.S. condition. We prove the theorem by using the Saddle
Point Theorem. We first verify the condition (J;). To this end, observe that (Fy)
clearly implies (F3). Hence for any v € V. by (F;) and (2.4), we have J{v) = —oc as
fiellz = +oo.

Next. we show that J satisfies the condition (J;). For any given ug € V and w € W,

we set u = yg + w. Then we can write

L mT
J() = ~HOa}+ 3 Flnting,un) = '”(Vn)+z F(n, (vo)a+M+wnsae, (V0)n+wn)
— n=)
- ”» (lu ‘-i“ I “&vl + .Zr‘ ) '3“."
Z-Fe12 wa vl °-s”‘lm..+“
1)
2~ 4\3.': Brolt*! + agef 441} [:um)- +u'.|']
wel
= -3“‘.—'% L."i"‘ ““"1 + aye] 81y "l‘"; + ."":l jlaen)

2
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4 (]
S 6+l/\‘t"vﬂ"6+l + as¢; E1 '4‘1)" I;( +1) +aSc|i(‘+”“w|M§“+”

41 0 1
Since 1 < 4 < 2, there exists a constant 7 > 0 small enough such that
Juo + w) 2 i [n,r"“” e 6!’ |r‘.‘*"'i wILEE UL
“

for vy € V with ||ug|lz =  and for any w € W. Then for vy € V and for any w € W,
we gel ||vgll2 =1 and J(vo +w) 2 v > 0.

Hence in view of Saddle Point Theorem there exists a critical point u € £,
which corresponds to 8 mT-periodic solution of equation {1.1).

Noting that J(0) = 0 and J(&) > v > 0, we conclude that the critical point & of
J is a nontrivial mT-periodic solution of equation (1.1). This completes the proof of
Theorem 1.3.

Proof of Theorem 1.4. The proof repeatet the same arguments as those used in

the proof of Theorem 1.3, aud so we omit the details.

4. EXAMPLES

As an application of the main theorems, we give two examples to illustrate our

results.

Example 4.1. For all n € Z cousider the equation.

(4.1) A (p,.(Au.._l)‘) + o6 + 1)u,, [w(n) (ufH_M + u:",) LA

($41)-1
+w(n—M)(u3.+u3.-M)"' ]*0-
where {p,} is & sequence of real numbers, § > 0 is the ratio of odd naturals M is a
given nonnegative integer, ¥ is continuously differentiable and ¢:(n) > 0, T is a given
positive integer, Pu+T = Pn >0, ¥(n + T) = ¢(n) and 1 < & < 2. We have
(] ) 8
f(n, 0109, v8) = a(6+ e [w(m) (o7 + ) T4V 4 pn - 2 o 403 T

F(n,v1,v2) = ¥(n) (v + v3) 16+

Therefore
3F(n — M, v3,v3) - 8F(n.v,v2) _

Bb‘z 8uz
—a( i l)”z [lb(ﬂ) ("1 +vz);(a+1) 1 + 'b(ﬂ - M) (v, z)‘-}(6+1)—1] .

It is easy to verify that all the assumptions of Theorem 1.3 are satisfied. Consequently.

for any given natural mn equation (4.1) has at least one nontrivial mT-periodic
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solution.

nm

Example 4.2. For all n € Z consider equation (4.1) for ¥{n) = 6 + cos’(-F],
a € (0,2) Tt is easy to verify that all the assumptions of Theorem 1.4 are satisfied.
Counsequently, for any given natural m equation (4.1) has at least one nontrivial mT-

periodic solution.
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