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Abstrart. The paper considers & quening sysiem that has k servers ard its
interartival rimes and service times are random fuzzy variables. We olitnin
A new theorem concerning the average chance of the event "r servers (r < k)
are busy at time t", provided that all the servers wark independently. We
aimulate the average chance using fuzzy simulation methad and ohtain some
results on the number of servers that are busy Sume exatnples to illustrate
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1. INTRODUCTION

Queuing systemns constitute a central tool in modeling and performance of tele-
‘ommmunication and computer systems In the fuzzy case, it is assumed that the
interarrival times and the service times are random fuzzy variables. Pardoa and
Fuenteb |1] proposed the analysia, development and design of a fuzzy queuing model
with a finite input source in which the arrival pattern as well as the se1vice pattern
follow an exponential distribution with an uncertain parameter. Wanga, Liub and
Watada (2] studicd a fuzzy random renewal process in which the interarrival times
are assumed to Le iudependent and identically distributed fuszy random variables,
and two case studies of queuing systems are provided to illustrate the application
of the fuzzy random elementary renewal thecrem. Wu [3] has proposed the fuzzy
arrival rate and fuzzy service rate iu a queuing system. The nonhomogeneons Poisson
process with fuzzy intensity function is taken as the arrival process for this queuing
system. Computational procedures for performing simulation in the a-level sense
and for obtaining the -level closed intervals of the system performance nieasure
are also proposed to tackle this kind of model. Chen |4| has proposed a procedure
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for constructing the membership functions of the performance measures in finite-
capacity queuing systeins with the arrival rate and service rate being fuzzy numbers
Kreimer (3] studied a real-time multi-server system with homogeneous servers (such
as unmanned air vehicles or machine controllers) and several nonidentical channels
(such as surveillance regions or assembly lines), working under niaximum load regime.
Zhao, Li and Huang [6] developed & cueue-based interval-fuzzy electric-power system
(QIF-ESP) model throngh coupling fuzzy queue (FQ) theory with interval-parameter
programming (IPP). Yang and Chang |7] investigated the F-policy queue using fuzzy
paraeters, in which the arrival rate. the service rate. and the start-up rate are all
fuzzy numbers. The F-policy deals with the control of arrivals in a queuing system
in which the server requires a stari-up lite before allowing custoniers Lo enter.

In this paper. we simulate the average chance of the event "all the k servers are
busy at time ¢"and the queuing system has & servers. In other words, we cstiniate the
average chance of the event "7 servers (r < k) are busy at time ¢ when all the servers
work independently and the interarrival titnes and the service times are random
fuzzy variables. We obtain some resulls about the relationship between the number
of servers and busy times and idle times.

The paper is structured as follows. In Section 2, we discuss the concepts and
essential properties of fuzzy set theory. fuzzy variables. random fuzzy variables. the
average chance, etc In Section 3. we illustrate the random fuzzy queuing system with
multiple servers and estimate the average chance of the event "r servers (r < k) are
busy at time 1". In Section 4, we consider the fuzzy simulation method. In Section 5

we provide some numerical examples.

2. DEFINITIONS AND PRELIMINARIES

Credibility theory, introduced by Liu (see |8]), 1s u branch of mathematics for
studying the behavior of fuzzy phenomena. In this section, we introcduce the basic
notions of credibility theory. such us credibility measure, credibility space. tuzey
variable, nembership function, credibility distribution, expected value, random fuzzy
variable and its expected value, independence and identical distribution.

Let © be a nonenipty set, and P be the power set of 8, that is. the largest o-
algehra over ©. Each element of # is called an event. In order to give an axiomatic
definition of credibility, it is necessary to assign to each event 4 a nnmber Cr{d}

which indicates the credibility that A will occur.
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Definition 2.1. (Liv and Liu [9]). A sct function Cr defined on © s called a
credibitity wmeasure if if satisfies the following arioms:

Aziom 1. (Normality): Cr{8} = I.

Aziom 2. {Monoltonicity): Cr{A} < Cr{l}} for AC B.

Aziom 3. (Self-Duality): Cr{A} + Cr{4"} =1 for any rvent A.

Aziom §. (Maximality): C{U;4,} = sup, Cr{A,} for any events { A;} with sup, Cr{4;} <
0.5.

Then the triplet (8. P.Cr) is called o credibality space. The product credibility meusure

can be defined in muliiple ways. We accept the following aziom.

Aziom 5 (Product Credibility Axiom ). Let ©; be nonemply sets on which C'ry are
credibility measures for k = 1.2, . 0, respectively, apd let © = ©) x O3 x ... x B,
Th

(2.1 Cr{(1.02,..8,)} = Cry @ ) ACra{fs} A ... ACro {6}
Jor each (8,.8,....8,) € O.
Let (8i. . Cry). k=1,2, .. n. be credibility spaces, @ = ©; x B3 x ... x O,, and

Cr = CrACra A ACr,. Then the triplel (8, P. Cr) is called the product credibility
space of (B. P, Cry). k=1.2,...,n.

Definition 2.2. 4 fuzzy variable is defined to be any real-valued measurable function
defined on o credibility space (©. P.Cr).

Definition 2.3. Let £ be a fuzzy varable defined on the creditality space (©. P. Cr).
Then the membership function i of £ w defined by
(2.2) u(z) = (2Cr{€=x})Al. z€ R

Definition 2.4. Let § be o fuzzy variable defined on the credibility space (6. P(8),Cr)
and lef a € (0,1]. Then

(2.3) €, = iuf{rlue(r) > a}. € = sup{riue(r) 2 a}
£V
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ave called a-pessimistic vatue and a-optimistic value of €, respectively.

Definition 2.5, Let £ be a fuzzy varable defined on the eredibility space (6, P(©), Cr)
Then the ezpected volue of € is defined by

o0 0
(2.4) E1<|=J/ CrlE>r]dr=J[ Crie < r)dr.
0

-0

provided thot at least one of the two integrals in (2.4) is finite (see [10]).

Proposition 2.1. Let & be a fuzzy variable defined on the credibility space (€. P(8). Cr)

Then we have
b, v
25) Ble] = 5 [ 16+ €lldan

Proof. Let € be normalized, that is, €liere exists a 1cal number 7y such that
pe(ro) = 1. 1f 75 > 0, theu in view of (2.1), we have

vy |

+oc \
Blg= glo+ [ Creznarsn- [ crtesnial =} [+

implying (2.5). The case 1y < 0 can be treated similarly. O
Deflnition 2.6. The fuz:y variables £,.&;. ... &, are called independent if

(2.6) cr{in,{& € B.}} = min Crit € B.)

Jor any sets By. By, ... B,, € R. by

Definition 2.7. A rundom fuzzy vanable s defined to be any function from the
credibility space (6, P,Cr) to the set of randomn variables.

Definition 2.8. The crpected value of a rundomn fuzzy variable £ is defincd by
Jc 0
(2.7 El¢] = Ju( Cr{f € O|E|£(8)] 2 r}dr —[ Cr{f € O|E[£(8)] < r}dr.

Proposition 2.2. Let &€ be a random fuzzy variable defined on the credibiity space
(8. P,Cr). Then for any 8 € © the expected value E[€(0)] w5 a fuzzy varable. provided
that E[€(8)] is finite for a fired 8 € ©.

Definition 2.9. The mandowm fuzzy variables £ and 1 are said to be identically distributed
i

g i . = inf {Pr{n(8) € B
(28) (,,.72‘,’2.,525{”’{5‘”’63” cr?:‘f;.. Int {Pr{n(6) € 1}

for any a € (0. 1] and any Borel set B of real numbers.
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Definition 2.10. The mandom fuzzy variables £,,i = 1, ..., n, are satd to be independent
f

(1) £,(8), i = 1. ..., are independent randorn variables for each 6 € 6.

(2) El&(-)], i = 1,...n, are independent fuzzy variables.

Definition 2.11. Lct £ be a rendom fuzzy varable defined on the credibilily space
(6. P(8),Cr). Then the average chance of the mndom fuzzy eveni € < 0 is defined
as

\
(2.9) ChiE <0} = / Cr{8 € O|Pr{£(8) < 0} > p}dp.
0

3. RANDOM FU2ZY QUEUING SYSTEMS WITH k SERVERS

In this section we study a model of queuing system with &k scrvers, denoted by
RF/RF/k/FCFS/x /o, where RF/RF means that the interarrival times and the
service times are random fuzzy variables, FCFS means that the queue discipline
is "first come, first served aud the size of source population is infinite. We assume
that the interarrival times of customers arriving at the server are independent and
identically distributed random fuzzy variables. § ~ EXP();), where A, are fuzzy
variables defined on the credibility space (8,, P(©,),Cr;), i = 1,2...., and the service
times are independent and identically distributed random fuzzy variables, n: ~ EX P(u;),
where 1, are fuzzy variables defined on the credibility space (T';, P(T),),Cr}), i =
1,2... and & and 7, arc independent.

For the model RF/RF/k/FCFS/oc/oo we describe the limit (as { = oco) of the
average chance of the event "the randown fuzzy queuing system is busy at time £ when
the queuing system has k servers. The case of different number of servers is also
discussed. Notice thatl in the special case where the model involves only one server
(k = 1). this problemn has been considered in [11].

Define P(t)- Pr{ali of k servers are busy at time t}, and P, (1) Pr{the ith server
is busy at time 1}, and observe that Pft) and P,(t) are fuzzy variables, Py and Py
are the ag-pessimistic values and the ag-optimistic values of P(t), respectively, and
E[3| <1

Lemma 3.1. (/11/). Assume that in a random fuzzy queung system RF/RF[k]FCFS/o/oc.
the fuzzy variable A has the same og-pessimiatic values and the aq-oplimistic values
Ai, and the fuzzy variable p has the same ag-pessimistic volues and the ay-oplimistic

values p,, and are conlinuous at the point oy € [0,1]. Also, let the k servers work
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independently, then we have

A‘ »\"
(3.1) Jim Po(t) === and lim P () = =
738 t—c .

Theorem 3.1. Let in e random fuzzy queuing system RF/RF/k/FCFS/~/oc, the
distributions of £:(6) and n;(v) be non-lattice, and let the fuzzy variables A, and ji,. 1 =
1,2..., be continuous at the point e € (0,1]. Also, let the k servers work independently,
then we have

(3-2) .lini’Ch[aH of k scrvers are busy at timme t} = (E ll"‘
—. M
Proof. From Dcfinition 10 and Proposition 1. for ith server, 7 = 1,2, ... k. we have

)
Ch{the ith server is busy af Lime L} = / Cr{8 € O|P.()(6) = p}dp
n

e A -
= /0 Cr{# € O|P(t)(6) 2 p}dpE[Fi(t)] = 5/0 (Pia(t) + Pgt))dp.
It follows from the definition of the limit that therc exist two non-negative real

numbers ¢, and . such that for any t > ¢,
A'
0< P2

Pao
and for any ¢ > {,

"

A
0< Pa(t) s .

Therefore, for any ¢ > max(t),t2), we have
A’ "
OSSP (+PLIES2+ =2 +-2.
s Fa(?) ) < R

Since E[ | is finite, 2 + L 4 ..- is an integrable function of a. Hence. we can apply

Fatou's lemma. to concludc that
1
lim mf / (P (1) + P (1))da > J[ Iim'inf (P () + Pl (t)da.
u e

and '
lim sup f (P + Po(t))da < / lim sup (P, () + P (t))de.

- fex
Next, since AL, A yih. u2 are almost surely continuous at the point a, by Lemma 1

we have
lim Ch{the ith server is busy at time t}

% lim f (PLAt) + Pa(t)dp = - / lim (P () + Pq(t))dp
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2[ f‘)da—E[ 2],

Now. for & servers that work independently and are identically distributed, we have
lim Ch{all of k servers arc busy at time t}
t-+20

l'] F'—l =(F‘l )",

=l
and the result follows. Theorem 1 is proved. 0

Remark 3.1. If X s the number of servers that ave busy at time ¢, then X s a
rendom varable with binomeal distribution. thal is, X ~ B(k,Ch), where k is the
number of servers and Ch i3 the average chance of the servers that arve busy at time

t. So. the average chance of the v servers (v < k) that are busy at time ¢ is given by

’ A >
(3.3) lim Ch{r servers are busy at time t} = (XY E[Z)D7(1 - E[Z))*",
t—roo i i
forr=0.1.2. . k. Also. we have
z 2 A
(3.4) lim Ch{at least r servers arc busy at time 1) = VAR, E'-:)‘ Eh S
) Jim Ch = L e -8l

Therefore. the mean of the number of servers that are busy at time t is kE[ﬂ.

Then. the average chance of all of k servers are idle at time ¢ is given by

A
(3.5) Jim Chiall of k servers are idle at time t} = (1 - E[‘—‘])k

4. THE FUZZY SIMULATION APPROACH

Y.Liu and B Liu [12| designed a fuzzy simulation procedure for both discrete and
cONUINUOUS Cases.
(a) Discrete fuzzy vector: asswine that f is a function, and €= (£}, -...£,,) is a discrete
fuzzy vector whose joint credibility distribution function is defined by

l g, u=u

12, u=
(41) petuy = § 12 uz

l B, U = Uy,

where pi, = minggige 00}, u = (u). .., u,,) € R™ and ;™ are the credibility
distribution functions of &, for1 = 1,2, .. .m
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Let @, = f(u,). Without loss of generality. we can assume that @, < a@; < .. < a,.
Tlen the expected value is given by

(4.2) Ef©)] =3 awp.,
=1
where
(4.3) Po= /2Ny — VIR ]+ 172V 5 - Visons),

fori=1.2,...,nand jig = j1p41 =0 .

{b) Continuous fuzzy vector: assume that € is a countinuous fuzzy vector with a
credibility distribution function p. In this case, the expected value can be estimated
by formula (16).

5. EXPERIENTIAL RESULTS

In this section, we present some practical applications of the model under study, to
show how the fuzzy simulation method can be used to estimate Lhe average chance

Example 1. Consider an investment bank with k servers. Let the interarrival times
of customers be fuzzy variables with exponential distributions with A = (1/2/3) in
minutes, and let the service times be fuzzy variables with exponential distributions
with x = (3/4/5) in minutes for k servers. Calculate the average chance of the event

"all of k servers arc busy at time t".

We use Theorem | and the simulation method, described in Section 4, to estimate
the expectation E[ﬁ] The corresponding simulation results are shown in Table 1 and
Figure 1, which contain the average chance of the event “all of k servers are busy at

time ¢"for the number of different servers. The algorithm for simulating follows.

The Algorithm

1. Generate the random numbers e;{i) in the interval (1.3). and the random
numbers e2(2) in the interval (3,5), i =1.2....n.

2.Set 1= o

3. Sct p(3) = min{y; (1), g2(2))-

If z; and z, have the same values, remove r, from the list of results. and set
pi = max(p, 1)

4. Apply formulas (16) and (17).

5. Caleulate E*.
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Table 1 and Figure 1 show that whenever the number of servers is bigger. the
average chance of the event "all of & servers are busy at time ?"is smaller, and it
tends to zero as the number of servers increases. Notice that the results are obtained
without using the a-cuts and we simulate the average chance. Also, the simulation
procedure is stable in high repetitions and it is close to the truc answer and it can

not be invoked in few repetitions.

[ k 100 500 | 1000 [ 10000 | 20000 30000
| 5 ] 00318 0.0364 00398 | (.041] 0.0414 0.0414
10 0.0012 0.0014 0.0016 0.0M7 0.0018 0.001%8
15 | 3.9172¢-005 | 1.2981¢-005 | 6.1171c-005 | 6.1359¢-005 | 6 7551¢-005 | 6.7551¢-005
20 | 3.9523e-007 | 1.8686¢-006 | 2.3734c-006 | 2.9698:-006 | 3.0270c-006 | 3.02700-006

Table 1: The results of simulation of average chance for Example 1.

J ==

Figure 1: Convergence of the fuzzy simulation for Example 1.

Example 2. Let a bauk huve status customer. Also, let the interarrival times of
costumers be (uzzy variables with exponential distribution with A = (2/3/4) in
minutes, and the service times are fuzzy variables with exponential distribution with
4+ = (3/4/5) in minutes for any server. We want to calculate the average chance of
the event "the number of different servers that are busy at time £".

We use Theorem 3 1. Rewark 3.1 and the simmulation method. described i Section
4, to estimate the avernge chance of the event "r servers (» € &) are busy at time ¢".
The corresponding results of simulation are shown in Table 2 and in Figures 2-4. In
‘Table 2. k is the number of iterations. r is the number of servers that arec busy at time
t, the "Error” rows contain the errors of the real solutions aud simulated solutions, and

the “ Averapge Chance” rows cantain the average chance of the event “the r servers out
50
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of 5 servers are busy at time £, r = 0-- —5. Then we calculate the error of simulation.
Similar to Exainple 1, from the results of Table 2 and Figure 2. we infer that whenever
the number of iterations is getting bigger the simulation becomes closer to the real
solution, and the fuzzy simulation procedure is stable i high repetitions. The Figures
3 and 4 show the error of simulation for different number of servers (out of 5 servers)
that are busy at time ¢ for n = 10000. 20000 and n = 30000, 40000, respectively. It is
clear that the error of simulation tends to zero for n > 40000.

I 50 1000 1000 ] Zo000 | dooon | anood |

B v o=

r) c‘l’l"_‘“‘f: 314766004 | 6.5093e-004 | 4 9800004 | 2.786%e-004 | 4809004 | 4.20240-004
Error A.81530-004 | 23069004 | 6.BRTIe-000 | 4.90N6e-MM1R | R.NEO0—006 0.0000
Average . - R

rol | Ol 0.0164 0.0109 0.0087 0.0085 0.0083 0.0080
Torror 0.0064 0.0029 G.B956e-004 | 4.9354e-001 | 2.92150.004 0.0000

. Avernge G e o

r=2 [ apoae 0.0721 0.0645 0.0817 0.000) 0.0593 0.0592
Fror 0.0131 0.0053 0.0025 U.0011 TN TRTT 0.0000

r=3 f‘;:";’}l: 0.2363 0.2334 0.2339 0.2211 0.2205 0.2200
Lrror {.0163 00134 0 0039 0.0011 5.00010e-004 0.0000 1

L || A 0.3981 0.1024 0.1079 0.4081 0.4085 0. 1087
Chance
Evror n.0106 0.0063 T RT3 004 | 6.00000-001 | 2.0000m001 0.0000

r=b | AVorage 0.2487 0.2684 0.2081 0.2996 0.3015 0.3036 |
Chance |
Error 0.0749 0.0352 0.0055 0 o040 0.0021 0.0000 |

Table 2: Results of the simulation of average chance for Example 2.
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Figure 2: Convergence of the fuzzy simulation for Example 2.
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Figurc 3: Convergence of fuzzy simulation for n = 10000. 20000 for Example 2.
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Figurc 4: Convergence of fuzzy simulation for n = 30000, 40000 for Example 2.
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