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Abstract. A simple proof of the proposition, stated in ({2}, p. 346), asserting that in
Hilbert spaces a Riesz basis is greedy. is given. Also, greedy approximant for frames
in Hilbert spaces is defined and it is shown that frames satisfy the quasi greedy and
almost greedy conditions. Finally, we give the characterizations of approximation

spaces A*(¥), A;(\ll) by mcans of weuk-¢, and Lorentz scquence spaces for frames.
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1. INTRODUCTION

Let ¥ be a separable Hilbert space with inner product (., )

Definition 1.1. (a) A sequence {z,}32, C X is called a Riesz basis for X, if
{x,}., is complete in H and there exist constants A, B > 0 such that

o~ oc -~
A aul? <1 anzal? < BY lauf? for all {aa )3, € €.
n=1 n=1 n=1

(b) A sequence {z,}5; C H is called a frame (or Hilbert frame) for 3, if there exist
constants A, B > 0 such that

~
(1.1) Allz)? < 3 (@, za)? < Bljz||® for all z € .
n=1
The constants 4 and B in (1.1) are called the lower and upper frame bounds of
the frame, respectively. They are not unique. If A = B, then {z,} is called an A-tight
frame and if A = B = 1, then {z,} is called a Parseval frame. The inequality in (1.1)
is called the frame inequality. The operator T : £2 — H defined as

T({cx}) = Z cxzk, {ck} € &,

k=1
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is called the pre-frame operator (or synthesis operator) and its adjoint operator T* :

H = €%, is called the analysis operator and is given by
T*(z) = {{z,z¢)}, z € H.

Composing T and T we obtain the frame operator S = TT* : H — H given by

0
S(x) = Z(:r,:vk)xk, T e .
k=1
Observe that the frame operator S is a positive, self-adjoint and invertible operator

on H. This gives the reconstruction formula for all z € H,

(1.2) T = 887'x = 3 (S mompep =) SlanSi o
k=1 1=}

For more details related to frames and Riesz frames, see [4. 6].

The notion of N-term error of approzimation and thresholding greedy algorithm of
order N for Schauder basis in Banach spaces have been defined and studied in [9, 12,
13, 15].

Let X be a Banach space and (z,, f..) be Schauder basis for X

Z__ = {z a,x, :0 C N,/ Jo| = N € N,a,, are scalars}
s n€oc

Forre X, 2 =3 oy fulT)z, we define

—_—

ZN = {z fa(@)z, 0 CN,)|o| = N € N}.

nE€o

For each z € X the N-term error of approzimation is defined by

an(z) =inf{llz -yl :y € z~ ).

on(z) =inf{lz-yl:y € )
Let v = {1y }{% be a permutation of natural numbers such that
[ @ 2 g (@) 2 | frs (@) 2 oo

We now define the N-greedy approximant as
N
GN(I) - Z fllk (I)Iﬂk .
k=1

Definition 1.2. A Schauder basis (zn, fn) is said to be quasi greedy if there exists

a constant C such that ||Gn(z)| < CJz|| for all x € X.

Definition 1.3. A Schauder basis (z,, f,) is said to be almost greedy if there exists

a constant C such that |z — Gn(z)|| < Can(z) for all z € X.
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Definition 1.4. A Schauder basis (#,, f.) is said to be greedy if there exists a
coustant C such that ||z — Gy (z)| < Copn(z) for all z € X.

In [9], the following relation between greedy basis, almost greedy basis and quasi
greedy basis has been given:

Greedy basis = almost greedy basis = quasi greedy basis.

Remark 1.1. Let {z,} be an orthonormal basis for Hilbert space H, then {z,} is

greedy.

2. RIESZ BASIS AND GREEDY APPROXIMATION

We begin this section with a simple new proof of the proposition, stated in ([2],
p. 346), asserting that in Hilbert spaces Riesz bases are greedy. This theorem follows
from the fact that a Riesz basis is Ly-equivalent to the Haar basis and using Theorem
2.1 of [13]. It can also be deduced from the fact that a Riesz basis is democratic and
using Theorem 1 of [14]. Here we give a formal proof of this result with improved

constant in the Greedy estimate.

Theorem 2.1. Let {z,]} be a Riesz basts for Hilbert space H with bounds A and B.
Then, for any N € N

—

|z — Gn(a)]| < \1“%ﬂ_y(w) for all z € H.

We first provide some terminology which is required in the proof of Theorem
2.1. Let {z,} be a frame for tilbert space H and ¢ C N with |[¢] = N € N. We
denote H, = span, ¢, {zn}. As in [5], {Zn}neo is a frame for H,. Let V5 be a frame
operator for the frame {z, }recs of H,. Since 3, is a closed subspace of J{, there is

an orthogonal projection P, from H onto H,. Thus, for r € H we have

Po(z) = D (Pa(@). Vo wn)za = Y (2 PV 20)en
neo n€o
~ = Z(J;,V,“zn)z".
nEe

Lemma 2.1. Let {z,} be a frame for Hilbert space H. o be a finite subset of N and
Py be the orthogonal projection from H onto #,. Then. for x € H we have

an(z) = nf{lz - Po(@) ;0 C N, lo| = N}.
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Proof. For « € { we have
llz = Po(@)ll = dist(z, o) = inf{flz — yll - y € Ky }.

So, for any y € H, we have ||z — P(z)|| < ||z — yl|. Hence

on(z) = inf{llz = Fo(z) | : 0 S N.Jo| = N}.
Let {z,} be a Riesz basis for 3 and S be a frame operator for {z,}. For ¢ C N,
define the following operators:

(i) So:H > Has
Sq(x) = Z(l. Tr)Tn, for oG N i =2ivs

neo
(il) Qo : H —=Has
Qo(z) = 5.5 (2) = Y AS S VeIt
n€o
Let p = {ny};2, be a permutation of natural numbers such that
[{z. § 7 xn, .2 WS~ s Ml (S S

P
The N-greedy approximant is given by Gn(z) = 3 (z, 57 'z, 2o, .

k=1
Remark 2.1. ([4]) A Riesz basis {z,} for K is a frame for 3, and the Riesz basis

bounds coincide with the frame bounds.

Proof. of Theorem 2.1 by Remark 2.1, a Riesz basis is a frame for H with the
same bounds. Since A and B are the bounds of the Riesz basis {z,}, by the frame
inequality we have
S
Allz? < 3z, za)? < Blizl?, = € K.
n=1

Note that

Iz — Ga(@® = 3, {2, 8700, Yooy [P = siip | 3oz 8 s M maiatil I

k>N yEH |lyll=1 k>N
< 571 2 2 ~ B S_l' 2
= |(T: T"k)l sup '(z"ny)' - I(.’E, Iﬂx)l
k>N veXluli=l SN k>N

Also, by the definition of greedy approximant, for z € 3, we have

Z (. SE g gl < Z [(x,58 'z,)[% for any ¢ C N,|o| = N.
k>N neN\o
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Thus, for any ¢ C N with |o| = N. we have
le— Gn)|I? < B z [z, 8 zn)|?, for z € K.
neN\o
Let V, be the frame operator for the frame {z, }nco of span{z, }nco, and let P, be the
orthogonal projection from X onto span{zn,}.co, given by P,(z) = Y_ (z,V, 'z,)z,

n€c
(see Theorem 1.1.8 in [4]). Also, by inequalities of canonical dual frame of {z,}, we

have
e = Po@l? 2 T He = Pole), 5702 2 Y 12,57 2) ~ (Po(a), ™20
neN nEN\e
= Z {z, S z,) Z(x,V L) (P ") P = Z Kz, 871z,
neN\o j€o neN\e

Thus, for any 0 C N with |¢| = N, we obtain
B
Iz - Gn(2)lI? < 7z - Po(2)))? for z € XK.

Hence, by Lemnma 2.2, we get

B
lx — Gn(x)ll < V/§ on(z) for £ € H.

Theoremn 2.1 is proved.

3. FRAMES AND GREEDY APPROXIMATION

Let ¥ = {z,} be a frame for Hilbert space }{ with canonical dual frame {S~!z,},
andlet z = ¥ (z,5 'xn)z, forall z € H. Define the nonlinear N-term epprozimation
n=l
manifolds for frames, in the similar manner as we have defined for Schauder basis, as
follows:

Z (¥) = {Z a,z,:0 SN, o} =N, a, are sca.lars},

nea

= [ Y
ZN(‘I‘) = {E(I.S’lzu)ru :oCN, €M, o] =N},

nco J

We define the N-term approrimation errors as

on(z) =inf{llz-yll:y€ Y (¥)}.

Gn(z) = inf{llz -yl sy 3, (V).
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Also, define S,, Q, : H = H as
Sa(z) = Y (2,%a)Tn, 0 SN, [o] = N,

n€o
Qa(z) = So (S (2)) = Y _ (&, 5™ z0)an.
n€o

Let p = {nx}§2, be a permutation of natural numbers such that
(2,8 xn)F 2 ({28 20, ) 2 Iz, 8wy} 2 ..

Now, define the N-greedy approzimant for a frame {z,} as

N
Gn(x) = E(I,S-’I"‘>1‘"k for r € H.

k=1
We have G (r) = Qgq,(2) for some ay C N, |og| = N.

Lemma 3.1. ([6]) Let {x,} be a frame unth bounds A, B, and let T be its synthesis
operator. Then €2 = kerT & RanT*. Moreover, we have

AZ|{1"|2 < z:n:,.:r,.ll2 < lelo:ﬂ2 for all a = {a,} € RanT".
n n n

Let {r,} be a frame for Hilbert space X and ¢ C N. Define the operators T,, T3

as follows:
T5({aj}jeq) = 2“1’1' {aj}ies € € T;(x) = {(2,7,)} ¢, x € K.
€0
Observe that S,(x) = 1,15 (x) = ¥ (z,x;)x, for all j € o, and T is the adjoint of
JE€o

operator T,,.
Lemma 3.2. Let ¥ = {x,} be a frame for Hilbert space H with bounds A and B,
and let 0 C N. Then ||S,(x)|} < B||z|| for all z € K.

Proof. Using the frame inequality, for x € H we obtain

ITs @I = Iz, 2;)F < S Iz, 2,)? < Blizll.

j€o i=1
T2 (2)l| € VB||z|| for all x € . Thus, we get

So, we have |
WSo (2)Il = ITo T3 ()l < ITWIITS W2l < Bllzll, = € K.

The next result shows that frames satisfy the quasi greedy condition.

Theorem 3.1. Let W = {z,} be a framne with bounds A and B. Then
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(1) IGn( < 2zl for altx € .
(2) |z — Gn()| 20 os N - co.
Proof. (1). Let Gn(x) = Qq,(z) for some oy C N with |og| = N. Then we have
NG~ @) = §Qay (@)l = §Se,S™ (@)l < ISau S~ - 1=l-
Therefore, by Lemma 3.2, ||S,, || < B and |§-!Y < A~". Hence ||Gn(z)]| £

To prove the assertion (2) observe that

le = Gu(@I? = Il 3 2. S 2 )zn P = sup | 3" (2,5 20 ) (@n I

0

Sz

ESN veH lvl=1 SN
-1 p e ?
< Y e $7'w)P wap Y Kww < B Y 5 ST 5
kSN veM||=l1=1 Sy k>N

By the definition of greedy algorithin, for any 0 C N with |o| = N, we have
.)_;, '(zvs_|wﬂ‘.)|1 S 2 ‘(x,S-Itﬂ)l'l'
k>N neN\o

Thus, we obtnin

- <
o= Gn@IP < B > 2,8 'z.)]> - Oas N =
n=N+1

Theorem 3.1 is proved. Next, we show that frames also satisfy the almost greedy

condition.

Theorem 3.2. Let ¥ = {z,,} be a frame for H with bounds A and B. Then

I - G (o)l < [ (o)

Proof. As in the proof of Theorem 3.3, we have ||z —Gn(z)||* < B Y [(z,87'z.)?
n€N\o
for any o C N with |o] = N and = € H. Also, by Lemma 3.1 we have

Allali® < || zanl‘n"2 < Blla|® for all ¢ = {an} € ker T+,

n=1
Moreover, {(x,8~'za}} = {(S'z,2,)} = T*S~(x) € RanT* = kerT*. So, for any
o € N with |¢| C N we obtain

o B
le = Gu(@I? < Zll 3 (@, 5™ zn)on? for all € %
neN\n

Now, let y = Y (z,S 'zn)an € iN(W). Then

nie
lz = ull* =i Z (%, 8 'x,)x,|? for any o € N with|o| = N.
neN\o
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Thus,

= =
e = Gu()I? < Slle = il for auy y € 3 (¥).

Hence, ||z — Gy ()] < V/,: on(z) for z € H. Theorem 3.4 is proved.
Next, we define the weak-{, and Lorentz sequence spaces. We also define the approximation
spaces A*(¥) and A}(¥) for frames ¥ = {z,} in Hilbert spaces. In [8, 10, 12], greedy
algorithms such as Pure Greedy Algorithm, Relared Greedy Algorthm, Orthogonal
Greedy Algorithm for general dictionaries in Hilbert spaces have been defined and
proved various Lebesgue-type inequalities for greedy approximations. In the following,
we give the characterizations of approximation spaces by means of sequence spaces.

We first definc the weak-¢, and Lorentz sequence spaces.

Definition 3.1. ({7, 11]) For 0 < p < oo, the weak-£, sequence space, denoted by
wéy, is defined to be the space of all sequences {a,}as,y satisfying
I{an}llwe, = supn'/Pa;, < oo,
n21

where {af}%, is a nonincreasing rearrangement of {lan|}22,.

Definition 3.2. ([1, 7]) For 0 < p < oc and 1 < g < oo, the Lorentz sequence space,
denoted by €y, 4, is defined to be the space of all sequences {a,}72, satisfying

o 1/q
Ian}le,., = (za;w"" ') <,

n=1

where {a}}°2, is a nonincreasing rearrangement of {|a.|}3%;.
The notation A = H stands for C;A < B < C,A with some constants C;,C; > 0.

Remark 3.1. Note that
1/q

L )
3.1) an)lle,., = | 3 22/%a3

=l

In the following, we define the approximation spaces for framnes.

Definition 3.3. ([7]) Let ¥ = {z,} be a frame. For 0 < s < oo, we define the
approximation space A"(¥) as the set of z € K satisfying

Hzllas(w) = supn®an(x) < 0o.
w2l
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Definition 3.4. ([7]) Let ¥ = {2,} be a frame. For 0 < s < oc and 1 < ¢ < oc, we
define the approximation space A5(V) as the set of = € H satisfying

[/ oo \ Vg
N=llagce) = (Ed.‘.(ﬂn"”) < o0.
n=i

We have (see [7])

o i\/q
(3.2) Nzl azie) = (EU 2""')

y=0

For the sake of completeness of our discussion related to the characterizations of

approximation spaces. in the form of a remark, we state a result from (7.

Remark 3.2. Let ¥ = {z,} be an orthonormal basis for J{. Then
(a) v € A°(¥) if and only if {(z,z,)} € wfp, -

P
(b) = € AL(Y) if and only if {(2, 2n)) € bpg, %

»n
+

Now the question of interest is: given a real number s > 0 such that for z € ¥ the
error of N-term approximation for frames satisfies on(z) < M- N~ N =1,2,3, ...,

for some constant M > 0. The next result concerns this question.

Theorem 3.3. Let U = (.} be a frame for H with bounds A end B. If {{(z, 5 'z,)} €
wly, then T € A*(D), where : =s+ % andp < 2.

Proof. Let M = ||{{(z, S z)}llwi, and {nx} be a permutation of N such that
(@, S za, )| 2 (2,87 T, )l 2 (2,57 2n,)]....

Now, take ¢} = |(x, S 'z, )| fork = 1,2,3,4, ..., and observe that by the assumption
we have k”"c; < M for all k € N. Also, by Theorem 3.1, for N € N we have

lz - Gn(2)I* < B z (2,57 (za,))I? = B Z Gl zeX.

k=N+1 k=N41
zmi’l 1
Consider the dyadic sums F2 = ¥ ¢}? m=1,2,3,... Then we have
k=3
2"‘“—1
2< Y MM < MP2TP™ forallm=1,2,3, .
k=2m
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Also, let 2/ < N <241 for I =0,1,2,3,... Then we can write

oo o0
N¥o%(z) < N*|lz ~Gn@I* S N*B Y ¢?<N*B) g’

k=N+1 =2}
x ~ ~ . 94+
S B 3 i = B 3 FL < BMARED S 3T o B e

k=2! m=l m={

Thus, sup N®on(z) < oo and the result follows. Theorem 3.3 is proved.
1<N<o
Next, we show that the converse of Theorem 3.3 is true for Riesz bases.

Theorem 3.4. Let ¥ = {z,} be a Riesz basis for H with bounds A and B. Then

x € A*(¥) if and only if {(z.87'z,)} € we,, ’l) =8+ ;’, p<2.

Proof. If {(x, S"z")} € wly, then the result follows from Theorem 3.3.
Conversely, let € A”. Then for any finite subset & C N with o] = N, z € 3 and

from the proof of Theorem 2.1 we have
oC

1
(z, S 'z, ) < —ta";‘,(z) for all z € H.
k=N+1 X

As in the proof of Theorew 3.3, take ¢f = |(x, Sz, )| for k=1, 2, 3,..., to obtain

2N o0

. . A = 1
SN SN 0 PNt 3D s N7 eR(e).
k=N+1 k=N+1

Since a similar inequality holds for ¢5y,,, we have the other implication of the
asserted equivalence. Moreover, by assumption, of,(x) € N~%|z||%. for N > 1.

Therefore

]
N?/PC;I = 1V20+lc;v < z"zl

2. <oo forany N > 1,
implying that {(z, S™'z,)} € wty,. Theorem 3.4 is proved.

Now, we give a characterization of approximation space A;(\I') by means of Lorentz

sequence spaces.

Theorem 3.5. Let ¥ = {x,} be a frume for H with bounds A and B. If {{x, S z,)} €
fp.q, then x € AL(P), where ;—) =8+ 3 and0< g < 2.

Proof. As in the proof of Theorem 3.3, take ¢f = |(x, S~ x,,)| for k = 1,2,3, ....,
Then, by Theorem 3.1 for ;n € N we have

oo
ovzn(z) S IIT - G,,,(a:)||2 S B Z: C;z, T € :}(
k=m+1
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Also, since an €;-norm does not exceed an €q-uorm, we can write

or(x) s VB( T a7 VE(S )< VBT, 2567

k=2 4] k=2 k=m
oo
< \/l'j(z: areider ayt/e.
k=wmn
So, it follows that with soine counstant C
-~ 20
Z 2'"“0;_ (I) < Bq/z z gmsq Z qu/Zc;.q < Bq/zcz 2kuq2kq/ﬂc;.q
m=] k=m k=1
< B"/"'CZ gkq/wc;kq < 0o,
k=1

implying that € A?(D). Theoremn 3.5 is proved.
Finally, we show that the converse of Theorem 3.5 is true for Riesz bases in Hilbert

spaces. In (8], a similar characterization of A:(¥) by orthonormal basis is given.
Theorem 3.6. Let ¥ = {z,} be a Riesz basis for H with bounds A and B. Then
3 1 1
x € A2(V) if and only if {(z, 5 'za)} € by 4, = P +5,9<2

Proof. If {(z,$""z,)} € ¢, then the result immediately follows from Theorem 3..
Conversely, let z € Ag(D). Then, by Theorem 3.12 we have

1
¢t <n ' —g,(z), forneN, ¢ e X
VA
Therefore
o0
q/p=1_» /p~1 /2 =
};171 s Aq,z_:ln‘”’ n gl (z) = ,1'/22 n%"169(z) < co.

Hence, {(z,S™'zn)} € lp o Theorem 3.6 is proved.
Acknowledgement: The anthors are thankful to the Referee for his critical
remarks and constructive suggestions that helped to improve the original version

of the paper.

CrHCOK JIMTEPATYPH

[}] S. Barza, A. N. Maroci and L. E. Persson, “Best constants between equivalent norms in
Lorentz sequence spaces”, Hindawi Publishing Corporation, Journal of Function Spaces and
Applications, Volume 2012, Article ID 713534 19 Pages doi: 10.1155,2012/713534.

[2) W. Bednorz, Greedy Algorithms, ISBN 978-953-7619-27-5, 586 pages, Publisher: InTech,
Chapters published November 01, 2008 under CC BY-NC-SA 3.0 license DOI: 10.5772/92.

|3] P. Binev, W. Dahmen, R. DeVore, P. Petrushev, “Appraximation classes for adaptive methods”,
Scrdica Math. J. 28, 391 - 416 (2002).

|41 O. Christensen, An Introduction to Fraines and Riesz Bases, Birkhauser, Boston (2003).

75



K. T. POUMAI AND S. K. KAUSHIK

{5/ O.Christensen, “Frames and the projection method”, Applied and Computational Harmonic
Analysis 1. 50 - 53 (1993).
[6] Christopher Heil, A Basis Theory Primer, Birkhauser, Boston (2011).
|7] W. Dahmen. R. A. DeVore, A. Kunoth, Multiscale, Nonlinear and Adaptive, Approximation,
Springer Berlin Heidelberg, ISBN 3642034640, 9783642034640.
8] R. A. DeVore. V.N.Temlyakov, “Some remarks on Greedy algorithms”, Advances in
Computational Mathematics 5, 173 — 187 (1996).
[9] S. J. Dilworth, N. J. Kalton, D. Kutzarova and V. N. Temlyakov, “The Thresholding Greedy
algorithm, Greedy bases and duality”, Constr. Approx, 18, 575 - 597 (2003).
[10] D. L. Donoho , M. Elad , V. N. Temlyakov, “On Lebesgue-type inequalities for greedy
approximation”, Journal of Approximation Theory 147, 185 ~ 195 (2007).
[11] Ronald A. DeVore, “Nonlinear approximation”, Acta Numerica, 15 - 150 (1998).
[12] V. N. Tenlyakov, Greedy Approximation, Cambridge University Press, (2011).
[13] V. N. Temlyakov, “The best m-term approximation and greedy algorithms”, Advances in
Computional Mathematics 8, 249 - 265 (1998).
|14] V. N. Temlyakov. S. V. Konyagin, “A remark on greedy approximation in Banach spaces”, East
Journal of Approximations 5, 365 — 379 (1999).
[15] P. Wojtaszczyk, “Greedy type bases in Banach spaces”, Constructive Function Theory. varna
2002 (B. Bojanouv. Ed.) DARBA, Sofia, 1 ~ 20 (2001).

INocrynuna 2 nexabps 2014

76






