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Abstract. The original proof of the Littlewood conjecture was a special case of a more
general inequality of functions whose Fourier coefficients have gaps. In this article, we
prove similar inequalities, but treating the Fourier transform of a function integrable
on the real line, rather than on the unit circle.
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1. INTRODUCTION

The problem of finding a lower bound of the L' —norm of exponential sums, known
as a Littlewood conjecture, was posed by Littlewood [2], stating that a constant K

exists such that for any set {n; < ns < ... <ny} C Z,
N |

E : Tt
Tk

k=1 |

(1.1) > K log N,

1
where the L'—norm is taken on T, that is, over unit circle. In [5], the Littlewood

conjecture was proved as a special case of the following general result.

Theorem 1.1. (McGehee, Pigno and Smith) There is an absolute constant ¢ > 0
such that for any function f € L'(T) whose spectrum is contained in the set {n; <

ny < ...} C Z we have
= [ f(ne)]
(1.2) ; ;

where f(n) = 51;- fT f(t)e~"tdt is the n—th Fourier coefficient of f.

< || flh1,

In this context, the spectrum of f is the support of f . Since then, many attempts

have been done to generalize the original Hardy’s inequality, which is given by (1.2)

with n, = k.
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In this paper we prove the corresponding inequality of (1.2) for functions f € L}(R)

and their Fourier transforms f (€) = Je f(z)e™*€dz. To this end, we will prove first
a continuous version of the inequality

= 1/2
(1.3) | 2147 X e <caf,
| =1 4i-1< k<47

for all f € L'(T) whose spectrum lies in {n1,n2,---} C Z. This inequality was proved
in |9] as a gapped version of the following inequality of [3]:

. 4 i
00 47 -1 e 47 —1 e

0

14 3 |47 X P | <clfli+cY 47 T |f=n)P
7=1 n=4i-1 j=1 — -

for all functions f € LY(T).

We emphasize here that although inequalities (1.3) and ( 1.4) look very similar,
the authors in (3] and [9] used completely different constructions to prove these
inequalities. In [9] the author used the construction applied in [5] to prove the
Littlewood conjecture, while [3] used what we call the algebraic construction. In
this paper we use the algebraic construction to prove some gapped versions of such
inequalities. Hence, the importance of this paper is two folded: the results themselves
and the treatment of the algebraic construction with gaps.

We refer the reader to [1| where these two, and two other constructions were
reported as alternatives to prove the Littlewood conjecture.

It is worth to note that the recent proofs of inequalities of type (1.3) and (1.4)
used a duality idea, where a bounded function with certain decay properties must be
constructed, a powerful idea that has been used extensively on the circle.

In our recent works we have focused on how to deal with such inequalities on the
real-line, that is, when having a function f € L*(R) rather than L!(T). We refer the
reader to [6] — [8] for the study of the real-line versions of Hardy's inequality.

In particular, in [8] we have proved the continuous version of (1.4), stating that a

constant C' > 0 exists such that for all f € L!(R),

4j

a0 4 1/2 oo : 1/2
(15) ) (4‘-"‘ f4 - If"(e)l'*’dé) <CIflh+C ) (4“'" /4 lf(—E)Fdf) .

Now we propose the following question: What are the real-line (continuous) versions

of the inequalities (1.1) - (1.3)?
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Observe that an analogue of the Littlewood original conjecture (1.1) would be
> K log(A),

/eiftd&-
E ‘ |

where E is a subset of R with a finite positive Lebesgue measure A, and K is an

absolute constant. However, this inequality is trivially true by virtue of the 'following

proposition.

Proposition 1.1. Let E ¢ R be a set of finite positive Lebesque measure m(FE).

Then,
f eiﬁtdf
) i

Proof. Let f be the characteristic function of the set F. Then we have [ €¥tdE =
f(—t). We claim that Hf”l = 00. Otherwise we would have f € L'(R) and f is

continuous. But f, being a characteristic function, is continuous if and only if £ = R,

= 0OQ.
1

contradicting the fact that m(E) < oo. O]

This concludes the study of the continuous version of (1.1). The purpose of this
paper 1s to present the continuous versions of Inequalities (1.2) and (1.3). The corresponding
results are stated in Section 3 (see (3.1) and (3.2) below).

To state the aimed results, we first introduce some notation.
For f € L'(R), we set supp(f) = {E eR: f(&) # 0} and suppose that f(¢) = 0

for all £ < &y with some &.

We then define a new sequence {bj, 7 > 1} by setting
by = inf {b . m ((bj_l,b) nsupp(f)) > 3 x 43'-1} 2o,

where by = £y and m(-) is the Lebesgue measure.

Next, we define a new sequence {I;} of disjoint sets by
Ij = (bj-1,b;) Nsupp(f), j=1,2,3,--..
We remark that at each step j of the construction, if
m ((bj_l,b) A supp( f“)) < 3 x 43~

for all b > b;_,, then we set b; = sup supp( f ) and we stop the process to get finitely
many /;’s.

Thus, for f € L'(R) satisfying f({) = 0 for all £ < & with some &,, we have
constructed the sets {/,}, possibly finitely many, with the following properties:

1) SUI)P(.f) ” Uj 1.
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i) If z € Ij and y € I, then z < Y.
iii) m(I;) = 3 x 4771, except possibly for the last one I, if there are finitely
many of them, where we would have m(I,,) < 3 x 471,
iv) If there are finitely many of the I jy say {Iy, -+ ,I,}, then by couvention let
Liyi=Iyo =--- = ¢.
If f e LI(IRS satisfies the properties i)-iv), then we refer to it as a gapped function
with partition {I;}.
Keeping these notation in mind, we prove the continuous version of (1.3). That

is, for functions f possessing the above properties, we prove existence of a constant
C' > 0 such that

1/2
(1.6) (4 ’f If(E)Izds) < Cl[fllx

1=1
In this context, C' is an absolute constant that does not depend on f nor on the

partition {/;}. It is worth to mention the advantage of (1.6) over (1.5). If, for example.

f(€) =0 for all £ < 4% then in (1.5) the first nonzero integral will be multiplied by

4=99 while in the new form, this integral will be multiplied by 4=!. Although we can

shift the first block to be multiplied by 4=! in (1.5), there is no way then we shift all
other blocks. However, inequality (1.6) shifts and merges the support of f to behave
like a function whose support is continuously extended over the real line. We remark

that the ideas of the forthcoming proofs are similar to those of [8|.

2. PRELIMINARIES

Let f € L' be a gapped function with partition {/;}, and assume that f is of

compact support. For j > 1 we define the following sequence of functions:

~1/2
(2.1) fi(z) = ?4—3/2 (/ £ ( E)l"df) /1 f(€)e ™ de.

Since supp(f) is assumed to be compact, for large j we have f; =0 and I; = ¢. The
following lemma gives the basic properties of the sequence {f;}. The proof of this

lemma is similar to the proof given in [8], and so is omitted.

Lemma 2.1. Let f; be as above. Then || f;|l2 = 4-3/2 unless f; = 0, ||fillee < 1,

and

-1/2
(2.2) fi(€) = \/5;4""'/2( 1f(€ )lgdf) g;(£),
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where

(23) qJ({;') — { f(E)r £ € Ij

0, otherwise.

Now we construct a new sequence of functions {

Fj, j > 0} as follows. Put Fo=0
and for 57 > 0 define

€ € —
(2.4) Fit1 =5 fin1 + (1 = |31 P F; - 51 F5,
where 0 < € < 1 is a number to be specified later.

Since f is of compact support, we have fi = 0'for

large ;. Therefore, there exists
a0 index k sich that Fi = Fiyy = Fho=-:.. Tot Fo 2 Fy.
Some properties of the sequence {Fj,

of lemmas. Again, the proofs
those in [8§].

7 2 0} are given in the following sequence

of these results are similar, and some times identical to
Hence, we omit the proofs, unless it is necessary.

b

Lemma 2.2. For each 7 2 0, we have | Fjllo < 1.

Lemma 2.3. For each 7 2 0, we have

spec(Fj) C (A;j,b;) for some Aj € R. Here
spec(F’) = supp(F).

Proof. We proceed by induction on J- The result is true for F}, because spec(Fp) =

¢. Suppose that spec(Fj) C (Aj,b;) for some A; € R. Observe that fi

IS a scalar
multiple of the Fourier transform of 9j

where g; is given in (2.3). Therefore, spec(f;) =

I; C (bj—1,b;), and using the fact bj < bj41, we can write

spec(fjq1) C (b5, b541); spec(Fy) C (Ajibj)
spec(|fi+1]°F;) spec(fj+1) + SPGC(T;;H) + spec(F;)
C (62 bj41) + (=bj1, =b5) + (A5, b;) C (b — byyq + Ajy bjt1)
spec(f;41F?) C —spec(f;41) + 2spec(Fy) C (=bjy1, —b;) + (24,, 2b;)
C (=bj41 + 24j,b;) C (=bjy1 + 2A,bj41).
Therefore spec(Fj41) C (Aj+1:bj+l):

where /lj+1 = Illill{bj, Aj, bj - bj

+1+ Aj, —bj11+ 2A;}. This completes the proof. [J

Lemma 2.4. For any k > 7 2 1 we have

1/2
2.5 ( §3 IFk(f)l"’ds) < 16eyBra-in2

o6
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Lemma 2.5. Let j > 1 and k > j. Then

1/2
(2.6) ( /} 1R - §f‘}(s)|2d£) s
Now, recall that F = %Fk for some k > 1.
Lemma 2.6. Let F = %Fk, k > 1, and let € := 7212“_. The following inequalities
hold:
(2.7) |IF|ls < ¢, where c = 1441/2r,
(28) B(€) - fi(€)| < 5477 foré € I

The following basic result will be needed in our proofs in Section 3.
Lemma 2.7. If f,q € L?, then

£)g@)dz = — | FE)50)
|t = 5 [ i@

Observe that if f € L! is such that f is compactly supported, then f € L2. Then
Plancherel theorem guarantees that f € L2.

Now, if F is as above, then F' € L?, and hence by lemma 2.7

(2.9) ]R f (o) Fada = /R F(6)E(€)de.

3. THE MAIN RESULTS

Now we are ready to prove our first main result, which is the continuous version of

(1.3). Notice that although the proof is identical to that of (1.5), we present it here

for completeness.

Theorem 3.1. There exists an absolute constant C > 0, such that for all gapped
f € L'(R) with partition {1},

Q0

| 1/2
(3.1) & (‘ﬁ ’ If(E)Izdf) < Cflh-

j=1

Proof. We first prove the result for f € L' whose Fourier transform f is of compact

support. Let f; and F be as above. Recall (2.7) and observe that (2.9) holds because
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[ is of compact support. Therefore,

clfly > ./Rf(a: F

—| [ FeF@a

UX;

> R ( e f(E)F(-f)df) - 5’—-2 ( f . F(e)df).

But in view of (2.8), for § € I; we have

P - 7500 < 54,

and hence

F(©)f(€) - mf(f)l < %4—-"lf(£)l,
implving that

R(L©F© - F©f©) < 34771

Consequently, for £ € | j. we have
®(FOF©) 2 % (FOF©) - 24791f(e) =

-1/2 i
ey i) iR - Laife,

where we have used (2.2) to obtain the last line.

Integrate both sides and then use Cauchy-Schwartz imequality to get

1/2
R (F©)f(€)de) > Vama/? ( / lf(f)l"’d€) -  f(©)de

M3 iy ‘ 1/2 1/2
\/m-j/'z( lf(fn?de) —12-( If(ﬁ)l"df) ( / ds)
1 I I

1/2 1/2
de) > (4--* f lf(.f)lzdf)

This proves (3.1) with C = 27re¢. This completes the proof of the theorem in the case

where f is compactly supported.

IV

|
> e
3
I
2l
B’
SN
d
l:-
>
=
o

For the general case, let f € L', then apply the above arguments to f * K>, where
Ky is the Fejer kernel of order ). O

To proceed to the next result, we recall Hardy’s inequality and its gapped version
(1.2), and (1.5) and its gapped version (3.1).
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It is natural to propose a gapped version of the real-line Hardy inequality that
states

(3.2) /0 U—%’ide < cllflh.

for f € L](]R) satisfying f () = 0 for all ¢ < 0. See 18] for a proof, deduced from
(1.5). To state and prove a gapped version of this inequality, we look at the gapped

generalization of the discrete inequality in the following way: the inequality (1.2) can
be thought of as

where ¢ is the mapping g(ny) = k, which maps the supporting integers into the
original set of integers.

To realize this idea in the real-line case, we need the following setup.

Observe first that I; is open, being the intersection of two open sets. Hence, we

can write
n;
IJ' . U (aj,k: ﬁj,k):
k=1

n,

for some «; i, Bk € R such that Zk:l(ﬁj:k — k) < 3x 4771, Consequently. we can
find {v;x} and {n;x} to satisfy

47 < Yk <mjk <4 and ik - vik = Bjk — k.
For each j and k = 1,...,nj, let g; & : (ajk,Bjx) — (75.k,15.x) be defined by
9ik(&§) =& — ajr + Yk
Then we set

n;
9j = ) _gikXik and g=> g;,
k=1 L ]

where x; x is the characteristic function of (e, 8 ).
Now we are in position to state our result that gives a gapped version of the

continuous Hardy inequality (3.2).

Theorem 3.2. Let f be a gapped function with partition {I,;}, and let g be as above.

Then for some absolute constant C’, we have

A PP
(3.3) b a(6) d& < C'|| fllx

09
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Proof. Since supp(f) ¢ U; Ij, we have

L£@I . _ HG) W il 1/2
R 9(£) dg_;[j 9(¢) "“JZ (f,J HG) ) ( 4 If(€)|2d€)

8 iy \ 1/2 1/2
ol fey (2
-T(z/ %) (/170 «)

Making the substitution 95,k(§) = 7 in the first

integral, we can write

N N
= “5;(2 L ;gd’r) ( /, lf(é‘)lzdf)

J.

N e ¥ # 1/2
- (Z ek "’"”“) ( /I . If(E)Izdf)

§ \k=3 "HRTA

] n, 1/2 1/2
S (42;;——2 > - 7j,k)) (f; lf(5)12d§) |
7 =1 j

3 x &I-1\ 1A : 1/2 | : 1/2
<2 ( ;_2 ) ( /; lf(es)l"’de) < V12 (4-3 lf(f)l‘*’dc) < Il flh,
J J

where C’ = /12C, and (3.3) follows. O
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