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Abstract. The paper considers the following differential equation z’(t) + Y pi(t) z(i(t)) = 0,
=1

t > 0, where p; € Lioc(R4; R4), i EC(R+;R), ri(t) <t and lim 7(t)=+4oo,i=1,...,m.

t >4 00
New oscillation criteria of all solutions for this equation are established.
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1. INTRODUCTION

It is a trivial consequence of the uniqueness of solutions of initial value problems
that first order linear ordinary differential equations cannot have oscillatory solutions.

As for the equation

(1.1) z'(t) + p(t) z(r(t)) =0,

the presence of a delay leads to the fact that oscillatory solutions do appear. Moreover,
if p is nonnegative and the delay is sufficiently large, all proper solutions (see Definition
2.1 below) turn out to be oscillatory. Specific criteria for the oscillation of proper
solutions of linear delay equations were for the first time proposed by A. D. Myshkis
1]. Tt follows from the results of [2, 3] that if the functions p : Ry — Ry (R4 =

0, 4+00)) and 7 : R4+ — R are continuous, 7(t) <t for t € Ry, t_ljglm T(t) = +o00,

t t
p* = lim sup / p(s)ds, p.=liminf / p(s)ds

st (1) | t— 400 (t)
and
1
(1.2) gither p" >1 of P > =)

then the equation (1.1) is oscillatory. Note that if p. < -21;, the condition p* > 1 can

be improved.

*The work was supported by the Rustaveli Science Foundation. Grant no. 31/09.
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For 7(t) =t =7 (7 = const > 0) such an Improvement was carried out successively

in [4-6], where the condition p* > 1 was replaced. respectively, by p* > 1 — L

¥ &

bt T~ /T, - 7

On the other hand, in |7, 8| sufficient conditions for oscillation of all proper solutions of
equation (1.1) were given, which involve classes of inequalities not satisfying condition

(1.2). In the present paper, using the ideas of 9], we establish some new criteria for

the equation

(1.3) 2 (t) + 3 pilt) 2(mi(£)) = 0,
s=1

where

pi € Lloc(R+;R+)1 i € C(Ry4; R, R(t)<t for te Ry

1.4
(1.4) and  lim 7i(t) =400 (i=1,...,m),
[— 400

to be oscillatory:.

2. THE MAIN RESULTS
Throughout the paper we assume that 7,(t) = min{7;(¢) : i = 1,...,m}. Put
o n " (t) = Inax {s : 'r,..(s) " t} for t€ Ry,
- we ) =am(t), w=n"on, (i=23....)

Definition 2.1, Let tyo € Ry. A continuous function x : [tg, +00) = R is said to be a
proper solution of equation (1.3) if it is locally absolutely continuous on [n™ (tg), +00),

satisfies (1.3) almost everywhere on [n™ (to), +0), and

sup {|z(s)| :t < s< 400} >0 for t>t.

Definition 2.2. A proper solution of equation (1.3) is said to be oscillatory if the set

of its zeros is unbounded from above. Otherwise it is said to be nonoscillatory.

Definition 2.3. The equation (1.3) is said to be oscillatory, if any of its proper

solutions is oscillatory. Define
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Theorem 2.1. et there exist k € N and non-

decreasing functions o; € C(R4+; R)
such that

(2.3) Ti(t) Soi(t)<t, i=1,....m
and
m m [ oi(t) m ;o ;%1-
s [T TT [ (o) exg fm [ pe(6)) wk(e)d&}dsJ >
t—+o00 j=1 Lj=1 ;yj(f) JT (H) Dl
1 m
24 > — - .
( ) mm™m o ce(]) f)
T'hen the equation ( 1.3) is oscillatory, where
t
P«¢ = lim inf pe(s) ds,
(2.5) t—+o0 ﬂ'f(t)
l = Poe = /1-2p,, - 2
Ce(p*f) - = 2 te p*fﬂ £ = 1 y T

Theorem 2.1’. Let P, ;13- and there exist nohdecreasz’ng functions o; € C(R4+; R)

such that the conditions (2

m rm ai(t)  m En
mawp [ TT [ o) exo {30(2.) - [Tre©)" de}as] ™ >
{— 400 j=1 L= o;(t) Ti(8) =1
1 m
(2.6) > —— - Hc:g(p,..g).

Then equation (1.3) is oscillatory, where p,; and ce(pae) are given by (2.5) and X\*(B,)
15 the smallest root of the equation

(2.7) ePe? =

| m ! m - 3
(2.8) P, = ltigjifZ/ 3 (Hpg(s)) "ds > 0.
)

=1

Corollary 2.1. Let 7; be nondecreasing functions, pi(t) > p(t) (i =1,.

..yM), D €
Lioc(R4 : Ry) and for some ¢ € (0, A*(B,))

(2.9) > ;1,;; - ] ce(p.e).

i=1
Then equation (1.3) is oscillatory, where p.¢ and c; are given by (2.5) -and \*(p,) is
the smallest root of equation (2.7).
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Theorem 2.2. Let there exist nondecreasing functions o; € C(R.: R) such that
conditions (2.3) are fulfilled,

morom o ai(t) , m 9 4
(2.10) limsup | | [H/ i Pi(S)/( | (Hm(ﬁ)) " dg d.s] > 0,
qa= o\l Ti(s
and let
m 4 m i 1
(2.11) ltlﬂl_gig_z:/ (HP&(S)) ga > 7
Then equation (1.3) is oscillatory.

Corollary 2.2. Let 1; be 'nondecreasing functions,

L i (1)
212)  tminf [ (o) [ ([[pd@) " deds >0, ii=1..m

e Jel) 7

and let condition (2.11) be fulfilled. Then equation (1.3) is oscillatory.

Theorem 2.3. Let 1; be nondecreasing functions,

t
(2.13) lfan_'!&f /ﬂm pi(s)ds >0, i=1,....,m,

and let condition (2.11) be fulfilled. Then the equation (1.3) is oscillatory.

3. SOME AUXILIARY STATEMENTS

In this section we establish estimates of the quotient

(1 z(men) 3

where z is a nonoscillatory solution of equation (1.3).

Lemma 3.1. Lel ty € R+ and x : [ty,+20) = (0,400) be a solution of equation
(1.3). Then for any i € {1,2,...}

(3.1) (TTee®) ™ 2 wit)e® for t2n7(t)

=1
where the functions n;* and v; are defined by (2.1) and (2.2), respectively.

Proof. From (1.3) for t > n;"(to) we have

z(7;(t)) r(ri(s) . | - 03
mzt) >cxp{/TJ(t)Zp(s) -r, d} (g ].....m)
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Using the arithmetic mean-geometric mean inequality, from the last Inequality we get

"”SES” > exp {m / t (ﬁm(s)) .- ds} ool

j("-) =1

Therefore for t > 57" (tp),

( _lj z(73(t))) " » ( I 2(re(s) 2
(1) >CXP{Z/“) HPe = 2(5) ds}.

Inequality (3.1) is obviously fulfilled for i = 1. Assummg its validity for some i €
{1,2,...}, by (3.2) for t > ;31 (to), we obtain

(3.2)

1

(gx(Ts(t) )"‘ > exP{Z/ b HPf(s) %%(3) ds}:c(t) Yi+1(t) z(t),

and the result follows. _ L]

Lemma 3.2. Let p, < -}, where p, 1is defined by (2.8). Then
(3.3) lim (llmmfw,(t)) > A @),

it—+4+oc ' t—+o00

where functions v; are given by (2.2) and A*(P.) is the smallest root of equation (2.7).

Proof. Suppose on the contrary, that (3.3) is not true. Let
(3.4) lim (lim inf ¥;(t)) = v < A*(p,).

=400 ' t—4o00

Then there exists g > 0 such that
 (3.5)

On the other hand, for any ¢ > 0, by (2.8) and (3.4) there exist ke € N and t, € R,

such that

(3.6) Z/ Hpg(s) ds 2P.—€, Yr(t)>2~y—€ for t>t. and k>k..
—1 /(1)

g Sl

According to (3.6) from (2.2) we get
Yks1(t) > e P76 for t>¢  and k > k., .

Therefore

' t)) > (v—€)(P. -C)
AT (IR Un(0)) 2 ¢

which implies 4 > e77-. In view (3.5), this is a contradiction, and the proof of the
lemma 3.2 is complete.

Quite similarly one can prove the next result.
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Lemma 3.3. Let

(3.7) = ltl_l’_l}l_:gfz'[r A Hpg(s) . ds e
then
(3.8) lim (hm inf wk(t)) + 00,

k=400 " l—=4+0

where Y. are given by (2.2).
The proof of the next lemma can be found in [9)].

Lemma 3.4. Let there exist nondecmasmg functions o; € C(R4; R) such that condition

(2.3) s fulfilled and equation (1.3) has an eventually positive solution z : [tg, +00) —
(0, 4+00). Then

| z(t) .
(3.9) 1;21_:’25 2(0:(0)) > soial (i=1...,m),

where p.; and c;(p«i) are defined by (2.5)

4. PROOFS OF THE THEOREMS

Proof of Theorem 2.1. Suppose on the contrary that the equation (1.3) has a
nonoscillatory proper solution z : [tp,+0oc) — R. Since —z(t) is also a solution for
(1.3), we confine ourselves only to the case where z(t) is an eventually positive solution
of equation (1.3). Then there exists ¢, > to such that z(7;(¢)) > 0 for t > ¢, (i =

1,...,m). As we have seen, while proving Lemma 3.1

(4.1) (Hm(rp(t))) " >t z(t) for >0 () (i=1.2,...),
=]

where the functions 7,;* and ¢; are defined by (2.1) and (2.2), respectively. From (1.3)

we have
(4.2) z(s) ) exp {/ Z i(€) x(TZS)) d{} B 2 u> 1.
Integrating (1.3) from o;(t) to t, for sufficiently large t, we get
(4.3) (0 (t)) = Z f | P (s)) ds + (1),
a;(t

On the other hand, taking into account (2.3), from (4.2) for sufficiently large ¢, we
obtain
(4.4) T(T"(t)) = exp {/ Z:p (s) 'T(T ) ds} (¥ 1,....,m)

Ti(t) =1
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and
o (L) m

49 et = sty o [ 30 20D 4
i\8) =1

for t2> s> n0"(t) (J=1,...,m).

Combining (4.1), (4.3) - ( 4.5) and using the arithmetic mean-geometric mean inequality
for 7 =1,2,...,m, we can write

w023 [ p)a(oe)x
oi(t) , m A ( ijl 'E(Tf(f))) s

X exXp {m /Ti(s) (gpp(f) — _:::({) df} + z(t) >
mn t - (t) ™ T:E

> Zx(m(t)) / pi(s) exp {m/ Hpe(f)) wk(ﬁ)d’f}ds +z(t) 2
- o;(t) A s

> m[ [Tt [TT [ oo

ai(t) , m =
e {m [ (ITpe©) " vute)defas] ™ + a0
Therefore
w(t) > m™w(t) H [I_II/r;(t) i(8)x

where w(t) = || z(o;(t)). Hence

lim sup
L— 400

J=1 1=1 J(t) i(ﬂ) ¢=1
o § - 1

(4.6) <+ _}T'Z._(_)___) S _T.r;r.;

[1 z(oe(t))

£=1
On the other hand, by Lemma 3.4 we have

f

(4.7) lim inf z(?) 2 C\ Doty L=1,...,m,

t=+o0 z(oy(t))
30
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where p¢. and ¢, are given by (2.5). Therefore, according to (4.6) and (4.7), we get

hmbupH [H/E:(t)m(S)-cxr){ /m lt)(Hw E))"L%(E dﬁ} J-“L'+

t— <400

j=1 L4=1"
+1T[10e Put) <
<1:Tfumpﬁ[l_[/(t)pt(s)cxp{mffim(ﬁ £))iwa(6)d£} r+
j=1 L =170 Ti(s) N
+liminf =28

vy n z(oe(t)) -
m a;(t) m X ;%
Sl ‘ f - o d d.
msup (Fl b /ﬂj(t)p(s)exp{m /ﬂ(ﬂ) (TTpe©) ™ vetede fas| "+

=]

. ___"‘_f_f_>___) gk
[1 z(oe(t)) »
=1

which contradicts (2.4).

Proof of Theorem 2.1’. Suppose on the contrary that equation (1.3) has a nonoscillatory
solution z : [tg, +00) = (0, +00). Then by Lemma 3.2, the inequality (3.3) is fulfilled.
Thercfore, for any € > 0, there exist ¢, € Ry and kg € N such that

(4.8) Yo (t) 2 A*(P,) — € for t>t.,

where p, is defined by (2.8) and A\*(5,) is the smallest root of equation (2.7). Taking
into account that (2.6) and (2.8) imply (2.4), it is easy to see that Theorem 2.1’ is a

straightforward consequence of Theorem 2.1. N

Proof of Corollary 2.1 immediately follows from Theorem 2.1, if we take Ti(t) =
0% (t) o
Proof of Theorem 2.2. Suppose on the contrary that equation (1.3) has a nonoscillatory

solution z : [tg, +00) — (0, +00). Then by Lemma 3.3, condition (3.8) holds. In view

of (2.10), we can choose M > 0 to satisfy
e

t ai(t) L m
(e M) " llmsupH {H/ pi(s) (pr §)) dfds] >
t— 400 j=1 b 4=1 a;(t) 7i(8)
(4.9) > o H ce(Pee),
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where p,¢ and ¢, are given by (2.5).

On the other hand, according to (3.8), there exist ky € N and ¢y € R4 such that

Yro(t) 2 M for t > ty. Since e* > ez, by (4.9) the condition (2.4) is fulfilled for
k = ko. and the result follows. U

Proof of Corollary 2.2 is similar to that of Theorem 2.2, and so is omitted.
Proof of Theorem 2.3. Suppose on the contrary that equation (1.3) has an eventually
positive solution z(t). Then by (2.13) and Lemma 3.4 we have
(4.10) lim sup 7(7i(t)) < +00, el il .

t—+00 :L'(t) |
On the other hand, by Lemmas 3.3 and 3.4 conditions (3.1) and (3.8) hold. But this

contradicts condition (4.10), and the result follows. ®

Remark 4.1. Condition (2.11) for any € > 0, cannot be replaced by the condition

e I'=¢
(4.11) . ltl_rPJ{!&fZ/ pr ds> e

da=1 (t)

Consider the differential equation

(4.12) z'(t) + iﬂi-ﬂ?(t - 4;) =0,
1=1

where ¢;, A; € (0,400),i=1,...,m. Choose § > 0 such that, if

m

> (lei =il + 14i = 44]) < 6,

7,t=1
then
™m m 1 &
€ o 2 5 A
4.13 A < (1+_)m( ) ™ &
(4.13) ;q 5 Ea
and
4.14 1_6<(ﬁ .)ﬁ;ia.<1_%
(4.14) e_i:lc,. - [ =
By (4.13) and (4.14) we have
A
max{r—r— : A € [0, +00)} 2
3 c; XA
g==]
\ .
2—-—————1 — J_lnax{——;-qn——:,\e[o,+oo)}=
' m ey A
m(1+ %) (1 e:) P
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‘ | 2 1 -—r>1
m+g)(fle)® efa” 0+90-9 -5

According to the last inequality, it is obvious that e=%0't is a solution of equation

(4.12), where )y is the root of equation )\ = Z ¢c; €22+, On the other hand. by (4.14),
condition (4. 11) holds, where ¢; = p;(t) and g A = 1i(t).
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