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Abstract. In this paper we present a converse Lyapunov theorem for global
practical uniform exponential stability of nonlinear time-varying systems.
The main result shows that the system is practically globally uniformly
exponentially stable if and only if it admits a Lyapunov function which
satisfies some conditions. An example is also discussed to illustrate the

advantage of the proposed result.
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1. INTRODUCTION

The investigation of practical stability of nonlinear systems using the second Lyapunov
function method has produced a number of important results and has been widely
studied in the literature (see, e.g., [1]-[5], and references therein). It is known that
requiring the existence of a Lyapunov function that satisfies certain conditions implies
practical exponential stability (see, e.g., [4], [6]-]9]). Requiring the existence of an
auxiliary function V(t,z) that satisfies certain conditions is typical in many results
obtained by Lyapunov’s method. The question of the validity of the converse results,
which arises naturally, originates the problem of the existence of such a Lyapunov
function, that is, the problem of the existence of converse Lyapunov theorems.

It is known that practical stability is neither weaker nor stronger than the usual
stability; an equilibrium can be stable in the usual sense, butl not practically stable,
and vice versa. Practical stability is, in a sense, a uniform boundedness of the solution
relative to the initial conditions, but the bound must be sufficiently small. On the
other hand, the asymptotic stability is more important than stability. Also, the desired
gystem may be unstable and yet the system may oscillate sufficiently near this state
that its perfermance is acceptable. Thus the notion of practical stability is more

suitable in several situations than Lyapunov stability.
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Lyapunov’s second method, also known as the direct method, is a widely recognized
and commonly used technique for studying the stability of nonlinear systems. “This
method employs construction of a Lyapunov function. Converse Lyapunov results are
an important tool in the analysis of stability of nonlinear time-varying systems and
have been well studied (see [4], [10]  [12]).

In this paper we consider nonlinear time-varying differential systems of the form

(1.1) i(t) = f(t,(t)), =(to) =zo
where ¢ >ty > 0, z(t) € R” and f: Ry x R® = R" is continuous in ¢ and is locally
Lipschitz in z.

The purpose of this paper is to obtain a converse Lyapunov theorem for uniform
global practical exponential stability. In our proof of this result we use some arguments
from [4, 10].

The paper is organized as follows. In section 2 we give some definitions and
results about the practical global uniform stability and practical global uniform
exponential stability. In section 3 we propose new sufficient conditions with the
extended Lyapunov functions for the practical exponential stability of nonlinear time-
varying system (1.1). A simple example is also discussed. In section 4 we present our
main result - the converse of the Lyapunov theorem, proved in section 3. In addition,
we give an illustrative example to demonstrate the applicability of the obtained

principal result.
2. AUXILIARY FACTS AND RESULTS

In this section, we introduce some basic definitions and preliminary facts which we

need in the sequel. We first recall the following definitions from [10].

Definition 2.1 (Uniform boundedness). A solution of the system (1.1) is said to be
globally uniformly bounded if for every o > 0 there evists ¢ = e(a) such that for all
ty >0

zoll < @ = [Jz(t)|| < cla), V2 to.

Let » > 0 and B, = {z € R"/||z|| < r}.

Definition 2.2. (Uniform stability of B, ).
(i) B, is uniformly stable if for all € > v there exists 6 = 6(¢) > 0 such that for
allty =2 0
llzoll <& = [lz(t)l| <e V&2 to;
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(i) By is globally uniformly stable if it is uniformly stable and the solutions of
system (1.1) are globally uniformly bounded.

Definition 2.3 (Uniform attractivity of By). B, is globally uniformly attractive if
Joralle > r and ¢ > 0 there exists T'(e, ¢) > 0 such that for all ty >0

lle@®ll <e Vixto+T(ec), ol <e.

Definition 2.4 (Comparison functions). A function a : [0,a[— [0, +00[ is said to be
of class X, if it is continuous, strictly increasing and a(0) = 0, and it is said to be
of class Ko, if, in addition, a = +oo and a(r) = +oc as v — +oo. A continuous
function o : [0, +00[— [0, 400 is said to be of class £ (o € L), if it is decreasing
and tends to zero as its argument tends to infinity. A function B - [0, +00[x [0, +-00[—
[0, +00[ is said to be of class XL, if B(.,t) € X for any t > 0, and B(s,.) € £ for any
520,

Definition 2.5. (Lyapunov function| Let V : R* x R™ — R+ be of class C*,
(i) V(t,z) is positive definite, that is, there exists a continuous, non-decreasing
scalar function a(x) such that a(0) = 0 and
0<a(llz]) < V(t,z), Vx#o0.
(ii) V(t,x) is negative definite, that is,
V(t,z) < —y(llzll) < o,
where 7 is a continuous non-decreasing scalar function such that v(0) = 0.
(iii) V(¢,z) < B(||z||), where 8 is a continuous non-decreasing function and 3(0) =

0, that is, the Lyapunov function is upper bounded.

(iv) V is radially unbounded, that is, a(||z]]) = oo as [fz]] = oc.

A sufficient condition for Globally Uniformly Practically Attractivity Stable (GUPAS)
is the existence of a class KL of functions B and a constant r > 0 such that for any
initial state wy the trajectory w(t) satisfies:

=)l < B(llzoll, £) +r, ¥t > to.
If the class KL consists of functions of the form B(r,t) = kr—>', with A\ k > 0, then
we say that the system (1.1) is Globally Uniformly Practically Exponentially Stable
(GUPES).
It is worth to note that, if in the above definitions we take r — 0, then one deals

with the standard concepts of Globally Uniformly Attractivity Stable (GUAS) and
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Globally Uniformly Exponentially Stable (GUES), respectively. Moreover, in the rest
of this paper, we study the asymptotic behavior of a small ball centered at the origin
for 0 <|

definition of the uniform asymptotic stability of the origin viewed as an equilibrium

z(t) || =r, so that if in the above definition r = 0, then we get the classical

point. The next definition concerns the practical global uniform exponential stability.

Definition 2.6 (Global uniform practical exponential stability of a ball). Bp is
globally uniformly erponentially stable if there exist positive constants vy, k. n, & ¢
such that for all t >ty > 0 and xo € R,

(2-1) lz(®)]| < klloll exp(=y(t — to)) + nexp(—Et) +c.

The system (1.1) is globally practically uniformly exponentially stable if there exists

R > 0 such that By is globally uniformly ezponentially stable.

To explain better the notion of practical stability, we consider the following scalar
equation
4 sint
1" —_—
1+ tx2
with ty € Ry. Let V(z) = %:1:? be a Lyapunov function candidate for equation (E).

i=— (E)

The derivative of V along the trajectories is given by

sint
)< -2 + c—’l;l—

sint

y e
Vi) =—g/{l 1+ ta?

It follows that
sint

t
Note that the solutions of equation (E) can not be given explicitly. In this situation,

Vi(z) < -2V(z)+

we can not deduce the stability of the origin, but using Lyapunov function we can

obtain estimates on the trajectories. Indeed, since

sint| js bounded by 1, we obtain

the following inequality:
1

V() < (V((0) - %)e—_m o

Hence, for #(0) < —1 and z(0) > 1, we have
|z(t)] < (x(0)* - 1]% et +1.

So, for 2(0) < —1 and x(0) > 1, B; is uniformly exponentially stable.

Note that we cannot study stability of the origin as an equilibrium point. The last
inequality implies that z(¢) will be ultimately bounded by a small bound and since
|3—‘]+"| tends to zero as t tends to + oo, the ultimate bound approaches to zero, and
s0 x(t) converges to the origin. This implies the attractivity of the origin.
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3. GLOBAL UNIFOIIM PRACTICAL EXPONENTIAL STABILITY OF A CLASS OI' NON
LINEAR TIME-VARYING SYSTEMS

Consider the class of systems that can be modeled by (1.1). The practical uniform
exponential stability can be established by showing existence of a Lyapunov function
that satisfies certain conditions. The next theorem contains sufficient conditions for
the system (1.1) to be practically globally uniformly exponentially stable. It is worth
to notice that the origin is not required to be an equilibrium point for the system

JELY

Theorem 3.1. Consider the system (1.1). Let V : Ry x R™ — R be a continuous
differentiable Lyapunov function, such that for all t > 0 and « € R"

(3.1) alzl|" < V(t.z) < e2flz]|" +a

ay: . gy " —

; e pey F ) < —ealle e
(3.2) o -+ s fit,x) € —calz||” + Me™ + K,

where ¢1, ¢a, ¢3, r, a, & and K,y are positive constants with

C
r>1and 6 < =2
Cz

Then the system (1.1) is globally uniformly practically exponentially stable.

Proof. Let ty > 0 be any initial time, 2(t) be any solution of (1.1) with z(ty) = o,
and let V be the Lyapunov function candidate of the system (1.1).
The derivative of V along the trajectories of the system (1.1) is given by
; v av
t,x) = — + — f(I,z).
Viat)= e + 5 I a)

By the condition (3.1), we have —||z|" <
(3.2), for all t > tp and » € R", we can write

- Vit,z e
ﬂc—()‘ Therefore, taking into account
2

Viha) < -2 Vita) + =2 4 M ™ 4 K.
(] 2

Thus, there exists A > 0 such that for allt >t > 0

V(t,z) < AV(to,za) ¢ S -h) o Mey

27

e %+ acy + oK.
Cy.— 625



M. ERREBII, I. ELLOUZE AND M. A. HAMMAMI

; V(t,z(t)]"
It follows from (3.1) that V(tg,r0) < exllzol|” + a and |z(t)| < {—(—ﬁ]
g

Therefore, we can write for all t >ty > 0
I
—':‘g'(t—'fn} o058 J’lf{(‘z —dt >

+ acsy + (2]\1]
cy — 026

uﬂwsl{MMWW+Me

T
51

I

1 M ’
TR (A(‘g” TU"rP ©2 3 (t=to) + Aae” 2 U tu)) + (————L‘-Z— =L + acs + (“zK]_)
ef c3 — Ca0

i
34 "
Ac = Aae<z ! _sa
(”)umwcwtm+(___)ﬁ=w
(& c1

1 1
+( Mey ) = (a(:3+czf(1)r
(!].((,'3 s (!25) C1

Denoting 8 = mm{qr, }, we obtain for all t > t, > 0

ok
l i ) ™ i
Ac‘z) S(t-to) | Aae*2 (_.71”62 ) =
(t S L2 zolle” =" 0 4 e !
e < (22) ool - i)
acy + (}21{1 }
€1

The last inequality shows that the system (1.1) is GUPES. O

I

Example 3.1. Consider the following nonlinear differential equation:

. i 1 =
(33) :LE—.L+]+—I2L y tZO

Let us take a Lyapunov function V(t,z) : Ry x R — Ry, given by V(t,x) = 2% + e .
Note that for all z € R we have |z]* < V(¢t,z) < |z|® + 1 implying that the condition

(3.1) holds with ¢ = ¢y =1, r =3 and a = 1. On the other hand, we have

Il

~ e )

= 2 2
i dres < —p +3 $ —
€ s 0 e e xT ( |.l| 1 !“‘.

V(t, x)

3a2 oy
e
1+ 2

< —et -3+

Therefore, for any (¢,2) € Ry x R we get V(t,2) < =3 |z[> + 2 ¢! implying that the
condition (3.2) is satisfied with ey =3, M =2, 6 =1, r = 3 and K, = 0. Thus, the
system (3.3) is GUPES.
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4. A CONVERSE THEOREM

The above discussions and results arise the following question: if the system (1.1)
is GUPES, do there exist a function V' which satisfies the hypotheses of Theorem
3.17 In [6], a converse theorem was established in the case where the origin is not an
equilibrium point of the system, but it is assumed that there exists a non-negative
constant fy such that ||f(¢,0)]| < fo for all ¢ > 0. In Theorem 4.1 that follows, we
show that under this assumption there exists a function V that satisfies conditions
similar (but not the same) to those of Theorem 3.1.

We first prove the following lemma which will be used later.

Lemma 4.1. Consider the nonlinear system (1.1). Let ¢(7;t,z) be a solution of the
system that starts at (t,z), and let ¢.(7;t,x) = Zé(r;t,x) and ”%{(f.r)“ < .[L,

hr:

where L is a positive constant. Then

ligalr:t, )| < 70,
Proof. Note that ¢, is the solution of

i(f"m("-; t,r) = g{‘(fe H7it, 2))P=, u(tit,z) =1

or
We have )

| ok (15 t,0)pu(rit,2)| = | (01) B + B2 (L b))

< |(8L(t, $)0.)  bs + ¢L (2L (2, 0)62)|

< |6 (8Lt 0)) T br + ST (ZL(t, 0)x)| < 2| ZL (2, )|l 112
Therefore,

o o O
2Ll < 2 (gl < 2Ll
Integrating the above inequality from ¢ to 7, we get

% ™ 2 (llg])? i
_oL< QL_;_<f oL,
]:. = -/t ||ﬂ"’::”2 WAy

Therefore, for all T > t we obtain
—2L(7 — t) < [log(ll¢x (s, t,x))IIP]; < 2L(r 1)
—2L(r — t) < log ||¢o (7, ¢, 2)||? — log llgz(t, ¢, 2)||* < 2L(7 - t).
Since for ||¢e(t,t, 2)|| = 1] =1,
—2L(r — t) < log ||¢(7,t,2)||* < 2L(1 —t),

we obtain ||¢,(7,¢,2)| < eX("™Y. Lemma 4.1 is proved.
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Theorem 4.1. Consider the nonlinear system (1.1). Let f be a continuously differentiable
Sfunction, such that the Jacobian matriz [%] 1s bounded on R™ wniformly in t, and
there exists a nonnegative constant fo such that ||f(¢,0)|| < fo for all t > 0. Assume
that the trajectories of the systemn (1.1) satisfy the condition (2.1) for all tg € Ry,
o € R" and for some positive constants k, v, 8 and a. Then there exist a natural

number r > 2 and a function V : [0,+00) x R® — R that satisfy the following

mequalities:
cillell” < V(t2) < eallall” +a
gy gV
e ft,z) € —callz||” + Me™% + K
| ——H < callz]"t + Ne~® + K,
dx

for some positive constants ¢1, ¢a, ¢y, ¢4, a, M, N, 6, 8, K, and K.

Proof. The proof follows closely the proof of the converse theorem when the origin
is exponentially stable (see [6], [10]). Let ¢(7;¢, @) be a solution of the system that
starts at (¢, z), that is, ¢(t; ¢, z) = z, and let L denote the bound of [ ] We have

|67 (1, 2)6(r:, )] = [267 (758, )1 (7, (s, )|
< 2l p(rit, @) | f (7, b(r3 t,2)) = £(2,0) + £(£,0)]| < 2L||@(7; ¢, x)|1* + 2foll6(T; £, )|
Thus,
(4.1) %qﬁ'r('r; t,z)p(rit,x) > —2L||¢(T; t,x)||? — 2follé(r:t, ).

Letting v(7) = —||¢(7; ¢, )| and using (4.1), we deduce (as in [10], Example 3.9, pp.
103 — 104) that D*v(r) < —Lv(r) + fo. By the comparison lemma (see [10], pp.
102 — 103), we conclude that

lé(rst, )| + (|| |+ fﬂ) ~L(r-1)

Next, using the inequality (a + b)" < 2"(&"‘ + b™), for all n € N*, a,b > 0, we obtain

[(ll:z:" + %)S—L{f—n] (Hiﬂ s .f_) —rL(r—t)

< (It +4) < zloeal +2 (%)

Therefore

(42) ot DI + (2)" 2 5 (Jal + 22) erer=o.
Setting

Kbl = /:+T(¢’T(T; t, z)(7;t, a:)f 5 (%)rdr‘
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where T' is a positive constant to be chosen later, we can write for all t > 0

t4T
Vo) = [ ool + (2)
t+T = ”
< jf‘ (*’“lfrlie—*ﬁ—” +ae T4 c) g (%}) g
t+T fo
< / 2" (@e™" + o) + 2K fae =m0 4 (£2) g
! L
44T
< / 027 T THT ) 22rcr + 2v-kr"$”re—""¥(7—” i (.{.)
t L
2" k" geirg” _rAT JOXT g
< —(1 B e )+((I) +2 C)T.

On the other hand, using (4.2), we have

1 t+T fl} r 1
o, JU —rL{r— !,) R _ —rLT s
V(t,z) > 2r/t (||x|i - L) e dr > (1 e )If:cll .

2rrL
Thus, V (¢, z) satisfies the first inequality of Theorem 4.1 with
o 1 =rLT == kT —ryl
CI_ETTL('I_'C ), & = - (1-¢ )

a= ((%)r + 22"(:") T+ 22 (1 — e TN,

To calculate the derivative of V' along the Ll?l._]e(‘.t()l ies of the system, we use the

following notation:
i
o (mit, ) = —(b [Titun), delritai= a.(;cb('r;t,:n).

Then, we have

i‘;’+2Kf( )= (¢T(t+T;t,m)qﬁ(t+T:t,m])

(E5]

h (¢,T(r,; t,m)ob(t: t,:r.)) i
+'rf:+T[(¢T(T; t,x)e(r;t, 3’)) §-1¢T(T§ i -T)(fht("'itsf")] dr
+:r--/j+r[(¢'r('r; t,x)p(r;t, -’L')) %_IQ’)T(T; t, 2)¢a(7; L,;;:)]f(!,,x}d’r

t+T ,g._l
= ||p(t + T;t, 2)||” — [J=||” + ’"/ (¢"T(T;t,w-‘)¢(r; t,xJ) o7 (r;t,7)
t

(6e(r5t,2) + pu(rst, 7)) £ (¢, 2)dr
31



M. ERREBII, I. ELLOUZE AND M. A. HAMMAMI

As in [10], we obtain ¢y(7;t,z) + ¢=(7it, z)f(t,z) =0 ¥ 7 > t. Therefore, we can

write
av _ av
— 4+ —f(t = t o) = 2l|”
2+ 2 f) = e+ Tl - el
< (kaIIe‘"fT +oe 8+T) 4 r.) — ||z
< 2(ae~BUHT) 4 o) + 27K ]| e T = Jlxll”
HT (1 - 2"k"e_wT) =" + 92rare—TBTe=TAt 4 927cr,
log 21+ k
By choosing T = L, we obtain
Y
aV 8y 1 2o el e
YLt <~z + ——e " 2<¢’;
ot 5 6rr,f( 7)< 2”IH s (21+%k)£-'?€ TR
Thus, the second inequality of Theorem 4.1 is satisfied with
ol T’ = i
==, M=——7; d=rf, K =2¢c".
2 (2! k)T

Now, by Lemma 4.1, we have |¢z(7; t, x)|| <€ eLl7=8) where L is the bound of [%{’]

Hence, we can write

150 = I/ M et ) st (i) ar
& "'/cmuqb(-r;t‘w)!r—zutzﬂ"(nm-)nnm:r;c-,w)nwr
< nf “otrt, ) elrst )
z 7 [ HT(kuxue*w“” pge P4 o) Ay

I

1+T
?_/ [.2\'-—1 L= Hxllf— le—{r-—- )y(r=t) 4 9r= 1 (O:E! —fr e C)r— 1 ) eL{-r—t)dT
t

t+T
< (2k):-—1T_H_,E“r—lg((r-l)-r—L)r.f e(b—(r—l}'y]-rd,r
t

t+T t+T
4 22{?'—1).&,-:‘-17.6—[...'/ e(L—{r-—l){i)rdT + 22(-:-—1)(:1'-1r/ eL(T—L}dT
t St

t+T
g (.zk)-r—l_r||:L,H'r--16((r-—1)*1-— L)Ef r:,I[J.'n—(\v——l)*yr)'rd?_
L
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t+T 2r—1) r—1,.
+ 22(“"1)0"‘“1%_“/‘ eE= (=187 gr 4 *(c
t
We have four possible cases: L # (r — 1)y and L # (r — 1), or L # (r — 1)y and
L=(r-1)8,orL=(r—1)yand L# (r—1)f,or L=(r—1)yand L = (r —1)8.
Now we examine these four cases separately.
e Case 1: If L # (r — 1)y and L # (r — 1)/, then we have

—1), Vr>t

” H (2“” (B~ =0T _ 1) gfr=

L-(r-1)y
22(r—1)ar -1, 22(r—1)cr—17.
o(L=(r=1)8)T _ 1) o—(r—1)pt AT 1
+ (r—l)ﬁ( 1)e +—L (e )

Thus, the last mequahty of Theorem 4.1 holds with

9L r—1 2(r—1) ,r—1
rom T Lot gy N X 86 ),

—(r—=1)y =(r—-1)8
He(r—1) .r—1
§=(r—1)8 and Kz = Z—L“_—i el - 1).
e Case 2: If L # (r — 1)y and L = (r — 1)3, then we have
oV (25} (L= (r=1)NT 1) e e L

=)=l 2 Te

H " —(r— 1)7( Jal™™" + Zal, 2
2(r=1).r=1
L—IE..__E(e!;T_ 1}‘

Thus, the last inequality of Theorem 4.1 holds with

(2k)"r (b= (r=DNT _ 1) N =22V 1pT,

“=I-(r-1n

2(r—1).r—1
Bk and B = ?-L—C’"(e“” Loy

e Case 3: If L = (r — 1)y and L # (r — 1)8, then we have

2(r—1) 571
15 e

IA

(2k)" LTl + (ll=E=NAT _ 1)e—r=18t

Qﬂ(r—l)cr—lr

L
Thus, the last inequality of Theorem 4.1 holds with

4 (eLT —1).

92(r—1) or-1,

i r—1 £ (L—(r—1)8)T _
= (2k)" T, N L—(r—l)ﬁ(e 1),
2(r—1) .r—1
=(r-1)8 and Kz= 2——3—&4@” sty
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e Case d: If L = (r — 1)y and L = (r — 1)§, then we have

|5
dx
Thus, the last inequality of Theorem 4.1 holds with

22(r-1) 11,

7 et — 1y,

” < (2k)r -er[]x|1r—!+2‘2(r--l)“r‘--l?_Te—Lt+

22(1"— I}cr— 1 r

ca=(2k)""YT, N=2""Do™"Y4T, 0 =L and K, = 7

(e"* = 1),

This completes the proof of Theorem 4.1.

Now we give an illustrative example to demonstrate the applicability of Theorem 4.1.

Example 4.1. Consider the following nonlinear differential equation
e 3| sinx|
1+ 26
and observe that it is practically globally uniformly exponentially stable. Therefore,

T = -5 4 v

for a Lyapunov function V(t,z) : Ry x R — R, given by V(t,z) = #°% + ¢~* and

r = 6 we have

=8 < V(t,z) < ||l=)|® +1, % -+ E)—lh/-f(t'r} < —6|2(% + 6] sinz|e 3
gt & O
v G g : . 4 .
[|5;" <6lz> +3withey =co=a=1, c3=c4 =6, M = 6|sinz|, § =3, K =

0, Ky=3and N=6=0.
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