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Abstract.The problem of recovering a time-varying signals from their spatio-temporal samples,
often referred by dynamical sampling problem, has been well-studied for one-variable signals. Ma-
ny examples coming from real-world applications (sampling of air pollution, wireless networks etc.)

involve spatial coordinates. We state the problem of spatio-temporal sampling for two-variable
functions and consider the problem of finding additional sampling locations for one specific family

of kernels.
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1. INTRODUCTION

Let V and V', V C V' be spaces of functions defined on a set X. We assume the
initial state of a (linear time-invariant dynamical) system f, = A™f,_,, is given by
an unknown function f € V, i.e. fo = f, and A: V' 5 V' is a known linear operator.
At each time instance n (n =0, ..., L—1) the values (samples) of the evolved function
A™ f are measured on some subset 0, C X:

Yo = f lag, 91 =(Af) lays +-. y-1=(A"72f) la,_, .

The main problem in dynamical sampling is to uniquely reconstruct the function
f € V from these samples.

In [1] — [4] the dynamical sampling problem for a single variable function f on
domains Zg = {0, 1,...,d—1}, Z or R is treated. The assumption is that the evolution
operator is given as a repeated convolution with a kernel a: A,(f) = a*ax...xaxf =
a"f for n = 0,1,..,L — 1 and, at each time n, the evolved state A,(f) is under-
sampled at fixed positions 0:

{f(Q), ax £(Q), -+, (@ 1% f)(Q)}, for QC X.
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In [5] the case when the positions of sampling points are allowed to change at
different time levels is considered. If the number of sampling points at any time
is constant, a necessary and sufficient condition is found for the existence of positions
that allow full recovery of any function by samples taken at those positions. Also, for
single measurement per time level, a lower bound on the number of such sampling
configurations is computed.

' 2. DYNAMICAL SAMPLING IN [2 (Za, x Zg,)

Let the domain be the direct sum of two cyclic groups X = Zy, X Zg4,, d1,d3 € N*
and the evolution operator be given as a convolution with a kernel a = (ak,1)k,nex:
Af(,)=axf(k,))= ) ampf(k—sl—p) forall (kil)eX

(a.p)EX
where (k — 8,1 — p) is understood in terms of summation operations in cyclic groups
Z4, and Zg,. We assume that di = Jimi, d3 = Jamng, where dy, d; are odd numbers
and the initial state f and its temporally evolved states Af, A%f,...,AX"'f are
sampled on a uniform grid = m1Zq, X maZy,. Let Spy m, = 1mlz¢1xmzz4,f be the
subsampling operator on m1Zg, X maZg,. Our objective is to reconstruct f from the
samples set
Y0 = Smy,ma f

Y1 = Omy,ma Af
(2.1)

Yr-1 = Sm, .mgAL_I.f-
Denote by § the discrete Fourier transform (DFT) of g € 12 (Z4, % Za,):

dl_l da—l —idwsk =—ilwpl
a(s,p) = Z z g(s,p)e @ e % forall (s,p)€Zy, X Zy,-
k=0 1=0

After applying the DFT to both sides of (2.1), and using the fact that the Fourier
transform of downsampled signal Sp,, m,9g is

1 mi—1ma—1

z E §(3+kJ1sp+iJi):

k=0 =0

(Smms)”(5,7) = e
also (a * .f)‘('B!p) = f‘(*m)f(sm)‘ we lget
mi—1mg—1

(2.2) Gn(i,§) = e, > @™ (i+ ki +10) fG+kJ,j+10)
LR L e e

for (i,7) € I ={0,+- ,J1 — 1} x {0,-+ ,Ja—1}and n=0,1,...,L—1.
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We use the block-matrices

1 1
a(i.j-ll-l-?:} a(i+dg+ia) . a(iH(m—1)J j+102)
Al|m1.ﬂlﬂ (‘rj) = Fi . . . [

a4 (i g4lT) A5 T GHT) e G5 (i (ma— 1)1, 5+ T)

where I =0, 1, ...,/ — 1, and for all (i, j) € I we define
(23) Am,,m,(iyj) = [Ao.m;mz("‘j) Al.ﬂ‘ll'ﬂ: (ilj)"‘Am'z-—l.mlma(i| J))]

For every (i,5) € I put 9(i,1) = [o(i:4) $1(,3) - Fr-1(5,3)]", and let
£6,4) i
f(‘ + (ﬂ'll - I)Jl;j)
fGyj+ J2)

£(i,5) = F G+ (s — 1), 4 )

:f:(.i,.'i + (m2 — 1)J3)

\ £+ (m1—1)J1,5+ (ma — 1)J3) /
Then the equations (2.2) can be written as
Sz an bl T
(24) Y(‘;j) 1 m1mgﬁm' \ma ("J)f('lj)‘
Note that, to be able to recover the vector f from (2.1), we need to take samples at

least mjmgy times and, when L = mjma, Am, m,(i,j) becomes a square matrix.

Proposition 2.1. For L = mymg, any f € 1?(Za, x Za,) can be uniquely recovered
Jrom its samples (2.1) if and only if for every (i,7) € I we have

(2-5) det 'A'm; Mz (i‘! j) # 0'
If we put ;
Ainy,mgq(0,0) 0 0
0 Amy,mg(1,0) ... 0
L 1 '2( ) ;
0 0 S A = T

then (2.4) is equivalent to

(2.6) Logee
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where
#(0,0) (0,0)
= £(1,0) 8 #(1,0)
f = . ) Y= .
£(J1—1,J2—1) $()1—1,Ja—1)

Notice that, f is the column with rearranged Fourier coefficients of f such that they
match the order of columns in matrix A.

Proposition 2.2. Any f € 13(Z4, x Zg,) can be uniguely recovered from its samples
(2.1), if an only if the matriz A is non-singular.

3. THE SET OF ADDITIONAL SAMPLING POINTS

Because A, .m, (1, 7) is @ Vandermonde matrix, it is singular at an (i, j) € I if and
only if
(3.1) a(i+kdy,j+1lh)=a(i+kJ,j+1J)
for some (k, 1), (¥',I') € {0, -+ ,m1—1}x {0, : - ,ma—1}. Hence, taking samples after
the first ;my measurements is not going to add anything new in terms of recovery.
In that case, we need to consider adding extra sampling points to overcome the
singularities of A, m, (%, 7). For functions of one variable the problem of additional
samples has been discussed in [1]. If the operator A in (2.6) is singular, we want to
be able to find a set Qgaq € X \ (Mm1Z4, X maZy,) such that, for the related sampling
operator Sn,,;, any function can be uniquely recovered from the sampiea

(3-2) {Sn.“_f, Smh'“ﬂf‘ Ezy Sm;,msﬂmlm_lf}-
Let dim(ker(A)) = n. Note that ker(A) = @ j)er ker(Am,,m,) (i, ), hence, if the
nullity of matrix Am, m, (%, 7) is w;j , then n =3, - w; ;.

The kernel of A is generated by linearly independent vectors 7, 8 = 1,...,n where
every 7, has exactly two non-zero components, 1 and —1, corresponding to a pair of
coinciding columns in Am, m, (i, 7), for an (i,5) € I.

Let Rq,,, be |Qqad| x n matrix with rows corresponding to {(v1(k,1)," ", vn(k,1)) :
(k,1) € Rada}, where v, is the vector whose rearranged DFT is 7. With this notation,
the following result holds:

Theorem 3.1. Every f € 1?(Zq, x Za,) can be-uniquely reconstructed from its spatio-
temporal samples (3.2) if and only if rank(Rq,,,) =n
Corollary 3.1. If for the set Qada any f € 1*(Zq, x Za,) can be uniguely determined
by its samples (3.2), then |Qada| 2> dim(ker(A)). '
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4, QU@W&LY SYMMETRIC KERNELS

We consider one special class of filters for which we are able to explicitly construct
an additional sampling set of possible minimal size.
Definition 4.1. The matriz & is quadrantally symmetric, if

a(s,p) = 4(dy — 8,p) = (s, d2 — p) = &(d1 — 8,d2 — p)

’for all (s,p) € Za, X Za,, and (s, p) # a(k,1) for any other pairs (k,1) .

If for the kernel a, & is quadrantally symmetric, then it can be easily verified that
(in particular) Amyma (0,0) is singular. In fact, the following lemma holds

Lemma 4.1. For quandrantally symmetric @,
di(mz2 —1) 3 da(m1—1) (my—1)(ma —1)
2 ; 2 4 -

Theorem 4.1. Let the DFT & of the kernel a be quadrantally symmetric and let
Qoga = {(k,l):k:]_,..., ‘zezd’}

U {(k,l):kez‘;,,:=1’___’m,2_1}'

Then, any f € 1*(Z4, X Za,) can be uniquely recovered from the expanded set of

samples

(41) {Snndd-fl Sml,mgf, rewiy Sml-,mzAmlm:—lf} y

dim(ker(A)) =

m1—1

Note that, from Lemma 4.1, the cardinality of Q2,44 in the previous theorem is equal
to dim(ker(A)) which from Corollary 3.1 is the possible minimal size among the sets
of additional sampling points which allow unique recovery of every f from (4.1).
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