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1. INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function always means a nonconstant analytic function
in the whole complex plane except at possible poles. If no poles occur, it reduces to an
entire function. Let ¢ and ¢ be non-zero complex constants, the g-shift of a function
f(z) is defined by f(gz+c). We assume that the reader is familiar with the elementary
Nevanlinna theory (see, e.g., [2, 3,12]).

We denote by S(r,f) any quantity satisfying S(r,f) = o(T(r,f)) as r = oo
possibly outside a set of logarithmic density 0. For a meromorphic function f(2) in
complex plane, denote by S(r, f) the family of all meromerphic functions a(z) that
satisfy T'(r, @) = o(T'(r, f)) as r — oo outside a possible exceptional set of logarithmic
density 0.

‘We say that the functions f and g are meromorphic and share a small function o
IM (ignoring multiplicities) if f — & and g — & have the same zeros. If f—« and g—a
have the same zeros with the same multiplicities, then we say that f and g share a
CM (counting multiplicities). Let f be a nonconstant meromorphic function, p be a
positive integer and a be a complex constant. By Np(r, 7=;) we denote the counting
function of the zeros of f — a, where an m-fold zero is counted m times if m < p and
p times if m > p.

1This research was supported by the NNSF of China (No. 11201014, 11171013 and 11126036), the
YWF-14-SXXY-008 of Beihang University and the youth talent program of Beijing (No. 29201443).
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Let f be a transcendental meromorphic function. In 1959, Hayman(1] proved that
f"f’ takes every non-zero complex value infinitely often if n > 3. Yang and Hua
[11], obtained some results about the uniqueness problems for entire functions. Since
then the difference has become a subject of great interest (see, e.g., [6, 8, 14, 15|,
and references therein). Among them Liu and Cao [6], have obtained results on the
uniqueness and value distributions of g-shift difference polynomials. Some of them
are stated below.

Theorem A. ([6, Theorem 1.1]). Let f(z) be a transcendental meromorphic (resp.
entire) function with zero order, and let m, n be positive integers and a, g be non-zero
complex constants. If n > 6 (resp. n > 2), then f(2)™(f(2)™ — a) f(gz + ¢) — (2) has
infinitely many zeros, where a(z) is a non-zero small function with respect to f. In
particular, if f(z) is a transcendental entire function and a(z) is a non-zero rational
function, then m and n can be any positive integers.

Theorem B. ([6, Theorem 1.5]). Let f(z) and g(z) be transcendental entire functions
with zero order. If n > m + 5, and f(2)"(f(2)™ — a)f(¢z + ¢)) and g(z)"(9(z)™ —
a)g(gz + ¢)) share a non-zero polynomial p(z) CM, then f(z) = g(=2).

In this paper, on the basis of Theorems A and B, we study the k-th derivative of
g-shift difference polynomials and prove the following results.

Theorem 1.1. Let f(z) be a transcendental meromorphic function with zero order,
and let n, k be positive integers. If n > k+5, then (f(2)™f(gz+c))*) —1 has infinitely
many zeros.

Theorem 1.2. Let f(z) be a transcendental entire function with zero order, and let
n, k be positive integers, then (f(2)"f(gz +¢))® — 1 has infinitely many zeros.

Theorem 1.3. Let f(z) and g(2) be transcendental entire functions with zero order,
and letn, k be positive integers. Ifn > 2k + 5, and (f(2)"f(gz+c))™® and (g(2)"g(gz+
c))®) share 2 CM, then f =tg for a constant t with t"+! =1,

Theorem 1.4. Let f(z) and g(2) be transcendental entire functions with zero order,
and let n, k be positive integers. Ifn > 2k + 5, and (f(z)"f(gz+c))* and (g(z)"g(qz+
¢))®) share 1 CM, then f = tg for a constant t with t"+! = 1.

When sharing a single value IM, we can prove the following two results.
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Theorem 1.5. Let f(z) and g(z) be transcendental entire functions with zero order,
and let n, k be positive integers. Ifn > 5k + 11, and (f(z)™ f(gz+c))® and (g(z)"g(gz+
c))®) share a value z IM, then f =tg for a constant t with t"*! = 1.

Theorem 1.6. Let f(z) and g(z) be transcendental entire functions with zero order,
and let n, k be positive integers. If n > 5k + 11, and (f(2)" f (gz+¢c))®) and (9(z)"g(qz+
c))®) share 1 IM, then f = tg for a constant t with t"+! = 1.

2. LEMMAS

In this section, we present some lemmas which play an important role in the
proofs of the main results. The following g-shift difference analogue of the logarithmic
derivative lemma is very important when considering g-shift difference polynomials.

Lemma 2.1 ([7, Theorem 2.1]). Let f(z) be a meromorphic function of zero order.
Then on a set of logarithmic density 1

flaz+e)\ _
m (r, 7@ = o(T(r, ))-
The next two lemmas are essential in our proofs, they allow to estimate the
characteristic function and the counting function of f(gz + c) (see Lemmas 3.4 and
3.6 in [10]).

Lemma 2.2. If f(z) is a nonconstant zero order meromorphic function, then on a
set of lower logarithmic density 1

T(r, f(gz + ) = (1 + 0o(1))T(r, f(2)) + O(logr).
Lemma 2.8. If f(z) is a nonconstant zero order meromorphic function, then on a
set of lower logarithmic density 1
N(r, f(gz +c)) = (1 +0(1))N(r, f(2)) + O(logr).
When considering two nonconstant meromorphic functions F' and G that share at
least one finite value CM, the following lemma plays a key role. In the original paper,
[11], S(r, F) denotes any quantity satisfying S(r, F)) = o(T(r, F)) as r — oo possibly

outside a set of finite linear measure. So it holds when S(r, F) = o(T'(r, F)) as 7 — 0o
possibly outside a set of logarithmic density 0.
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Lemma 2.4 ([11, Lemma 3]). Let F and G be two nonconstant meromorphic functions.
If F and G share 1 CM, then one of the following three cases holds:

(1)  maz{T(r,F),T(r,G)} £ Na(r,1/F) + Na(r,1/G) + Na(r, F)

+Na(r,G) + S(r, F) + S(r, G),

(2) FG=1,

(3) F=¢G, .
where Na(r,1/F) denotes the counting function of zeros of F such HFat the simple

zeros are counted once and multiple zeros twice.

When two nonconstant meromorphic functions share at least one finite value IM,
then the following lemma is needed.

Lemma 2.5 ([9, Lemma 2.3]). Let F' and G be two nonconstant meromorphic functions
such that F' and G share 1 IM, and let

F' 2oF ey e
(2.1) oy (F‘ F- 1) (E"ﬁ)

IfH #0, then
T(r,F)+T(r,G) < 2(Na(r,1/F)+ Na(r,1/G) + Na(r, F) + Na(r,G)) + 3(N(r, F)
+N(r,G) + N(r,1/F) + N(r,1/G)) + S(r, F) + S(r, G).

Lemma 2.6 ([4]). Let f(2) be a nonconstant meromorphic function, and let s, k be
two positive integers. Then

N, (n J%) < T(r, M) = T(r, £) + Nasi ( f) +8(.1),

1
i (’”‘ W)

Clearly, N (r, }-rl;;-) =N, (r, T‘l") i

IA

kN(r, f) + Nysk (r. f) +8(r, f).

3. PROOFS OF THE THEOREMS

In this section we prove our main results.

Proof of Theorem 1.1. Let F(z) = f(z)"f(qz + c). Using the second main theorem,
we obtain
*)y < 1 C
T(r, F )SN("'F() )+N(r, F(“)) +N (r, F( ))+S(r,F).
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From Lemma 2.6, we get

1 1
T F®) < N (nggeg) +T0F®) -7 F) + N (1 5)
+N (r, FU‘)) +8(r, F).
Since T'(r, F) < (n+ 1)T'(r, f), we have S(r, F) = S(r, f). Thus the above inequality
and Lemma 2.3 imply

T(nF) < N (7'. ﬁ*_)l-—_l‘) + Nit1 (r, %) + N(r, F®) + S(r, f)

== 1 1 1
3 ( ) —1) ki (F) il ( f(qz+c))

N (n o= ) + G+ DTG0 + T 1) + 2N 1) + 56 )

IA

IA

(3.1) < N (r, ﬁk}l__'f) + (k+4)T(r, f) + S(r, f).

On the other hand, from Lemma 2.1, we get

(m+1)T(r,f) = T ) =m, )+ N(r, )

m (r, F(z)- f(tﬁi)- c)) +N (r, F(z)- f(g’E:)' c)) +S(f)

f(z) f(2)
(3.2) < T(r,F(2))+2T(r, f) + S(r, f).

IA

IA

According to (3.1) and (3.2), we obtain
(n—k-=5)T(r,f)<N (r, ﬁ) +5(r, f).

Note that n > k + 5, we conclude that F(*)(z) — 1 has infinitely many zeros. This
completes the proof of Theorem 1.1. |

Proof of Theorem 1.2. Let the function F(z) be as in the proof of Theorem 1.1.
Assume the opposite, that F(*¥)(z) — 1 has only a finite number of zeros. Since by
assumption, f is a transcendental entire function with zero order, there exists a
polynomial P(z) such that )

F®)(z) — 1= P(2).

By integrating k times, we get from the above equation that F(z) = Q(z), where
Q(2) is a polynomial, given by Q(z) = f(2)"f(qz + c). Obviously, Q(z) # 0. Hence
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we can write
(n+ 1)T(r, f) T(r, f**) = m(r, )

m (r, F(2)- f(z) ) +S(r, f)

IA

flgz+c)
f(z)
< T(rnF(z))+m (f. 'Rm) + 5(r, f)
(33) < T(r,F(2)) + S(r, f) = T(r, Q(2)) + S(r, f),
which is impossible. Therefore F(¥)(z) — 1 has infinitely many zeros. This completes
the proof of Theorem 1.2. O

Proof of Theorem 1.5. Let F(2) be as in the proof of Theorem 1.1, G(z) = 9(2)"g(gz+
c), and H be as in Lemma 2.5. Define

2:) =220, o) -
Then ®(z) and ¥(z) share 1 IM by the conditions. Smoe [ is a transcendental entire
function, from the definition of ®(z) we deduce that Na(r,®) = O(logr) = S(r, f).
Using Lemmas 2.6 and 2.3, we can write

N, (‘r, é) <M (r, F};)-) +8(r, f)
< kN(r,F) + Niya (f. ) + 5(r, f)
Nita (r, f“) + N;.+§ (r, 'f(qz%ﬁ) +5(r, f)

1 1
(k+2)N (r, ?) +N (r, T o c)) + S[r, f)
(k+3)T(r, f) + S(r, ).

G® (z)

IA

IA

IA

In the same manner, we get

(3.4) N (r, %) < (k+2)T(r, f) + S(r, f).
Therefore

1
(35) N (7 5) + Malri@) S (4970, 4) + 5(1,).
Similarly, we obtain
(36) Na (r, %) + Na(r, ¥) < (k +3)T(r, 9) + S(r, 9).
3.7) (r, %) < (k+2)T(r,9) + S(r, ).
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Next, by Lemmas 2.6 and 2.3, we get

Ma(rg) < Ma(ng) +56.)

T, F®) =0, F) + Nesa (7, 5 ) + 56 1)
T, F®) =T, F) + Mo (17 ) + Nt (575 ) +56.)

‘(r. F®Y — T(r 1 1 2
T(r, F®)) —1( ,F)+(k+2)ﬁ(r,f)+N(r, _f(qz+c})+3( ,f)

T(r,®) — T(r,F) + (k + 3)T(r, f) + S(r, f).

IA

IA

IA

- (3.8)
By (3.3) we have
(3.9) (n+1)T(r, f) < T(r, F) + S(r, f).
Combining (3.8) and (3.9), we get
(3.10) (n+1)T(r,f) ST(r,2) - N, (r, 7;-) + (k+3)T(r, f) + S(r, f).
Similarly, we can obtain
(3.11) (n+1)T(r,g) < T(r,¥)— N (r, l) + (k+3)T'(r, g) + S(r, 9).

v
It follows from Lemma 2.5 that if H # 0, then

T(r,2)+T(r,¥) < 2 (N, (r, %) + N (r, %)) +3 (N (r, %) N (,, %))
+8(r, ®) + S(r, ¥).
Substituting (3.4)-(3.7), (3.10) and (3.11) into the above inequality, we obtain
(n 8k = 11)[T(r, /) + T(r,9)] < (e, £) + S(r, ),

which is a contradiction, because by assumption we have n > 5k+11. Hence, we have
H = 0. By integrating (2.1) two times, we get

Pl e
-1 V-1

IA

B,

where A # 0 and B are constants. The above equation implies
(B—A)®+(A-B-1)
B®—(B+1)

(3.12) U=
Hence, we easily get

T(r,®) = T(r, T) + O(1).
Thus, we have S(r, f) = S(r, g).

In the following, we discuss three cases.
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Case 1. Suppose that B # 0,—1. In this case, from (3.12) we obtain

B+1

Next, from the second fundamental theorem and (3.4), we have

N(r,®)+N (r, -;-,) +N (r, 1/(® - B—;—l)) + S(r, ®)
(k+2)T(r, f) + 5(r, f)-

T(r,®)

IA

A

In view of (3.8) and (3.9), we have (n — k — 2)T(r, f) < T(r,®), implying that
(n — 2k — 4)T'(r, f) < S(r, f). This contradicts the assumption n > 5k + 11.
Case 2. Suppose that B = 0. From (3.12) we have

(3.13) U=AD-(A-1).

If A # '1, then from (3.13) we can deduce N(r,1/(® — 431)) = N(r, {). Then, by
the second fundamental theorem and (3.7), we obtain

T(r, ®)
(3.14)

IA

N(r,8)+ N (r, %) +N (r, 1/(® — %)) +5(r, ®)
(k+2)T(r,9) + (k+ 2)T(r, ) + S(r, f).

IA

Similarly, we have
(3.15) T(r,¥) < (k+2)T(r,9) + (k+2)T(r, f) + S(r, 9).
By (3.10), (3.11), (3.14) and (3.15), we obtain

(n — 3k — 6)[T(r, f) + T(r,9)] < S(r, f) + S(r, 9),

which is a contradiction since by assumption n > 5k + 11. Thus, we have A = 1, and
from (3.13), we obtain ® = ¥, implying that

(f(2)"F(gz+0))® = (9(2)"g(qz + c)) ™.
Integrating the last equality, we get

f(2)"f(gz +c) = g(2)"g(gz + c) + p(2),
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where p(z) is a polynomial of degree at most k — 1. If p(z) £ 0, then from the second
main theorem for the small function case, we get

(n+1)T(r, f) < T(r, F) + S(r, f)
<N(r,F)+N (r, %) +N (r, é) + 8(r, f)
— 1 — 1
<H(n3) 47 ( 7ra) 7 (3)
= 1
N (f, m) + S(r, f}
< 2T(r, )+ 2T(r,g) + S(, f)-
Similarly, we have
(n+1)T(r,9) < 2T(r,g)+2T(r,f)+S(r, f).
Therefore
(n+ DT ) +T(ng)] < 4T f)+Tlr,0)] +S(r, f) + S(r,9),
which is a contradiction since by assumption n > 5k + 11. Thus, p(z) = 0, which
implies that
f(2)" f(gz + c) = g(2)"g(az + c).

Let -;- = h. If h is not a constant, then the above equation implies
1
h(qz +ec)
Thus, from the first main theorem, we obtain
nT(r,h(z)) = T(r,h(2)") =T(r,h(gz+c)+O(1)
< T(rh(z)) + S(r, ).

(3.16) h( =

Since n > 2, we know that & is a constant. Then by (3.16), we have h"*1 = 1. Hence
f(z) = tg(z), where t is a constant and "1 = 1.
Case 3. Suppose that B = —1. From (3.12) we have
A+1)8-A
If A # —1, then from (3.17) we can deduce N(r,1/(® — 447)) = N(r, §)- By the
same reasoning, discussed in the Case 2, we obtain a contradiction. Hence, A = —1.
From (3.17), we have ® - ¥ = 1, that is,

(318) (F2)"F gz +e)® - (a(e)"glaz + )™ = 22,
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(3.17)



Q. ZHAO AND J. ZHANG

Notice that n > 5k+11, hence if zg is a zero of f(z) with multiplicity p, then z; is a zero
of (f(2)" f(gz+¢))® with multiplicity at least np— k > 4k+ 11, which is impossible
by checking the right-hand side of (3.18). Hence, zero is a Picard exceptional value
of f(z), and thus f(2) is a constant, which is impossible. This completes the proof of

Theorem 1.5. O

Proof of Theorem 1.3. Let ®(z) and ¥(z) be as in Theorem 1.5. Then $(2) and ¥(z)
share 1 CM, and from (3.8) we obtain

019)  Na(ng) STC8) =T F)+ (k+ 3701+ 50, 1)
Similarly, we get °
Na (r. %) < T(r,¥) = T(r, G) + (k + 3)T(r, 9) + S(r, 9).
Assume that the Case 1 of Lemma 2.4 holds. Then, in view of Lemma 2.5 and (3.19),

we can write

T(r;. %) < Nz (r, %) + N, (r. %) + Na(r, ®) + Na(r, ¥) + s(r, ®) + S(r, ¥)
<T(r,®) —T(r, F) + (k+ 3)T(r, f) + N2 (", %) + 8(r, f) + S(r, g)

< T(r,®) —T(r,F) + (k+3)T(r, f) + kN(r,G) + Nis2 (r. é) + 8(r, f) + S(r, g)
S T(r,®) — T(r, F) + (k + 3)T(r, f) + (k + 3)T(r, 9) + S(r, f) + S(r, 9).
From the above inequality we get ;
T(r, F) < (k+3)T(r, ) + (k+ 3)T(r, g) + S(r, f) + S(r, 9).
On the other hand, from (3.3) we have
(n+1)T(r, f) < T(r, F) + S(r, f).

Combining the last two inequalities we conclude that

(n—k—2)T(r, f) < (k+3)T(r,g) + S(r, f) + S(r, 9)-
Similarly, we obtain

(n—k—2)T(r,g) < (k+3)T(r, f) + S(r, f) + S(r, g).
Therefore

(n — 2k = 8)[T(r, f) + T(r, g)] < S(r, f) + S(r, 9),

which contradicts the assumption n > 2k + 5. Hence ®(z) - ¥(z) =1 or D(z) = T(2)

by Lemma 2.4.
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The rest of the proof repeats the lines of the proof of Theorem 1.5. This completes
the proof of Theorem 1.3. O

The proofs of Theorems 1.4 and 1.6 are similar to that of Theorems 1.3 and 1.5,
and we omit them here.
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