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Abstract. 'Because of the disconnectedness of a non-Archimedean ordered field in the
topology induced by the order, it is possible to have non-constant functions with zero
derivatives everywhere. In fact the solution space of the differential equation 3’ = 0 is

infinite dimensional. In this paper, we give sufficient conditions for a function on an
open subset of the Levi-Civita field to have zero derivative everywhere and we use the
nonconstant zero-derivative functions to obtain non-analytic solutions of systems of
linear ordinary differential equations with analytic coefficients. Then we use the
results to introduce Bessel-type special functions on the Levi-Civita field and to
study some of their properties.
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1. INTRODUCTION

Solutions of linear ordinary differential equations and some Bessel-type special
functions on the Levi-Civita field R [5, 6] are presented in this paper. We recall that
the elements of R are functions from Q to R with left-finite support (denoted by
“supp”). That is, below every rational number g, there are only finitely many points
where the given function does not vanish. For the further discussion, it is convenient
to introduce the following terminology.

Definition 1.1 (A, ~, =, =;). For z # 0 in R, we let A\(z) = min(supp(z)), which
exists because of the left-finiteness of supp(z), and we let A\(0) = +co.

1The research of the first author was conducted in the frames of TAMOP 4.2.4. A/2-11-1-2012-
0001 “National Excellence Program Elaborating and operating an inland student and researcher
personal support system”. The project was subsidized by the European Union and co-financed by
the European Social Fund.
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Given z,y # 0 in R, we say that z ~ y if A(z) = A(y), and = = y if A(z) = A(y)

and z[A(z)] = y[A(W)]-
Given z,y € R and r € R, we say that z =, y if z[q] = y[q] for all g < 7.

At this point, these definitions may look somewhat arbitrary, but after having
introduced an order on R, we will see that A describes orders of magnitude, the
relation = corresponds to agreement up to infinitely small relative error, while ~
corresponds to agreement of order of magnitude.

The set R is endowed with formal power series multiplication and componentwise
addition, which make it into a field (see [3]) in which we can isomorphically embed
R as a subfield via the map IT: R — R defined by
) el ={ § oo
Definition 1.2 (Order in R). Let z,y € R be given. Then we sayz > y if z = y or
[z #y and (z —y)[Mz —y)] > 0.

It is easy to check that the relation ">"is a total order and (R, +, -, >) is an ordered
field (which denoted simply, by R). Moreover, the embedding IT in equation (1.1) of
R into R is compatible with the order. The order induces an absolute value on R in
the natural way: |.=|=:=ifx_>_Dancl[z[=—zif=<0.Wealsanot.ethatA,aa
defined above, is a valuation. Moreover, the relation "~"is an equivalence relation,
and the set of equivalence classes (the value group) is (isomorphic to) Q.

Besides the usual order relations, some other notations are also convenient.

Deflnition 1.3 (&,>). Let z,y € R be non-negative. We say that z is infinitely
smaller than y (and write T € y) if nz < y for all n € N; we say that z is infinitely
larger than y (and write z > y) if y € 2. If z < 1, then we say that z is infinitely
small; if z 3> 1, then we say that z is infinitely large. Infinitely small numbers are also
called infinitesimals or differentials. Infinitely large numbers are also called infinite.
Non-negative numbers that are neither infinitely small nor infinitely large are called
finite numbers.

Definition 1.4 (The Number d). Let d be the element of R given by d[1] = 1 and
dlg] =0 for g # 1.

It is easy to check that d? <« 1ifg > 0 and d7 > 1if ¢ < 0. Moreover, for all z € R,
the elements of supp(z) can be arranged in ascending order, say supp(z) = {g1,92,...}
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with g; < gj+1 for all j, and z can be written as z = Y3 | z[g;]d%, where the series
converges in the topology induced by the absolute value (see [3]).

Altogether, it follows that R is a non-Archimedean field extension of R. For a
detailed study of this field, we refer the reader to [10, 20], and references therein. In
particular, it is shown that R is complete with respect to the topology induced by
the absolute value, that is, every Cauchy sequence of elements of R converges to an
element of R. In the wider context of valuation theory, it is intéresti.ng to note that
the topology induced by the absolute value is the same as that introduced via the
valuation J, as it was shown in [19].

It follows therefore that the field R is just a special case of the class of fields
discussed in [9]. For a general overview of the algebraic properties of formal power
series fields in general, we refer the reader to the comprehensive overview by Ribenboim
[8], and for an overview of the related valuation theory to the books by Krull [4],
Schikhof [9] and Alling [1]. A thorough and complete treatment of ordered structures
can also be found in [7]. '

Besides being the smallest ordered non-Archimedean field extension of the real
numbers that is both complete in the order topology and real closed, the Levi-Civita
field R is of particular interest because of its practical usefulness. Since the supports of
the elements of R are left-finite, it is possible to represent these numbers on a computer
(see [3]). Having infinitely small numbers, the errors in classical numerical methods
can be made infinitely small, and hence irrelevant in all practical applications. One
such application is the computation of derivatives of real functions representable on a
computer, where both the accuracy of formula manipulators and the speed of classical
numerical methods are achieved (see [16]).

In this paper we present some tools to construct a large class of solutions for
equation ¥ = 0 on R. Then as an application of that, we define and study the
properties of Bessel-type special functions on (open subsets of) R.

2. MATRIX EXPONENTIALS ON R

For an easier study of systems of linear ordinary differential equations on R, it is
beneficial to introduce matrix exponentials on R. We define matrices on R and matrix
operations: addition, multiplication, determinant, just as we do in the real case.
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Definition 2.1. Let Mn(R) denote the set of all n x n matrices with entries in R.
For A € M, (R), we define |- | : Mn(R) = R by
|4l = mex {layl},
where |a;j| = max {a:j, —aij}.
In what follows we deal only with square matrices whose entries are at most finite
in absolute value, and we denote this class of matrices by M (R).

Definition 2.2. Let A € MZ(R), and for each k € NU {0} let cx € R be given. We
say that the series 3 5y ceA® is convergent in MA(R) if the series Y ck|A®| is
convergent in R with respect to the weak topology discussed in [3, 12, 17].

Definition 2.8. Let A € MZ(R) be given. We define the ezponential of A by the

series g
A=Y
k=0

where A® = I, is the n X n ideniily mainiz.

| =

A¥,

o

1

In the next theorem we show that the series in Definition 2.3 converges in the sense
of Definition 2.2.

Theorem 2.1. For any A € MZ(R), the series
pe !
Lk
k=0
is always convergent, and hence e is well-defined.

Proof. Let A = (ai;), and let A? = (bi;). Then, by the way we perform matrix
multiplication, for all ,5 € {1,...,n} we have

bl < (,mms G} ) (g o)) = niar

It follows that

42| = max {|bis{} < nlAl".
Using induction on k, it is then easy to show that
(2.1) |A¥| < n*1|Al*,VE e N.
Since

o k-1 1 (&1
é TlAlk = (é H("IAD")
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converges in the weak topology of R to (¢4l — 1) /n (because |A| is at most finite),
it follows from equation (2.1) and the properties of weak convergence of infinite series
(see [12, 17]) that

>3 >

LA =1+ 3 L1aY

— k! = k!

converges weakly in R. Hence the series Y ;- ) 1 A* converges in the sense of Definition
2.2. Theorem 2.1 is proved.

Taking into account that power series on R can be differentiated term by term
within their domain of convergence (see [19]), we obtain the following result.

Theorem 2.2. Let A € ML(R) and let F : R = Mn(R) be given by F(t) = e*A,
Then F is differentiable at each t € R, with derivative F'(t) = AetA.

Proof. Since F(t) = Y10y %A", we can obtain F'(t) by differentiating the series
term by term as a function of ¢:

o0 f—1
= & k_ i
F) =) 7 T AZ £ 4 = AF(t).
k=1
Note that all the series in the last equation are well-defined. I O

3. THE MAIN RESULTS

3.1. Linear ordinary differential equations on R. One of the main goals of
this paper is to obtain solutions of linear ordinary differential equations in the case
where the coefficients are analytic functions of the independent variable, including
non-analytic solutions in addition to the analytic ones.

The basic idea for the construction of non-analytic solutions of linear ordinary
differential equations on R is based on the following theorem (proved in [11]), which
shows that even the simplest differential equation 3’ = 0 over R has infinitely many
linearly independent solutions on [—1,1] C R. '

Theorem 3.1. The solution space of the differential equation y = 0 on [—-1,1] is
infinite dimensional.

Proof. For each n € N, let g, : [-1,1] = R be given by gn(z)[q] = z[g/(n + 1)].

We show that, for all n € N, g, is differentiable on [—1,1] with g}, (z) = 0 for all

z € [-1,1]. So let n € N be given. We first observe that gn(z +y) = ga(z) + 9a(¥)

for all z,y € [—1,1]. Now let z € [-1,1] and € > 0 in R be given. Let § = min{e?,d},
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and let y € [—1,1] be such that 0 < |y — 2| < 4. Then, taking into account that
9(y—2z) ~ (y —z)**", we have

gn(¥) — gn()
y—z

Next, since |y — z| < min{e?, d}, we obtain that |y — z|" < e. Hence

gy — )

~ —z“.
o |y — |

%ﬁﬂ < e for all y € [-1,1] satisfying 0 < |y — z| < 4.

It follows that g, is differentiable at z, with g;,(z) = 0. This is true for all z € [-1, 1]
and for all n € N. Hence gy, is a solution of the differential equation y’ = 0 on [-1,1]
for all n € N.

Next, we show that the set § = {gn : n € N} is linearly independent on [-1,1].
Solet j € Nand let ny < mg < --- < n; in N be given. It is enough to show
that gn,,gna,.--+0n, are linearly independent on [—1,1]. To this end, we suppose
that eign, + c2gn, + *++ + €jgn, = 0 for some ¢1,¢3,...,¢; in R, and show that

¢1 = ¢p = --- = ¢j = 0. Indeed, since c1gn, + C29n, + ** - + ¢jgn, = 0, we obtain that
C19n, (d) + c2gn, (d) + -+ - + ¢jgn, (d) = 0. Hence c1d™ + c2d™ + -+ - + ¢;d™ =0, from
which we infer that ¢y =g =+--=¢; =0. O

Remark 3.1. For eachn € N, it is easy to check that the mapping gn in the proof of
Theorem 3.1 is an order preserving field automorphism of R, this is a special property
of non-Archimedean structures since it is well-known that the only field automorphism
of R is the identity map (see [13]).

In Propositions 3.1 - 3.3 that follow, we give sufficient conditions for a nonconstant
function to be a solution of the differential equation 4’ = 0 on an open subset of R.

Proposition 3.1. Let M C R be open and let f : M — R be such that, for some
fized p > 1 in Q and for some positive n < 1 in R, we have

Vz,y € M, Az —y) 2 M) = |f(z) — F@)| ~ |z — g7
Then f is differentiable on M with derivative f'(z) =0 for all z € M, that is, f is
a solution for the differential equation y' =0 on M.
Proof.LetzEMande>Uin3{begiven.SinoeMiaopen,theree:dsts60>Din
R such that (z — o,z + dp) C M. Let

& = min{8y, e7=T, 7}
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Then for all y € R satisfying 0 < |y — z| < &, we have that y € M and A(y — z) >

A(d) = A(n). Hence

f(=) - f(v)
r—y

The last step is justified by the fact that if € < 1, then €2 < € and if ¢ is finite or

infinitely large, then n”~! <« e since n < 1 and p— 1 > 0. So in both cases, we have

min{e?,7”~'} < ¢é. Thus, f is differentiable at z for all z € M with f/(z) =0. O

~lz=yP! <6 = min {87,771} < min {2, 71} <.

Proposition 3.2. Let M C R be open and let f : M — R be such that, for some
fized p > 1 in Q and for some positive n < 1 and positive & in R, we have

Vz,y € M,A(z —y) 2 A(n) = |f(2) - f(y)| < alz —y/P.

Then f is a solution for the differential equation 3y’ =0 on M.

Proof. Let z € M and € > 0 in R be given. Then there exists 6y > 0 in R such that
(E—JQ,Q-I-JQ)CM. Let

2\ 1/(p-1) 1/(p—1)
s=min{an (£)7.(2) b

Then § > 0 and for y € R satisfying 0 < |y — 2| < §, we have that y € M and
Aly —2) 2 A(d) = A(n). Hence

_f.(_"'%%(_@. <alz —yP! < @6?~! = min {aﬁg_l,am””l,e’,n} < min{ez,q} £ e

This shows that f is differentiable at z for all z € M with f/(z) = 0. O

Remark 3.2. We note that Proposition 3.1 follows from Proposition 3.2 if we toke
a to be any infinitely large positive number.

Definition 3.1. Let M C R and h: M — R. We say that h is level preserving on M
and write h € P(M) if Vz,y € M satisfying A(z) = A(y) and = =, y it follows that
A(h(z)) = A(h(y)) and h(z) =, h(y), where g > A(h(z)) +r — A(2).

Example 3.1. Let f : R — R be given by f(z)[q] = z[g —1]. Then it is easy to check
that f € P(R).

Proposition 3.3. Let M C R be open and such that A\(z) > 0 for all z € M. Let
h: M — R be a level preserving function on M, and let a € Q, o > 1 be given. Then
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the function f : M — R, given by
ha) [BED] i@ >0
f(=)ld] =

h(z) [+ A(h(z))] if A(z) =0
is differentiable on M with derivative f'(z) =0 for allz € M.

(3.1)

Proof. Let z € R and € > 0 in R be given. Since M is open, there exists 7 > 0 in R
such that 7 < 1 and (z —n,z+1n) C M. Let '

d= uﬁn{e?-z:l',q}.

Then 0 < § <« 1 and (-9, 2+d) C M. Now assuming y € M such that 0 < |y—z| < 6,

we show that

(3.2) =) -1 .

r—y
We note that, since |y — z| < 1, then either A(z) = 0 = A(y) or [\(z) > 0 and
Aly) > 0].

First assume that A(z) > 0 (and hence A(y) > 0). We distinguish three cases.
* Case 1: A(z) # A(y). In this case, we have A(f(z)) # A(f(v)), and it follows that

1@ - £) e
S (z —.U) °
Hence
(2D - - py-2) 2 @- i)
= (o= Dmax { @), o) | = max (24(0, (2~ DA} > Ao,
implying that
(3.3) 19-10) ¢

Case 2: z ~ y and z[\(z)] # y[A(y)]. In this case the argument is similar to that of
Case 1.

Case 3: z =, y for some r € Q with 7 > A(z). Then obviously A(|z—y|) = 74, where
T+ is a rational number such that ry > r. It follows that A(|f(z) — f(y)]) = ary.
Thus, we have

A (L) x760) 1) - M=) = (= s > (2 - 120
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from which, as in the Case 1, we obtain (3.3). Finally, if A(z) = 0 = A(y) then the
proof of the inequality (3.2) follows by the same arguments as above (when A(z) > 0),
except that we have to use the appropriate expression for f from equation (3.1). O

In the following definition we introduce the class of all functions that are differentiable
with derivative equal to 0 everywhere on an open subset of R.

Definition 3.2. Let M C R be open and let f : M — R. We define the class of
functions D}(M) as follows:
Dy(M) = {f : M = R|f is differentiable on M, f'(z) =0 Vz € M}.

3.2. Systems of linear ordinary differential equations on R. In this section
we investigate the solutions of systems of linear ordinary differential equations on R,
using the functions of class Dj.

The main goal of this section is to obtain solutions of systems of lmea.r ODE’s of
the form:

Y'(t) = A®)Y (t) + B(2),

where Y (t) is a vector of dimension n > 0, n € N, which contains the unknown
functions, Y’(t) contains the derivatives of the functions from Y (¢), A(t) € ML(R),
for all £ € R, which contains the coefficient functions of the system, and B(t) is a
vector of dimension n, which contains functions that ensure the inhomogeneity of the
system. In order to realize this we study a few cases, going from the most special to
the most general ones.

Theorem 3.2. Consider the linear homogeneous system of ordinary differential equations
with constant coefficients which are at most finite in absolute value

Y'(t) = AY (2).
Then the solution is given by _
Y(t) = e*C + e*Una(t),
where C € M,1(R) is a vector containing constants, and Una(t) € Mn,1(D§) is a
vector which contains functions of class Dj.
Proof. We rewrite the system in the form:
Y'(t) — AY (t) = On,,
which is equivalent to

e AY!(f) — e AAY () = Opy or (e74Y(2)) = On,1-
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It follows that e=4tY (t) = C'+Una(t), where C € Mn 1(R) and the elements of Upa(t)
are functions of class D}, and hence Y (t) = eA*C + eA*Up,q(t). y O

Remark 3.8. Theorem 3.2 shows that the solutions of linear homogeneous systems
with constant coefficients over R are very similar to those of the real case, except that
the solutions in the non-Archimedean case may also involve non-analytic functi

with zero-derivatives.

Since we know how to integrate R-analytic functions [14] in the Lebesgue-like
theory developed in [15, 18], we can study next those inhomogeneous systems, where
the functions ensuring the inhomogeneity are R-analytic.

Theorem 3.3. Cunsider the inhomogeneous system of linear ordinary differential
equations with constant coefficients:

Y'(t) = AY (t) + B(t)

on the interval [a,b] C R, where |A|, |a| and |b| are at most finite in absolute value,
and B(t) is a vector, which contains functions that are R-analytic on [a,b]. Then the
solution is given by the eguation

Y(t) = eAC + MU t) + €At f =44 B(s),

[a,t]

where C € My,1(R) and the elements of Una(t) are functions of class D}.

Proof. We rewrite the system in the form Y’(t) — AY (¢) = B(t), which is equivalent
to
(e~AY (1) = e~AtB(t).
It follows that
e AY (1) = C + Upa(t) + /[. e~4*B(s),
a,t]
where C' € M, 1(R), and Upq(t) € My,1(D}), and hence
Y (6) = €A4C + eAtU,g 2) + et / e=4B(s).
[at
Note that we have used the fact that eA*B(t) is a vector whose components are
products of functions that are R-analytic on [a, b], and hence the components themselves
are R-analytic on [a, b]. O
The proofs of the next two theorems (Theorems 3.4 and 3.5) are similar to those

of Theorems 3.2 and 3.3 above, and therefore they are stated without proofs.
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Theorem 3.4. Consider the homogeneous system of linear ordinary differential equations
with non-constant coefficients:

Y'(t) = A@)Y ()
on [a, b], where |a| and |b| are at most finite, and where A(t) is an n x n matriz whose
elements are R-analytic on [a,b] and such that | A(t)| is at most finite for all t € [a,b).
Then the solution is given by
Y(t) = ehen A0 0 4 elon 4@y, (1),

where C € Mn,1(R) and Una(t) € Mn 1(D}).

Theorem 3.5. Consider the inhomogeneous system of linear ordinary differential
equations with non-constant coefficients:

" Y'(t) = AQ)Y (t) + B(£)

on [a, b], where |a| and |b| are at most finite, A(t) is an n X n matriz whose elements
are R-analytic on [a,b] and such that |A(t)| is at most finite for all t € [a,b], and
B(t) is a vector whose components are functions that are R-analytic on [a,b]. Then
the solution is given by
Y(t) = e.ﬂ-.:] A(s) T e.ﬁ..q A{‘}Um(t) + ef[...:] A(s) '/. = Jiayol A(")B(s)’
[a.t]
where C € My1(R) and Una(t) € Ma1(D}).

3.3. Bessel-type special functions on R. In this subsection we study Bessel-
type special functions on R, with the help of the solutions for systems of linear
ordinary differential equations that we developed in Subsection 3.2. We introduce
such functions with the following problem.

Problem 1. Consider the differential equation

(3.4) 2y +ty’ + (2 =)y =0.
Let’s study the solutions of this equation on [a,1] C R, where 0 < a < 1, a is finite,
and v € Q\ Z.

We call equation (3.4) the Bessel equation of order v, and we study its solutions
below.

Tt is easy to check, as in the real case, that the functions

AR S (-1) £\

(85) Juft) = (5) z all(n+v+1) (5)

n=0
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and i ; o
i s (%) E nlr(i(z-—l::z +1) (t)

are two linearly independent analytic solutions of equation (3.4), for all t € [a,1],
where T' is the Euler’s Gamma function. Moreover, it follows from Corollary 3.10 in
[17] that the power series in equations (3.5) and (3.6) converge weakly in [a, 1].

The main objective of Problem 1 is to construct solutions of equation (3.4) that
involve functions of the class D}, and to study their properties.

‘We set
w =y
wy =7/, :
and consider the following system of two linear ordinary differential equations:

wh = 1wy
(SR

which we can write in matrix form as

3.7 W'(t) = AW (1),

where
vo=(58): wo-(38): ao=(, 1)

. Because the elements of A(t) are R-analytic functions on [a,1] and they are at most
finite in absolute value for all ¢ € [a, 1], we can use Theorem 3.4 to write the solutions
of equation (8.7), which are also the solutions of equation (3.4).

Let ;

t—
s [a.;]A(s) = ( t—a+v3(3-3) lnﬁa ) :
where the function In is R-analytic on [a, 1].

Thus, the solution of equation (3.7), and hence of equation (3.4), on [a, 1] has the

form
W(t) = ePOC 4 ePOU,L,(2),
where C' € M3,1(R) and Upa(t) € Ma,1(D}).

Teking into account that the analytic part of the solution has the form c1dy(t) +
c2J-,(t), we conclude that in the first row of the matrix eP(*) we can take the entries
to be

Dy = Jy(t) and D3 = J_u(t).
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With C = ( z; ), it follows that the first component of W (t), which is y = w(£),
has the form:
y = a1 [Ju(t) + Ju(£)gu(8)] + e2 [T () + J-u(t)g-0(2)],
where g,, 9 € Dj([a, 1]).
Now we are in a position to define Bessel functions of the first kind on R.

Definition 3.3. For0 < a < 1, a € R finite, we define the functions J,,d—, : [,1] C
R—R by
2.(t) = Lu(t) + Ju(t)gu(t), and
3—v(t) = J—u(t) + J—«v(t)g—v(t):
where v € Q\ Z and g,, 9 € D}([a, 1]).
We call the functions 3,,d—, Bessel functions of the first kind and of order v, and
—v, respectively.

Next, we study some properties of the Bessel functions g, and J—,.

Theorem 3.8. Under the notation of Problem 1 and Definition 8.3 above, the following
two statements are true for allt € [a,1]:

@ 280 = (har)+ T ) (1400
® 28,0 = (1) = T ®) (1 +0.0))-
Proof. Using equation (3.5), we can write
L@\ 1 < (—1)g2n-1 e
( tv ) = Fg (m-1)T(n+v+1)2n-1 v:: :

Then, using the fact that ,(t) = Ju(t) + Ju(t)gu(t) and g},(t) = O,Vt € [a,1], we

obtain - :
(20) - 240 2By, .
implying that -
B0~ +8.0ph = -2l 2l
or o
(3:8) 3,(8) = 23,(8) — 1 (8) = Jot1 ()90 2)

Similarly, we can show that

%(t"a,(t))' = 11 () + 2 o1 (B9 (8)s
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implying that
-i-(ut""&'u(f-) + t”ﬂ:,(t)) = tuﬁlJv—I(t) =+ tu_lJu—I{t)gy(t)r

or
(3.9) 8(8) = Ju-1(t) — Z8u(t) + Ju-1()0u (2).

If we subtract equation (3.9) from equation (3.8), we get statement (a) of the
theorem, and if we add the two equations, we get (b). O

Remark 3.4. Just as we did in Theorem 3.6, we can obtain other recursive relations
Jor 3, and 3_, that would eztend the classical recursive relations for J, and J_, from
Real Calculus to the non-Archimedean calculus on R.

In the following subsection, we introduce the so-called generalized Bessel functions
of the first kind on R.
3.4. Generalized Bessel functions of the first kind on R. We give some basic
definitions based on those given by A. Baricz (see [2]) in the classical case (real and
complex). As before, let 0 < a < 1, a € R finite, p € Q\ Z, and let b,c. € R in the
rest of this paper.

Definition 3.4. The differential equation

(3.10) 2w (t) + btw(t) + [ct? — p? + (1 — b)plw(t) =0

will be referred to as the generalized Bessel equation of order p (see [2]), and any
solution of it will be called a generalized Bessel function of order p.

The generalized Bessel functions permit the study of Bessel fuhctions, spherical
Bessel functions and modified Bessel functions together. That is why it is very
important to extend this kind of functions to the field R.

Remark 3.5. As in the classical case (see [2]), it can easily be verified that the
Junction
o0 (_c)“ ( t ) 2n+p
L= =
T

wp(t) 2 nil(p+n + B2 \2
is a solution of equation (8.10). Moreover, when ¢ = b =1 we get the Bessel Sfunction
of the first kind of order p discussed in the previous subsection.

Similar to Definition 3.3, we introduce generalized Bessel functions of the first kind
on R as follows. I
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Definition 3.5. Let0 < a < 1, a € R finite, p € Q\ Z, and let b,c € R. Then the
function

; Wp(2) = wy(t) + wp(t)gp(t),
where g, € Dj([a, 1]), and

e i) NE
wt) =3, e e (3)

n=0
is a solution of equation (3.10). We call W, (t) a generalized Bessel function of order
p on [a,1].

The proof of the next result is similar to that of Theorem 3.6, as well as to the proof
of the corresponding result in the classical case (see [2], Lemma 1.1), and therefore
we state it without proof.

Theorem 3.7. Under the notation in Definition 8.5, the following statements are
true for all t € [a,1]

@ ZEZ20,(0) = (wp1(8) + cwpa®) (1 4 05(8)

(®) (@p+b— )W) = (pwp-18) - (0+5— Dewps1®)) (1 +55()-
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