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Abstract.We consider the problem of non-parametric estimation of the mean function of an
inhomogeneous Poisson process when its intensity function is periodic. For integral-type quadratic
loss functions there is a classical lower bound for all estimators and the empirical mean function

attains that lower bound, thus it is asymptotically efficient. Following the ideas of the work by
CGolubev and Levit, we compare asymptotically efficient estimators and propose an estimator which
is second order asymptotically efficient. Second order efficiency is done over Sobolev ellipsoids,
following the ideas of Pinsker.
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1. INTRODUCTION

We consider the problem of non-parametric estimation of the mean function of an
inhomogeneous Poisson process. We suppose that the unknown intensity function is
periodic. It is known that empirical mean function is an asymptotically efficient (in
several senses, see e.g. Kutoyants [7],[8]) estimator. Particularly, we are interested in
asymptotic efficiency with respect to the integral-type quadratic loss function. Note
that there are many estimators that are asymptotically efficient in this sense. The
goal of present work is to choose in this class of asymptotically efficient estimators the
estimators which are asymptotically efficient of the second order. Such a statement of
the problem was considered by Golubev and Levit [6] in the problem of distribution
function estimation for the model of independent and identically distributed random
variables. Then applying the ideas of this work to the second order asymptotically
efficient estimation for different models, Dalalyan and Kutoyants [1] proved second
order asymptotic efficiency in the estimation problem of the invariant density of
an ergodic diffusion process, in partial linear models the second order asymptotic
efficiency was proved by Golubev, Hardle [5]. In this paper we prove second order
asymptotic efficiency result for the mean function of a Poisson process. The main
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idea that led to development of these type problems was proposed by Pinsker in [10]
(more details on the Pinsker bound can be found in [9], [11]).

2. AUXILIARY RESULTS

Let a probability space (2,7, P) and a stochastic process X7 = {X,, ¢ € [0, 7]}
be given. Recall that X7 is an inhomogeneous Poisson process if 1. Xy = 0 a.s. 2.
The increments of the process XT on the disjoints intervals are independent random
variables. 3. We have

- :
P(X:— X, =k) = I&;!ﬁ@le_mm_”m, 0<s<t<TkeZy,
where Z. is the set of all nonnegative integers. Here A(t), ¢ € [0, T'] is a non-decreasing

function, and is called the mean function of the Poisson process, because EX (t) =
A(t). If the mean function is absolutely continuous

¢
AY) = / A(s)ds,
0
then A(Z), 0 €t < 7 is called the intensity function.

Let us consider the problem of estimation A(t), when its intensity function is a 7-
periodic function. For simplicity we suppose that T' = T}, = Tn. Then the observations
XT = {X,,t € [0,7n]}, can be written in the form
(21) X"= (thﬂl"'. I'xl'l)l
where

Xj=(X;(t), 0t <7), X;(t) = Xjrst — Xjr.
It is well kuown that the empirical estimator

. ket
i=1
is consistent and asymptotically normal: for all ¢ € [0, 7]
VA(A(E) - A) = N(0, A(2).

Moreover, this estimator is asymptotically efficient in the sense of the following lower
bound: for all estimators A(t), ¢ € [0,7] and all ¢* € (0,7] we have

lm lIm sup nBA(Rn(t") - A®))" 2 A°(2°),
where V5 = {A(-) : SUpyero, ] [A(t) —A*(t)| < 6} and for the empirical mean function
one has equality. This is a particular case of a general lower bound given in [7]. Similar
inequality holds for integral-type quadratic loss function ([8])
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@) lm lin swpn [ Ea(ha) =A@ > [" NG,

5—+0 n—++o00 A€V
Definition 2.1. The estimators A},(:) for which we have egualily in (2 2), i.e.,

B 4 f EA(K3(6) - A(e))"ds = j A*(s)ds,

P—I% n—+00 AeV;
are called (first order) asymptotically efficient.
The empirical mean function is asymptotically efficient estimator also in this sense ([8]).
The goal of the present work i8 to find in the class of first order asymptotically
efficient estimators an estimator which is second order asymptotically efficient. We
follow the mains steps of the proof of Golubev, Levit [6].

3. MAIN REsSuLT

Denote by Cm(R.), m € N the class of all f : Ry — Ry 7-periodic functions so
that their (m — 1)-th derivative f(™~1) exists and is absolutely continuous. Let us
consider the following class of functions

t -
Fon(R, S) = {A(t) £ fu A(s)ds : A € Bmo1(R4),

-
(3.1) . f [A™(#)]%dt < R, %A(‘r) = S} 3
0
where R > 0, S > 0, m > 1, m € N are given constants. Introduce as well
28 7 m o\ T
32)  H=Ia(&S) =@m-1R (Eﬁ(z_ml‘l)(_m-'l_))

Proposition 3.1. Suppose we have observations of the model (2.1). Then, for all
estimators An(t) of the mean function A(t), following lower bound holds
ln  sp ni® ( " Ea(Rn(t) - A))?dt — f ¥ A(t)dr.) S,
n—++00 AEFm (R,9) (] ‘N Jo
This proposition is proved in the forthcoming work [3]. In this work we propose an
estimator which attains this lower bound, thus we will prove that this lower bound is
sharp. Introduce

+c0
AL(t) = Ayndr () + ) Kanhanda )+

=1
+oo _ :
+3 [Km.n(ﬁm-n.n — agi41) + am+1] dar41(t),
=1
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where {¢}}: is the trigonometric basis on L[0, 7], Ay, are the Fourier coefficients
of the empmca.l mean function with respect to this basis and

oml |™
Kﬂ!,n = (1 e uﬂ) 1
+

: ELES.__.] " o=y
e n2r R (2m—1)(m—1) - o 211’\'.

Here 2. = max(z,0). The main result of this work is the following theorem.

Theorem 3.1. The estimator A},(t) attains the lower bound described above, that is,
lim | pTeE ( EA(AL(t) = A(t))%dt — — f A(t)dt)

"-’+°°Aear.,.(n.31
4, THE PROOF
Consider the normed linear space
La[0,7] = {_f: for |f(@®)[2dt < +oo},
with the norm
= ([ |f<t)|’d:)*

Evidently, F, (R, S) C L3[0, 7]. The main idea of the proof is to replace the estimation
problem of the infinite-dimensional (continuurﬁ) mean function by the estimation
problem of infinite-dimensional (countable) vector of its Fourier coefficients. Recall
that the space Ls[0, 7] is isomorphic to the space

400
£y = {6 (ﬂk);,_1 1 28,3 < +oo},
k=1

|1l = (gfhf)*

Consider a complete, orthonormal system in the space L,[0, 7],

#1(t) = \/Ts Pa(t) = \/_008 —t, Gu(t) = \/_Bmzﬂkn keN.

Each function f € Ly[0, 7] is a Ly—limit of its Fourier series

with the norm

+s0 £ =
0= 6u(t), 6= f oo
k=1 1]
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Our first goal is to describe the set © C #£; of Fourier coefficients of the functions
from the set Fu (R, S): Introduce following subset of La[0, 7]

Em(R) = {f: F™ D € AC[0, ], fP(0) = f(r), i=0,m—1, f "™ (o)t < R),
E 0

where AC|0, 7] is the class of all absolutely continuous functions on the interval [0, 7).
The proof of the next lemma can be found in [11], lemma A.3.

Lemma 4.1. The function f belongs to the set Z.(R) if and only if its Fourier
coefficients with respect to the trigonometric basis belong to the set

+co
(4.1) Om = {8 €, Y A< R},

k=2
where Agi = Agg41 = (2:—"‘)“, k € N.

Denote : =
i / A@)()dt, M= f A)dx(t)dt.
0 (]
Since A € Fn(R, S) is equivalent to A € E,_1(R) for its intensity function and, by the
Lemma 4.1, the later is equivalent to (Ax)k>1 € Om—1, then, calculating (A(0) = 0)
N
ﬂkzk-u Azky o k-\n \/;mﬁ(‘r ) — Azkt1,
we obtain necessary and sufficient condition for A € F,(R, S) that is (Ax)x>1 satisfies

@ B () i (e se) | s

Let us write the empirical mean function as a stochastic integral

L) = E X,(8) = Z [ I{s < £}dX;(s).
J—l
We consider generalization of this estimator

Aa(t) = Z f Kn(s — D) X; (3)ds

=
where K, (u) for each n € N is such a function that

Kn(u+7) = Kn(u), Kn(u)= Kn(—u), v € [0,7].

We show that there are functions Ky, (u) for which the estimator described above is
asymptotically efficient. Introduce

hun= [ " Ra@i(0)dt, Kip = fn " Kn(t)bu(t)dt.
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Let us first study n
Run = [ An(Oit)et = ,—1‘; [ %t ([ #uta- (et do
= % gZ:; /or X;(s) (/:T Kn(u)pi(s — u)du) da.

We calculate separately the even and odd Fourier coefficients

. D] e - . 2xl

s = /22 [ xs6 ([ xawrain 2 - wiu) ds
g T . oml ( . 2l )

= ‘/—- = Kn(u) cos —udu | d
'rn;_/n X;(s)sin = 8 Jii (u) = u ) ds

Lt E:f X (oo s ( K, () sin @udu) s
TN =i 0 T a—T T
Since
s ]
f Ko (u)sin 2—ﬂudu = f K (u)sin E'uu:l'u =0,
—r T -% T

3
i) oo %ﬂudu e f Ha(u)cos -iltudu =
: !

a=T

then (the second one can be proved in the same way)
- 7 - . T -
AzH—l,n = ﬁKﬂ.n . A21+1,m Am,n = J;KZI.R £ Aﬂ,n-
Instead of this we consider the estimator which Fourier coefficients have the form ([2])

ﬁl,n = A1.1'1’ ﬁﬁl.n = Ka,n* ﬁ-ﬂl,n) Jr-i"n.‘.i-l-l.!'s = Kﬂ,n(ﬁz{-}-l,n — agry1) + aor,

T T
azi41 = J-E-ms

Now we are ready to evaluate the risk described in the theorem. First,
- TorT 2 i
Enllin = Al = - [ A(e)ds = Bl — AIP ~ EallAn — Al

Using the fact that ExAyn = Ay, and denoting o7, = Ea|Ayn—Ai[?, by the Parseval’s
equality we get

where

oo
EallAn — Al — EallAn — AI? = > (1Kanl* — 1)(02 0 + 0214i0)
=1

+o0
(4.3) + | Katn — 11 [|A2tgs — a2 + |A2i?] .
=1
18
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To compute the variance o3 ,, + 03,14, introduce the notation
73(6) = X5(8) — AGY):
. In the sequel, we are going to use the following property of stochastic integral
@y ma[ [ s [ atrme) = [ re00aa, foea,
Further, integmting by pa.rts we get

e z f OGRS il ( " (e ) amy (),

=1
which entails that
An=Balkin =P =1 [ ([ m(s)ds) dAGH).
Simple algebra yields

it + Tlirin = %\/g (=)’ [\/gn(r) - ,\,.] .

Combining with (4.3), this leads to

+
o e o R
Eﬁ'lAn A“ EAI“A" ﬁ“ > S (2“1) (lKﬂ.nl 1)
(4.5)
+c0 for
—112 == 2 9 E .2_ T 2 % A
+§iK2l.n 1° [|A2i+1 am+1[| + |Azy| ]+§n\/:(21rl) (1 = |Kan?)Az-

For the third term in the right-hand side we have

:f %\/g (%)2 (1 = |Katnl*)2| <
=]
< g[m&x 11 "('lif;l,nlzl Z (2#!)“‘"1 o (27.”)—1

I=1

<2y ool (£(2)" ) (E(7)

I= I=1
Since (A1)i>1 € ©n—1, then from (4.1) we obtain

(f (= xa.)* <VE
=1

f (5m)" (= |Kaa®af <

Hence
N | K102

T
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Now, consider the first two terms of the right-hand side of the equation (4.5). Introduce
a set of possible kernels (for all ¢, > 0)
<

5‘ (2 I) (IKatal® - 1) + +Z | Kt — 11 [|A2i41 — aarga | + |Azif?]

=1

21ri

en={-K21n. |Kﬁu"1|<

It follows from (4.2)

‘*.

Kapn— 1P (2nl
-2 G v+ () o

+oc
£y %S (5:7:)2 (IKatul* — 1) + 2 R.
I=1

Hence, minimizing the later over the set C,
2ml

4.6) Koy = m‘gnéin [ Katn| = (1 =

m
]
A

sup (Ballkn— Al? - Ealldn — A?) <

we obtain

AET W (R,S)
(4.7) = 2(2 l) IK:tni2—1)+c:R+ — max ————11_(,‘!'{:’;“" l

Here A, (t) is the estimator corresponding to the kernel K(u). In fact, we have not
yet constructed the estimator. We have to specify the sequence of positive numbers
¢y in the definition (4.6). Consider the function

+o0
H(en) = %S,g (%)2 (|Kainl* = 1) + 2R

and minimize it with respect to the positive sequence ¢,. Introduce as well N, =
%c; %. Then

oml\ ™ oml\™ T \2
He =25 Y (o)’ [.,. (2)" -2 (2) ] 2 Y (5] +an
I<N, >N,

To minimize this function consider its derivative
27l omi\™
(4.8) H'(ca) = -S [20,. ( ) -2 (——) ] +2c,R=0.
Ig (2 l) T
20
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Consider such sums (8 € N)

[Nu] 1 [Nn] B 1 4
= [ B+1 Al
PRy () o =1 2 () wr
hence, if ¢, — 0, as n — 400,
1 1
W lﬁENn ‘ﬂ o »/D zﬂdz’

that is,

z 1? = [r;“_]‘_ —(1+ o(1)), n — +oo.
I<N,

Using this identity we can transform (4.7) (remembering that N, = Z-cn *)

26 (2_") St 3 pam) Eal Gl

Tl I<N, z Ere
I1<Nn :

9 9 2(m-1) I\Gm_ o m—2 Nm-1

no (c" (?ﬂ) Im—1_ (‘F) P et Lk )

T —m=1 4l 1
2" (2m—1 ¥ m—-f) =S A

2
n

Finally, for the solution of (4.8), we can write

¢ = at(1+o(1),
0 1728 m wst
«9) S

Now, using the identity (8 € N)
+00 1
Z T i ﬂ-—: / —de- (1+0(1)), n — +o0,

for =2
y -15=Nl (0 od));m— +oo,
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calculate
2(m—1) sz =1

H(e) = -S [(cr.)2 2”) e

_ ot (2:)"'_2 M _1 & -1-] (1+0(1)) + (ch)*R =

[ )i (c;)_zm_ - (‘;)dnﬂ_l] (1 J 0(1)) + (c“)ﬂR =
= -3m+1 < 2

) '(F'i')(_—)-a +0(1)) + (cn) 'R =

= (@) * @) 5 RN (14 o)) + ()R = —(2m — 1)(a5R(L + (1)),
where we have used the relation (4.9). Now, choosing the sequence ¢, = o}, for the
definition of the estimator in (4.6), we obtain from (4.7)

sup  (Baln Al - Eali, - A) <

AETm (R,
e 2
(4.10) < —(2m — 1)(e4)*R(1 + o{1)) + - max '—(g)l,,:ﬂ

If we show that

— | K 2
(4.11) %miaxllTlT:f;"ﬁnl—l = o(n_!'?n'!'l')l
then, since
I = (2m — 1)(a})* Ra7w=T,

we get from (4.10)
Tp e sup  (BalAn AP~ EalAn - AJF) < -

n—+oo AES’m
This combined with the proposition will end the proof. To prove (4.11) recall that

2wl i -) » [1 T 28 m ]""'[
a, 3
o

Ek F

n2r R 2m—1)(m—1)

!-{N.ﬂ — (l iy

Therefore,

|1 = |Ka,nl?| | Kat,nl?| il Ko n L Ea' sl do
ﬂ 1 (2:!) = (ﬂ'ﬂ) n" n ot
Theorem 3.1 is proved.
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