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Abstract. Astola and Danielian [1), using stachastic birth-death process, have proposed a
regular four-parameter discrete probability distribution, called generalized Pareto-lype model,
which is an rppealing distribution for modeling phenomena in Bioinformatics. Farbod and
Gasparian [5), fitted this distribution to the two sets of real data, and have derived conditions
under which a solution for the system of likelihood equations exists and coincides with the
maximum likelihood estimators (MLE) for the model unknown parameters. Also, in [5], an
accumulation method for approximate computation of the MLE has been considered with
simulation studies. In this paper we show that for sufficiently large sample size the system of
likelihood equations has a solution, which according to [5], coincides with the MLE of vector-
valued parameter for the underlying model. Besides, we establish asymptotic unbiasedness,
weak consistency, asymptotic normality, asymptotic efficiency, and convergence of arbitrary

moments of the MLE, by verifying the so-called regularity conditions.
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1. INTRODUGTION

The mechanism of biomolecular large-scale systems dynamic often can be explained
with the help of standard stochastic birth-death process with various specific constraints
on its coefficients. The stationary solutions of the process, which always are right-
skewed, can be used as frequency distributions of different events, occurring in large-
scale biomolecular systems. For details we refer to [1, 4].

Based on the standard birth-death models, several frequency distributions have
been considered for biomolecular applications (see, for instance, Bornholdt and Ebel
[2], Kuznetsov [6, 7], Kuznetsov et al. [8], and Danielian and Astola [4]). Since then
Astola and Danielian [1], based on data sets, have introduced the following "four-
parameter"regular frequency distribution, called generalized Pareto-type frequency
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distribution (see also [5]):

Pa(k) =Pa(€ = k) = [9(@)] ™ - e - [Tomo( + 5y K =1,2..,
(11) =1
Pal0) = [9(e)) ™ = [1+ Ty iy - o + 5]
where a = (6, ¢, b, p) is an unknown parameter, such that 0 <# <1, 0 <c< oo, 0 <
b<oo,l1<p<oo, bW?>1-—c '

The model (1.1) is described by a four-component vector parameter: a = (6, c, b, p),
in which c is the non-linear scale parameter (or ezponential scale parameter), b
is the location parameter, the parameter p describes the shape of the probability
distribution, as for the parameter 6, its role is explained in [1}, Ch. 4, Theorem 4.2.

The problem of interest is to investigate the statistical properties of the parameters
for the generalized Pareto-type frequency distribution, given by (1.1). However, the
model (1.1) suffers from two major drawbacks. First, it lacks a simple closed form
expression for probability mass funcfion. The second disadvantage is that the r-th
(r € N) absolute moment of this distribution exists only for p > r+1 (see [5/, Lemma
1). This leads to a serious difficulties in making statistical inferences about the model
unknown parameters.

Some aspects of this problem has been considered in [5]. For instance, conditions
under which a solution of the system of likelihood equations exists and coincides
with the MLE for the unknown parameters of the model (1.1), were obtained; an
approximate method (with simulation studies) for estimating the model parameters
was proposed, as well as, two real data sets on the number of proteins and the number
of residues have been proposed for fitting the model (1.1).

The purpose of the present paper is to continue the investigations conducted
in [5]. Specifically, in this paper we prove that for sufficiently large sample size
the system of likelihood equations has a solution, which according to the results
from [5], coincides with the Maximum Likelihood Estimator (MLE) of a vector
parameter for the underlying model. Besides, we establish asymptotic unbiasedness,
weak consistency, asymptotic normality, asymptotic efficiency, and convergence of
arbitrary moments of the MLE to the corresponding moments of the limiting normal
distribution. To this enci, we make use the well-known results on asymptotic behavior
of the MLLE (see [3], [9]), by verifying the corresponding regularity conditions, called
RR-conditions.
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The rest of the paper is organized as follows. Section 2 contains the RR conditions
(in the general case), and the asymptotic properties of the MLE. In Section 3 we
introduce some notation and prove an auxiliary result (Lemma 3.1). The main results
of the paper are given in Section 4.

2. THE RR—CONDITIONS AND THE ASYMPTOTIC PROPERTIES OF THE MLE

Let X® = (Xi,...,Xn) be a random sample drawn from the distribution P,
belonging to the parametric family of distributions P = {Pa, a = (o,...,0k) €
A C RF}, and let pa(z) be the density function of P,.

We say that the parametric family of distributions P satisfies the RR-conditions
if the following are satisfied (see [3]):

1. There exists a compact subset () of the parametric set A = {a} containing
an open neighborhood of the true value a® of the parameter a.

2. The distributions P, are distinct, that is, pa: () # pez(z) for all o # o?
(a?,0? € Q) and all z € Supp P, = {z € R: pa(z) > 0}.

3. The distributions P, have a common support, that is, the set Supp P, does
not depend on a.

4. For all z € Supp P, the functions la(z) = Inpy(x) are twice continuously
differentiable in @, and there exists a function M(z) satisfying [ |M(z)|pa(z)dz <

oo and

lim sup f M (z)pa(z)dz =0,
|M(z)|>N

N—co e

such that for all @ = (a1,...,an) €Q and z € Supp P

| 14 (z) |< M(z),

where I} (z) = %:—f“-'a%}
5. The Fisher information matrix

I(e) =|| Lj(e) |l1<ij<as

where Iij(a) = Ea[f;zc. (X1) - 32—,!.,(}{1)] = —Eu[l¥(Xy)] is a positive
definite continuous function for all a € Q2 such that | I(a) |= det I(a) > 0.
Here and in what follows E,[-] stands for the expectation by the distribution
P, of the random variable in brackets.
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Theorem 2.1. (see [3]). Let the RR-conditions be satisfied. Then with probability
tending to one as n tends to infinity, there ezists a solution @, = @&(X™) of the system
of likelihood equations

OLn (X" ;
(2.1) —5571=0.1515k.

where Lo(X™) = 1 la(X;) is the logarithm of the likelihood function fu(X™) —
[T7: Pa(X:), possessing the following properties:
(i) @n is an asymptotically normal and asymptotically efficient estimator for a,
that is,
tn = VA(@n — @) -5 u~ N(0,I-}(a)),

where u ~ N(0,I"%(a)) is a k-dimensional normally distributed random
variable with mean vector 0 and covariance matriz I-1(a), and -2+ means
convergence in distribution.

(i) @ is a consistent estimator for a, that is, &n —% a as n — 00, where —2
means convergence in probability.

(iii) for all k> 1

(iv) @n is an asymptotically unbiased estimator for o, that is,
Bl e als) i o
a|Cn| = ﬁ ]
and also
Ba[(@ — a)7(@n—a)] = = -I7a) +0(2) as n—oo
o £ n n 1
where mT stands for the transpose of a vector m € RE.

Remark 2.1. 1t follows from the results of [5] that the solution &, of the system (2.1)
coincides with the MLE of the parameter o (recall that the statistic &, = &(X™) on
which the function Lq(X™) attains its (local) maximal value is called the MLE for
parameter a).
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3. NOTATION AND PRELIMINARIES

Let £ be a discrete random variable with probability distribution given by (1.1),
and let the parametric space £ be defined as follows:

ﬂ={a: 0<0p<0<Bp<1l,1<c<c<Cp<oo, 0<by<b< Bp<oo

(bo<1),3<po < p< Ro< ool
Forz €N, a €, j,k €N and 7 € R, we denote (see [5]):
hoj(2, @) = Sito(m +b)~[(m + b)P + ¢ — 1]
by s k(2, @) = o (m + b)Y [(m +b)? + ¢ — 1]~ - In(m + B)]¥;

H(z,a) = (c— hy(z,a) + (z + b))~
A(z, @) = (¢ — 1) lp,1,1(=, @) + In(z + b). _ =
According to [5], the first and second order partial derivatives of function l(z) with
respect to ay, where oy = 0, ag = ¢, ag = b, ay = p, are finite if pp > 3, and can be
represented as follows.
For the first order partial derivatives we have

2elt) - tEalil+ 5, Z5E) = —{Balhos(e o)l - hoa(a ),
Bla(z) Ola(z)

o = p{BalH(& o) - Hma)}, —3= = EalAG )] ~ Alz, )
For the second order partial derivatives we have

8‘11,, (n:) 82la(2)

= o {Ealt-a)-Voralel}, @) = 522 = ~5Covalé, hoa(6.,

@) =

8’!.,(3)

8%la(z) "c oval6, HE, 0)], 1X(z) = 5005 =%ooua[E,A(E,a)],'

la’@) = 5555

22(2) = L8 _ (5, hoa(t,0)) ~ haa(@) ~ Varalhaa €.l
@) = 228 _ o { (s a(6)] ~ hs-paa)) + Covalhos(6,), HE L},
!24( ) M — {Ealtpﬂ,l (E! Q)] i lp 2, 1(3‘.1 I.'I)} + Cwu[htl .I.(E: 0'.) A(E! a)]
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13(z) = Llaf®) = P2Vars[H(E, 0)] — p{Ealgis)® — 5} — plc — D){Ealh21 (€, @)]
—ha1(z, @)} — p*(c — 1){Ealha-p2(§: )] — ha—pa(z, @)},
134(z) = Zhe@) = {B,[H(€, o)) — H(z,a)} + ple— 1){Eallp-121 (£ )]
—lp-12,1(z, @)} — p Cova[H(§, @), A(§, a)],
14(z) = Zjof2) = —Vara[A(€, @) - (¢ = D{Eallp22(6: @) — lpaa(z,a)}.
Lemma 3.1. For all z ¢ N, a € , 5,k C N and v C R the following incqualitics

hold:
@) Ay e) < g if pi+v>0;

M) Lygk(z,@) < garz=s: ¥ PI—7-k>0;

(ifi) H(z,a) < !%;-B—’ + o35

(iv) Alz, @) < !Eb:,;—l).i +z + By.

Proof. We have
1

=L 1 = o z
Pl 0) = D oy (A B 1P < mz=:., (m+ 0T = R

m=0

implying the inequality (i).
To prove (ii), observe that
z-1 z—1
: & [in(m + b)]* 1
Fd e) = mz___:g(m S [(m+b)p+c—1p - rnz=ﬂ (m + byge——F <~ 'bgtoz—fﬂ:i?'

and the result follows.
To prove the inequality (iii), we use the inequality (i), to obtain

H(xl 0‘) - (c_ l)hl.l(zl C!) v (9:-]- b)_l < (Cu = 1) : bﬂ%—l’:’f : (z+bﬂ)-l‘
Finally, using the inequality (ii), we can write

A@,0) = (e~ Dloaa(@,0) +In(e+1) < (Co = zz=y + 2+ Bo,

implying the inequality (iv). Lemma 3.1 is proved.
70
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4. THE MAIN RESULTS

Let, as above, £ be a discrete random variable with probabili!:y distribution Py
given by (1.1), and let X" = (Xj, ..., X,;) be a random sample from the distribution
P,. We first prove a lemma, which will be used in the proof of our main result.

Lemma 4.1. For all « € Q lhere exisl posilive numbers A;; and By; (i,j = 1,2,3,4)
such that the second order partial derivatives [¥ () satisfy the following inegualities:
|t (2) |< Ais + By -z, 4,5 =1,2,3,4

for all z € N.

Proof. The following inequalities from [5] we use repeatedly:
Eq[€¥] < ¢k(0) exp{(Co — 1)¢(0)} = Sk(0), k=1,2,
where
¢k (0) := Ck(po, bo) = 2 b bo),,,, o0,

1
¢(0) = Co(po, bo) =nz=:uw < EEE.{-;E < o0,

and Z(po) ——_-:1 L. is the Riemann’s Zeta-Function. |
Now, we estimate the partial derivatives 1(z) for 4,5 = 1,...,4. First, for I3'(z)
we have
(@) I< g5 (Balé] + Bulel +2) < 5z 7 [5:0)+5:0)] + 7 2= Au+ Bu-a.
To estimate I32(z), observe first that
1 il
| B2 IS g Bale - hoa(6,0)]+ - Ealé] - Baltoa (s el
Taking into account that by Lemma 3.1 (i)
' T
(4‘1) hﬂ.l.(ml O!) < gﬂa
)
we obtain

v Rl N 3) S:(0)=A
| 122(z) |< % b Eol€l + — x5 %o bo (Balg])* < —?g‘; 2(0) = Axz.
To estimate 123(z), we use the inequality (see Lemma 3.1 (jii))

- 1
4.2) H(z,a) < %:m% e
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to obtain
I 13(z) |< %:‘ - Epl€ - H(E,a)] + %nﬂ - Bal€] - Ea[H(E, )]

<o+ Bo Eale)+ 2G50 - Balé?) < Ba(1+8:0)+ Zggg;%lsa(o)) = Ass.
Next, using now the inequality (see Lemma 3.1 (iv))

Co—1
(4.3) A(z,a) < ;g;;r -z + z + By,
we get:

| 144(2) IS & { Balé - A )] + Eale] - EalA(6, )]}
< #{(G= + DBl + Bo - Eale]}

< 2{Bo- 10 + (Gt + 10} = Aua.
To estimate [22(z), we use the inequality (see Lemma 3.1 (i))
(4.4) haa(z, @) < bﬁi""
and the inequality (4.1) to obtain
I 122(3) < Eu[ho.ﬂ(fs a)] ar Enfhu.l(fs ‘z)]2 + hD.2(271 ‘3)

< i (Balé] + Eal€?) + 2)

< 7 (510) + 52(0)) + sz = oo + B .
Now we estimate {23(z). We have
| 12}(z) |< Ro- {E,,[ho,1(£,a) «H(§, a)] + Ealho, (€, )] - EaH(§, )]

+Ealh1-pa(6, )] + h1—pa(a,a) .
Hence, taking into account that by Lemma 3.1 (i)
(4.5) h1-pa(z, @) < E,!%'-T
from (4.1), (4.2) and (4.5), we obtain
| 12(2) I< Bo- {Ea [ - (@46 + )] + Balifs] - Ba[ G546 + 5]

+ it + Ball] + s }

5;',:.%-{1+(1+g;)-sl(u)+3§§g;%l-s,(0)}+;§a,a,-Ea,ﬁBm z.
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For 124(z) we have

| 12(z) |< Eafho,1(§; @) - A€, @)] + Ealho,1 (€, @) - BalA(£; a)) + Eallp2,1(£: @)] +1p2,1(2)-
Heniss, ualis (411), TA2) nd the Blowiog loaqualls (20 Lessra 80 Q).

lpaa(z,a) < E"‘%

we get

| a) |< o Ba 6 (G46+€+ Bo)] + g - Balt]- Ea[+ 26+ Bo)

+%1,3—_r - Eol€] + %7.:7, T
< {(2Bo +bu) - 5,(0) +201 +bu;9,g:_1,)-s,(0)} + = o= Au+Bu .
To estimate [33(z), we use (4.2) and the inequalities (sec Lemma 3.1 (1))
ha—pa(@,a) < ﬁ ha(z,@) < ng-ﬁ

to obtain '

| 3%(a) |< B3 BalH(E,)]? +2Ro + R3(Co 1) (szbvr - Balé] + y58)

+Ro(Co — 1) (grbee Blé] + gzer) < 2Ro(1+ Ro)

+59é%51i {(Ro +1)81(0) + 2eLe=05,(0)} + BB Gol) . o = Ags + B 2.
For I%(z) we have

|134(2) |< Ro{ BalH(€,0) - A(E, )] + EalH(E, )] - EalA(E, )} } + Eal (€, 0)] + H(z,0)

+Ro(Co — D{ Ballp-1.21(6: )] + p-1.21(2, ) }

Hence, from (4.2), (4.3) and the inequality (see Lemma 3.1 (1)

T
lp-12.1(z,0) < PR’
0
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we obtain

| () < 2200 (Gt 4 L) - Fofe?] + (LSl 4 Bl 4 g 1 Gzl
-—(%'—I)Ea[€]+ﬂo(-r&r‘1‘+1+30)+RuBu+2+9h,—( +Ro)

o (%—,,—w £) - 5:00) +Ru{1%';,;—‘1[3§n A én-] +1}-5,(0)

+Ro( Gt + 1+2B;) +2+ %2.;—1(;‘; +Ro) -z = Au+Bu z.
Fma.lly, for [44(z) we have

| 144(2) |< Ba[AE @) + (Co — V{Balpaalt )] + b2z, ) }-
So, using (4.3) and the inequality (see Lemma 3.1 (i))

T
Iplg'g(.'t,ﬂ’.) < b—ﬂa—_z',
- 0

we obtain
| 184(@) |< 2[§302% - Bale®] + Ealt + Bol?] + G - Eale] + G o
=2(2 +1) - a(0) + (4Bo + 5) - 51(0) + 282 + G5B v = A+ Bu z.
a
Thus Lemma 4.1 is proved.
The main result of this paper is the following statement.

. Theorem 4.1. The distribution P, given by (1.1) satisfies the RR—conditions.

Proof. Observe first that the Conditions 1-3 are obviously satisfied. All the expressions
on the right-hand side of the representations for the functions I¥(z), introduced in
Section 3, are finite and are continuous functions in a € {2 (see [5]). So, we have to
verify only the Conditions 4 and 5.
Proof of Condition 4: We look for a function M(z) to satisfy | I (z) |< M () for
all « € 2 and z € Supp P,. To this end, denote

Lo = max{A;;}, 1<i<4,i<j<4,

No =max{Bn,B.U}, 2<i<4, i<j</4, M(.’F) = Lo+ Ny .
Then using Lemma 4.1 we obtain

| ¥(z) |< M(z) forallaeQandi,j=1,..,4.
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Besides, we have E,[M(£)] < Lo+ Np-51(0) for all a € Q. Now we verify the condition
(4.6) phm sup Eo [M (€)- Iu(s)z.u] =0.
Observe first that for arbitrary N > 0
Ea [M (3 'IM(E)zN] = Lo + No - Eal€ - Ips 5l
where N = Eﬁf—"‘ On the other hand, we have I
1

3 g % 3“ n—1 o c—1 1
Exfetean] = 0™ = gy 1 (Wmap) < 2 g < L o

which implies (4.6); and thus completes the proof of Condition 4.
Proof of Condition 5: Using the representations for functions I¥(z), given in the

Section 3, we can wrile

hi(a) = gVara(€), Ia(a)=In(e) = §Coval§, ho,1(€, a)),

Iig(e) = Ini (@) = —§Coval€, H(E, 0)], ha(a) =In(a) = —3Cova[¢, A6, )],
Izz(a) = Varalho,1(§,@)], Izs(a) = Isa(a) = —p Covalho, (€, @), H(E, o)),
Ipa(a) = Lia(a) = —Covalho,1(§: @), A(6, @), Tu(a) = Vara[A(€, a)]

Isg(@) = —p* Vara[H(§, )], Isa(@) = Lis(a) = p Cova[H(€, @), A€, @)].
Using the results from [5], we conclude that for sufficiently large n the matrix I(a) is
positive definite, and so | I(a) |> 0 for all a € 2. The continuity of I(«) on the set
§) is obvious. Thus, the Condition 5 is fulfilled. Theorem 4.1 is proved.
As an immediate consequence of Theorems 2.1 and 4.1 we obtain the following result.

Corollary 4.1. Let X™ = (Xi,...,X;) be a random sample from the genernlized
Pareto-type distribution P, given by (1.1) with unknown vector parameter a = (6, ¢, b, p),
and let @, = @(X™) be the MLE of a. Then for sufficiently large sample size n the
statistic &, 8 asymptotically unbiased, weak consistence, asymptotically normal and
asymptotically efficient point estimator for a, and for any k > 1 the k** moment of
@n converges to the k™ moment of the limiting normal distribution as n — co.

Acknowledgements. The author ig grateful to the referee for helpful suggestions to

improve the original presentation.
75



D. FARBOD

CHHUCOK JIATEPATYPHI

[1] J. Astols, E. Danielian, Frequency Distributions in Biomolecular Systems and Growing
Networks”, Tampere International Center for Signal Processing (TICSP), Series no. 31, Tampere,
Finland, 251 pages (2007).

[2] S. Bornholdt, H. Ebel, Wolrd wide web scaling exponent from Simon’s 1955 model, Physical
Review E, 64 (3-2), 035104(4), (2001).

[3] A. A. Borovkov, Mathematical Statistics, Gordon and Breach Science Publishers (1998)
(translated from original Russian edition).

[4] E. Danielian, J. Astola, “On the steady state of birth-death process with coefficients of moderate
growth”, Facta Universitatis: Ser. Elec. Energ., 17, 405 - 419 (2004).

[5] D. Farbod, K. Gasparian, “On the maximum likelihood estimators for some generalized Pareto-
like frequency distribution”, Journal of the Iranian Statistical Society (JIRSS), 12(2), 211 - 234
(2013).

[6] V. A. Kuznetsov, “Distributions associated with stochastic processes of gene expression in a single
eukaryotic cell”, EURASIP Journal on Applied Signal Processing, 4, 258 — 296 (2001).

[7] V. A. Kuznetsov, “Family of skewed distributions associated with the gene expression and
proteome evolution”, Signal Processing, 33 (4), 889 — 910 (2008).

[8] V. A. Kuznetsov, V. A. Pickalov, O. V. Senko, G. D. Knott, “Analysis of the evolving proteomes:
Predictions of the number for protein domains in nature and the number of genes in eukaryotic
organisms”, Journal of Biological Systems, 10(4), 381 - 407 (2002).

[8] E. L. Lehmann, Theory of Point Estimation, Wiley and Sons (1983).

§ Toctymuna 27 cenratps 2013

76



